
1.1 IntroductIon to AutomAtA theory

Automata theory is the study of abstract machines and the computational problems 

can be solved using these machines. Abstract machines are called automata. The name 

comes from the Greek word (Αυτόματα).

It means doing something by itself. An automaton can be a finite representation of 
a formal language that may be an infinite set. Automata are used as theoretical models for 
computing machines, and are used for proofs about computability. The automata theory 

is essential for,

 + The study of the limits of  computation

 + Designing and checking the behaviour of digital circuits.

 + Pattern searching in Websites

 + Verifying systems of all types that have a finite number of distinct states, such as 
communications protocols or protocols for secure exchange information

1.1.1 IntroductIon to FormAl lAnguAges 

Formal languages are the system used to train the machines in recognizing certain 

commands or instructions. These languages are the abstraction of natural languages, 

since they are expended by the machines. Formal languages are of five types. They are: 

 r Regular Languages (RL)

 r Context free Languages (CFL)

 r Context Sensitive Languages (CSL)

UNIT I      

AUTOMATA FUNDAMENTALS



1.2 Theory of Computation

 r Recursive Languages

 r Recursively Enumerable Languages (RE)

 à These languages are recognized by specific automata/machines and grammars. 

 r Regular grammars (type 3) and finite automata recognize regular 
languages.

 r Context free grammars (Type 2) and push down automata recognize 
context free languages.

 r Context sensitive grammars (Type 1) and Linear Bounded Automata 
(LBA) recognize context sensitive languages.

 r Unrestricted grammars (phrase structure grammar) (Type 0).

 r Turing machines recognize recursively enumerable languages.

 à Total Turing Machines (TTM) that halt for every input are used to recognize 
recursive languages.

1. Formal Language Theory

Formal language theory describes languages as a set of operations over an alphabet. 

It is closely linked with automata theory, as automata are used to generate and recognize 

formal languages. Automata are used as models for computation; formal languages are 

the preferred mode of specification for any problem that must be computed.

2. Computability theory

Computability theory deals primarily with the question of the extent to which a 

problem is solvable on a computer. It is closely related to the branch of mathematical 

logic called recursion theory. 

3. Models of Computation

The computation models that are developed by formal language theory are ,

 i) Finite State Automata

ii) Regular expression



1.3Automata Fundamentals

iii) Push down Automata

iv) Linear bounded automata

v) Turing machine

 à The computational models and the languages understandable by these models are 

tabulated below.

Table 1.1 The Computational Models

Machines Grammars/ Languages Category

Finite State Automata 

(Regular Expression)
Regular Type 3   Simple

Complex

Push Down Automata Context Free Type 2

Linear Bounded Automata Context Sensitive Type 1

Turing Machine Phrase Structure Type 0

Uncomputable

1.1.2 Basic Mathematical Notation and Techniques

1. Alphabet

An alphabet is a finite, nonempty set of symbols.

Example:

i. ∑ ={0,1} 

ii. ∑ ={a,b,c} 

2. String

A string over an alphabet is a finite sequence of symbols from that alphabet.



1.4 Theory of Computation

Example:

i. 01001 over ∑ ={0,1} 

ii. aaabbbbccc over ∑ ={a,b,c} 

3. Length of a string

The length of a string is the count of symbols in that string.

Example:

i. |01001| = 5

ii. |aaabbbbccc| =10

iii. |0315| = 8

4. Power of an alphabet

The power of an alphabet ∑k, is the set of all strings over ∑ with length k.

Examples:

{ }
{ }
{ }

{ }
0 1 2

2

0

3

*

 0,1

 00,01,  10,  11
 000,001,  010,  011,100,101,110,111
               ..

,  0,1,  00,01,10

    

,11,  000,001,  010,  011,100,101,110,111

  = .......................
      = 

0

e

+

+

∑ =

∑ =

∑ =

……………

Σ ∪ Σ ∪ Σ

Σ ∪ Σ

∑ = ……………

∑ = { }
1 2 3

,1,  00,01,10,11,  000,001,  010,  011,100,101,110,1

      = ............

1

.

1

..........

……

∪

…

Σ ∪ Σ

……

Σ

5. Language (L)

The language of an Automata is a set of strings accepted by the automata.



1.5Automata Fundamentals

Examples:

i. Set of even length strings over an alphabet {a,b}.

ii. Set of odd  length strings over an alphabet {0,1}.

6. Set –former notation of a Language

i. L={w |w consists of an equal number of 0’s and 1’s }

 L={ε, 01, 10,0011, 1100, 0101, 1010, 1001, 0110,………}

ii. L= {w |w is a binary integer that is prime  }

 L={10, 11, 101, 111, …….}

7. Complement of a Language( L )

i. L={w |w contains 101 as substring}

 Ḹ ={w |w does not contain 101}

ii. L={w |w contains abb as substring}

 L ={w |w does not contain abb}

1.2 IntroductIon to FormAl ProoF

 A formal proof or derivation is a finite sequence of sentences called well-formed        
formulas in the case of a formal language each of which is an axiom or follows from the 

preceding sentences in the sequence by a rule of inference. But in deductive proofs, the 
truth of a statement is shown by a detailed sequence of steps and reasons.

Some computer scientists take the extreme view that a formal proof of the 

correctness of a program should go hand-in-hand with the writing of the program itself. 
We doubt that doing so is productive. Some also say that proof has no place in the 

discipline of programming.

 + The slogan “if you are not sure your program is correct, run it and see” is commonly 

offered by them.



1.6 Theory of Computation

 + Testing programs is surely essential. However, testing goes only so far, since you 

cannot try your program on every input.

 + To make your iteration or recursion correct, you need to set up an inductive 

hypothesis, and it is helpful to reason, formally or informally, that the hypothesis 

is consistent with the iteration or recursion.

 + This process of understanding the workings of a correct program is essentially the 

same as the process of proving theorems by induction.

 +  Automata theory covers methodologies of formal proof. It can be of either :

 ➢ Inductive kind

Recursive proofs of a parameterized statement that use the statement itself with 

lower values of the parameter.

 ➢ Deductive kind 

A sequence of justified steps.

1.2.1 Deductive Proofs

 à A deductive proof consists of a sequence of statements whose truth leads us 

from some initial statement, called the hypothesis or the given statement(s), to a 
conclusion statement.

 à Each step in the proof must follow, by some accepted logical principle, from either 

the given facts, or some of the previous statements in the deductive proof, or a 

combination of these.

 à The hypothesis may be true or false, typically depending on values of its parameters. 

Often, the hypothesis consists of several independent statements connected by a 

logical AND.

 à The theorem that is proved when we go for a hypothesis H to a conclusion C is the 

statement “if H then C”. We say that C is deduced from H.

 à An example theorem of the form “if H then C” will illustrate these points.



1.7Automata Fundamentals

 

Theorem   1

If x ≥ 4, then 2x ≥ x2.

Proof

The hypothesis H is “x ≥ 4”. This hypothesis has a parameter, x and thus is neither 
true nor false. Rather, its truth depends on the value of x.

  H is true for x = 6 and false for x = 2. 

 à The conclusion C is “2x ≥ x2”. This statement also uses parameter x and is true for 

certain values of x and not others.

Example:

C is false for x = 3, since 23 = 8, which is not as large as 32 = 9. On the other hand, 
C is true for x = 4, since 24 = 42 = 16. For x = 5, the statement is also true, since 25 = 32 is 

at least as large as 52 = 25. 

Perhaps you can see the intuitive argument that tells us the conclusion 2x= x2 will 

be true whenever x ≥ 4. We already saw that it is true for x = 4. As x grows larger than 4, 
the left side, 2x doubles each time x increases by 1.

However, the right side, x2, grows by the ratio (x+1/x)2. 

If x ≥ 4, then (x + 1)/x cannot be greater than 1.25, and therefore (x+1/x)2 = 
(1.25)2 = 1.5625.

Since 1.5625 < 2, each time x increases above 4 the left side 2x grows more than 

the right side x2. 

 ^ Thus, as long as we start from a value like x = 4 the inequality 2x  ≥ x2 is already 

satisfied.

 Theorem   2

If x is the sum of the squares of four positive integers, then 2x ≥ x2.

Proof

In deductive proof, we go from a hypothesis H to a conclusion C, i.e., if H then C.



1.8 Theory of Computation

Step 1:

x is the sum of the squares of four integers. Let a, b, c, d be four integers.

 x = a2 + b2 + c2 + d2

Step 2:

The integers being squared are at least 1.

 a ≥ 1; b ≥ 1; c ≥ 1; d ≥ 1.

Step 3:

Since the integers is at least 1, then its squares is also at least 1.

 a2 ≥ 1; b2 ≥ 1; c2 ≥1; d2 ≥ 1

Step 4:

From Step 1 and Step 3, we can inter that x is sum of four squares and each                    

squares is at least 1. x is at least 1+1+1+1 x ≥ 4.

Step 5:

Step 4 is the hypothesis of the previous problem (2x ≥ x2 if x ≥ 4). We can conclude 

that,

                   2x ≥ x2  (or)  a2 + b2 + c2 + d2

1.2.2	 Reduction	to	Definitions

If the hypothesis does not use familiar terms like integer, multiplication, addition 

etc., then we can convert all terms in the hypothesis to their definitions.

 Theorem   3

A set S is finite if there exists an integer n such that S has exactly n elements. |S| = n. 

Where,

 n - Number of elements in the set S.

 S and T  - Both subsets of some infinite set U.

 T - Complement of S (with respect to U) if S U T = U and S ∩ T = Ф

 T - Infinite.



1.9Automata Fundamentals

Proof

We can use proof by contradiction. It is a technique where we assume that the 

conclusion is false. Then use that assumption together with hypothesis, prove the opposite 

of one of the given statements of the hypothesis. So the only possibility that remains is 

that the conclusion is true whenever the hypothesis is true.

Here T is finite (because we assume the conclusion is false), but T is infinite . 

Given

Let us assume T is finite, along with the statement of the hypothesis, S is finite. 
i.e., |S| = n for some integer n. |T| = m for some integer m.

Now given statement tells us that S U T = |S| + |T| = n+m, n+m is a integer it 
follows U is finite. But it contradicts the given statement U is infinite.

So the conclusion is true whenever the hypothesis is true. Therefore T is infinite.

1.2.3 Other Theorem Forms

1. If - then

 à The most common forms of if - then statements are if H then C can be rewritten as

i. H implies C

ii. H only if C

iii. C if H

iv. Whenever H holds, C follows.

 à So the theorem if x ≥ 4, 2x = x2 can be rewritten as

(a)     x ≥ 4, implies 2x = x2

(b)     x ≥ 4 only if 2x = x2

(c)     2x = x
2
 if x ≥ 4

(d)     Whenever x ≥ 4 holds, 2x = x2 follows.



1.10 Theory of Computation

2. If - and - only - if statements

The statements of the form “A if and only if B” or “Aiff B” has two if - then 
statements, is “if A then B” and “if B then A”.

Note:

└x┘- Floor of real number x, is the greatest integer equal to or less than x.

┌x┐- Ceiling of real number x, is the least integer equal to or greater than x.

 Theorem   4

Let x be a real number. Then └x┘= ┌x┐, if and only if x is an integer.

Proof

 └x┘≤ x by definition of floor                               ... (1.1)

 ┌x┐≥ x by definition of ceiling              ... (1.2)

We are given with  └x┘= ┌x┐

 Substituting (1.1) in (1.2), we get, 

   ┌x┐≤  x.

Since ┌x┐≥ x, by arithmetic inequality we get

    ┌x┐ = x.

3. Theorems that appear “Not to be if-then statements.

 Theorem   5

 Sin2ɵ¸ + Cos2ɵ = 1.

It does not have any hypothesis. This theorem can be written in if-then is “if ɵ¸ is 
an angle, then sin2ɵ + cos2ɵ = 1”.



1.11Automata Fundamentals

1.3 AddItIonAl Forms oF ProoF

The following are the additional forms of proofs.

 r Proofs about sets

 r Proofs by contradiction

 r Proofs by counter example

1.3.1 Proofs About Sets

 à Sets contain symbols to form character strings.

 à Sets in automata theory are called as languages.

If E and F are two expressions representing sets, the statement E = F means that 
two sets represented are same. i.e., every element in the set represented by E is in the set 

represented by F and vice versa.

Example:

Union of sets obeys commutative law. Let S and R be sets. Then R U S = S U R. If 

E is the expression in R U S and F is the expression S U R, then E = F, an element 
x is in E iff x is in F.

 Theorem   6

Distributive law of union over intersection. Let R, S, T be sets. Then prove that

  R U (S ∩ T) = (R U S) ∩ (R U T)

Proof

Aiff B has two parts. That are,

 r If part: “if B then A”

 r Only if part: if A then B, which is equivalent form “A only if B”.

Let E is the expression in R ∩ (S U T) and F is the expression in (R U S) ∩ (R U T). 



1.12 Theory of Computation

1.. If part: if x is in E, x is in F

Statement                                      Justification

(a) x is in R ∩ (S U T)                                         (a) Given

(b) x is in R or x is in (S ∩ T)                     (a) and definition of union.

(c) x is in R or x is in both S and T (b) and definition of intersection.

(d) x is in R U S                                          (c) and definition of union.

(e) x is in R U T                                          (c) and definition of union.

(f) x is in (R U S) ∩ (R U T)                       (d), (c) and definition of intersection.

2. We can also prove it by “only – if” statement.
 

Statement                                      Justification

(a) x is in (R U S) ∩ (R U T)  Given

(b) x is in R U S (a) and definition of intersection.

(c) x is in R U T    (a) and definition of intersection.

(d) x is inR or x is in both S and T  (b), (c) and reasoning about unions.

(e) x is in R or x is in S ∩ T (d) and definition of intersections.

(f) x is in R U (S ∩ T)         (e) and definition of union.

Example:

“if x ≥ 4, then 2x ≥ x2”. Then the contrapositive of this statement is “if not 2x ≥ 
x2, then not x ≥ 4”. It is otherwise “not a ≥ b” is equal to a < b.

 not x  ≥ 4 is x<4

 not 2x ≥ x2 is 2x< x2.

i.e., “if 2x< x2, then x < 4”



1.13Automata Fundamentals

1.3.2 Proof by Contradiction

1. It is derived from Latin meaning reduction to the “absurd”.

2. In proof by contradiction, we assume that the theorem is false and then 

show that this assumption leads to an obviously false consequence, called 

a contradiction.

3. Another way to prove a statement of the form “if H then C” is to prove the 

statement “H and not C implies falsehood”.

Step 1:

State by assuming both the hypothesis H and the negation of the conclusion C.

Step 2:

Compute the proof by showing that something known to be false follows logically            

from H and C. This form of proof is called proof by contradiction.

Example:

Jack Sees Jill, who has just come in from outdoors. On observing that she is 

completely dry, he knows that it is not raining.

Proof

His proof = that it is not raining

Assume the negation of conclusion, ie, it is raining, then Jill would be wet. But 
she is not wet, so it must not be raining.

 Theorem   7

Let S be a finite subset of some infinite set U. Let T be complement of S with       
respect to U. Then T is infinite.

Proof

 H = S is finite set of U

 U is an infinite set

 T is the complement of S with respect to U.



1.14 Theory of Computation

Conclusion C = “T is infinite”

 ^ We proceed to prove the theorem by proof by contradiction.

 ^ We assume not C is true. T is finite.

From the assumption S is finite, if T is also finite, then U = S U T is also finite. But       
hypothesis says U is infinite. Therefore the logical statement is false.

1.3.3 Proofs by Counter Examples

It is an exception to a proposition general rule. i.e. Specific instance of the falsity 
of a universal quantification.

Example:

The statement “all students are lazy”.

Proof

Counter example, a hardworking diligent student counters the statement.

 Theorem   8

All primes are odd.

Proof

The integer 2 is prime, but 2 is even.

 Theorem   9

There is no pair of integers a and b such that a mod b = b mod a.

Proof

Let us assume a < b.

a mod b = a            a = qb + r

a = 0 x b + a.         q = quotient          r = remainder.

But b mod a < a, is between 0 - 1. Thus when a < b, b mod a < a mod b, so a mod 
b = b mod a is impossible. It is same argument for a > b also.



1.15Automata Fundamentals

Consider a = b. a mod b = b mod a = 0 ( x mod x = 0 ) by counter example, let us 
take a =  b = 2, a mod b = b mod a = 0 i.e., 2 mod 2 = 2 mod 2 = 0.

1.4 InductIVe ProoFs

1.4.1 Induction on Integers

Proof by Induction is a technique by which the truth of a number of statements 

can be inferred from the truth of a few specific instances. Suppose, let P(n) be a statement 
about a non-negative integer n. The principle of mathematical induction is that P(n) 
follows from:

 r P(1)

 r P (n-1) implies P(n) for all n ≥ 1.

Condition (a) is called basis and the condition (b) is called inductive step, because 
it connects Pn with Pn+1.

1.4.2 Structural Inductions

 à In automata theory, there are several recursively defined structures about which we 
need to prove statements.

 à The examples are trees and expressions.

 à Like inductions, all recursive definitions have a basis case, where one or more       
elementary structures are defined, and an inductive step, where more complex 
structures are defined in terms of previously defined structures.

 à Structural induction is a proof method that is used in mathematical logic, computer 

science, graph theory, and some other mathematical fields. It is a generalization of 
mathematical induction.

 à A recursive definition or inductive definition is one that defines something in terms 
of  itself (that is, recursively), in a useful way.

Example:

Let us take expressions using the arithmetic operators + and *, with both numbers 

and variables allowed as operands.



1.16 Theory of Computation

Basis

Any number or letter (i.e., a variable) is an expression.

Induction

If E and F are expressions, then so are E + F, E*F, and (E).

Example:

Both 2 and x are expressions by the basis. The inductive step tells us x+2, (x + 2) 
and 2*(x + 2) are all expressions. Notice how each of these expressions depends on the 
previous ones being expressions.

When we have a recursive definition, we can prove theorems about it using the 
following proof form, which is called structural induction.

Let S(X) be a statement about the structures X that are defined by some particular 
recursive definition.

 à As a basis, prove S(X) for the basis structure(s) X.

 à For the inductive step, take a. structure X that the recursive definition says is 
formed from Y 1,Y2,..., Yk. Assume that the statements S(Y1), S(Y2), ….., S(Yk), 
and use these to prove S(X).

Our conclusion is that S(X) is true for all X. The following Theorem gives the 
facts and proof for trees and expressions.

 Theorem   10

Every tree has one more node than it has edges.

Proof

The formal statement S(T) we need to prove by structural induction is: “if T is a 
tree, and T has n nodes and e edges, then n = e + 1”.

Basis

The basis case is when T is a single node. Then n = 1 and e = 0, so the relationship 
n = e + 1 holds.



1.17Automata Fundamentals

Induction

Let T be a tree built by the inductive step of the definition, from root node N and k 
smaller trees T

1
 , T

2
 ,..., T

k
 . We may assume that the statements S(Ti ) hold for i = 1, 2,..., 

k. That is, let T
i
 have n

i
 nodes and e

i
 edges; then n

i
 = e

i
 + 1.

The nodes of T are node N and all the nodes of the T
i
’s. There are thus 1 + n

1
 + n

2
 

+....+ n
k
 nodes in T. The edges of T are the k edges we added explicitly in the inductive 

definition step, plus the edges of the T
i
’s.

Hence, T has k + e
l
 + e

2
 + …. + e

k
 edges                ... (1.3) 

If we substitute e
i
 + 1 for ni in the count of the number of nodes of T we find that 

T has 1 + [e
l
 + 1] + [e

2
 + 1] + …. + [e

k
 + 1] nodes               ... (1.4)

Since there are k terms in (1.3), we can regroup (1.4) as

        k + 1 + e
l
 + e

2
 + …. + ek                 ... (1.5)

This expression is exactly 1 more than the expression (1.3) that was given for the 
number of edges of T. Thus, T has one more node than it has edges.

 Theorem   11

Every expression has an equal number of left and right parentheses.

Proof

Formally, we prove the statement S(G) about any expression G that is defined by 
the recursion example described earlier the numbers of left and right parentheses in G are 

the same.

Basis

If G is defined by the basis, then G is a number or variable. These expressions 
have 0 left parentheses and 0 right parentheses, so the numbers are equal.

Induction

There are three rules whereby expression G may have been constructed according 

to the inductive step in the definition:



1.18 Theory of Computation

 r G = E + F

 r G = E * F

 r G = (E)

We may assume that S(E) and S(F) are true; that is, E has the same number of 
left and right parentheses, say n of each, and F likewise has the same number of left and 

right parentheses, say m of each. Then we can compute the numbers of left and right 

parentheses in G for each of the three cases, as follows:

1. If G = E + F

Then G has n + m left parentheses and n + m right parentheses; n of each come 

from E and m of each come from F.

2. If G = E * F

The count of parentheses for G is again n + m of each, for the same reason as in 

case (i).

3. If G = (E)

Then there are n + l left parentheses in G -- one left parenthesis is explicitly 
shown, and the other n are present in E. Likewise, there are n + 1 right parentheses in G; 

one is explicit and the other n are in E.

In each of the three cases, we see that the numbers of left and right parentheses in 

G are the same. This observation completes the inductive step and completes the proof.

1.4.3 Mutual Inductions

 à Sometimes, we cannot prove a single statement by induction, but rather need to 

prove a group of statements S1(n), S2(n),...., Sk(n) together by induction on n. 

 à Automata theory provides many such situations. In the following example we 

sample the common situation where we need to explain what an automaton does 

by proving a group of statements, one for each state.

 à These statements tell under what sequences of inputs the automaton gets into each 

of the states.



1.19Automata Fundamentals

Strictly speaking, proving a group of statements is no different from proving the         

conjunction (logical AND) of all the statements. For instance, the group of statements 
S

1
(n), S

2
(n),...., S

k
(n) could be replaced by the single statement

S
1
(n) AND S

2
(n) AND .... AND S

k
(n)

 However, when there are really several independent statements to prove, it is 

generally less confusing to keep the statements separate and to prove them all in their 

own parts of the basis and inductive steps. This sort of proof is called mutual induction. 

We will illustrate the necessary steps for a mutual recursion.

Example:

Let us take the on/off switch, which can be represented as an automaton. The 
automaton itself is reproduced as given below.

Start off on

Push

Push

Since on pushing the button switches the state between on and off, and the switch 

starts out in the off state, we expect that the following statements will together explain 

the operation

Push of the switch

1. S1 (n)

The automaton is in state off after n pushes if and only if n is even.

2. S2 (n)

The automaton is in state on after n pushes if and only if n is odd.

We might suppose that S 1 implies S2 and vice-versa, since we know that a number 
n  cannot be both even and odd. However, what is not always true about an automaton is 

that it is in one and only one state. It happens that the automaton is always in exactly one 

state, but that fact must be proved as part of the mutual induction.

We give the basis and inductive parts of the proofs of statements S1(n) and S2(n) 
below. The proofs depend on several facts about odd and even integers:



1.20 Theory of Computation

* if we add or subtract 1 from an even integer.

* We get an odd integer

* If we add or subtract 1 from an odd integer we get an even integer.

Basis

For the basis, we choose n = 0. Since there are two statements, each of which must 
be proved in both directions (because S1 and S 2 are each “if-and-only-if” statements), 
there are actually four cases to the basis, and four cases to the induction as well.                                                             

i. [S1; If]

Since 0 is in fact even, we must show that after 0 pushes, the automaton is in state 
off. Since that is the start state, the automaton is indeed in state off after 0 pushes.

ii. [S1; Only-if ]

The automaton is in state off after 0 pushes, so we must show that 0 is even. But 
0 is even by definition of “even”, so there is nothing more to prove.

iii. [S2; If]

The hypothesis of the “if” part of S2 is that 0 is odd. Since this hypothesis H is 
false, any statement of the form “if H then C” is true, which has discussed earlier. Thus, 

this part of the basis also holds.

iv. [S2; Only-if]

The hypothesis, that the automaton is in state on after 0 pushes, is also false, since 
the only way to get to state on is by following an arc labeled Push, which requires that the 

button be pushed at least once. Since the hypothesis is false, we can again conclude that 

the if-then statement is true.

1.5 FInIte AutomAtA

Finite state automaton is an abstract model of a computer. It is represented in the 

figure. The components of the automaton are:  Input Tape, Finite Control and Tape Head.

Input: String



1.21Automata Fundamentals

Finite

State

Control
0 1 0 1 1

Input Tape

Tape Head

Fig. 1.1 The Working Model of a Finite Automata

Operation

String Processing (scans the string from left to right, one symbol at a time and 

moves from  state to state ) using its transition function.

Output: Yes/No (Accepted/Rejected)

1.5.1 Mathematical Representation

A  Finite Automaton(FA) is represented by a 5-tuple machine.

M = (Q, Σ, δ, q0, F)

* Q is a finite non-empty  set of states

* Σ is  a finite non-empty set of symbols 

* ( an alphabet)‏

* δ : QX Σ → Q  is the transition function

* q0 ϵ Q is the start state

* F ϵ Q is a set of final states

1. Transition function

It is a function which guides the automata in string processing. It takes two inputs 

(a state, a symbol) and gives one output (state). Transition function can be represented in 
three ways. They are,



1.22 Theory of Computation

i. Diagrammatic representation

Nodes and edges are used. Nodes represent the states and edges represent the 

moves. The labels of the edges represent the processing symbols. There are two types 

of nodes: a) single circled node indicating non-final (non-accepting ) state; b)  double 
circled node  indicating final state.  

ii. Tabular representation

It consists of Rows and columns. Rows indicate state and columns indicate 

symbol. The entries of the table indicate the output state. The arrow and  star symbols are 

used to point out the starting and final states respectively. 

iii. Functional representation

The name of the function is δ. The input parameters are q,a.

* Where q is a state and a is a symbol. The function returns a state p. 

Example:

The automata of  the language L={w | w contains ab}

2. Diagrammatic Representation - Transition diagram

b

a

a
a,b

b
q q q

Fig. 1.2 The transition diagram of FA for the language L={w | w contains  ab}

δ :

Q  = {q0,q1
,q

2
}

Σ  = {a,b}

q0  = q0

F  = q
2



1.23Automata Fundamentals

Table 1.2 The transition table of FA for the language L={w | w contains  ab}

Δ a b

→q0 q
1

q0

    q
1

q
1

q
2

*  q q q

3. Functional Representation - Transition functions

δ(q0 , a) = q
1

δ(q0 , b) = q0

δ(q
1
 , a) = q

1
δ(q

1
 , b) = q

2

δ(q
2
 , a) = q

2
δ(q

2
 , b) = q

2

1.5.2 Types of Finite Automata

1. Deterministic

 à If there is exactly one output state in every transition function of an automata, then 

the automata is called Deterministic finite Automata (DFA)

 à A  Deterministic finite automaton (DFA) is represented by a 5-tuple machine 

i.e. M = (Q, Σ, δ, q0, F)

* Q is a finite non-empty  set of states

* Σ is  a finite non-empty set of symbols 

* ( an alphabet)‏

* δ : QX Σ → Q  is the transition function

* q0  ϵ Q is the start state

* F ϵ Q is a set of final states



1.24 Theory of Computation

2. Non-Deterministic

 à If there is zero or more output states in any of the transition functions of an 

automata then that automata is called Non-Deterministic Finite Automata (NFA). 

 à NFA is the preliminary form of a machine, which can be easily constructed using 

the basic constraints of a language.

 à Then it can be converted into DFA using subset construction method and finally 
minimization methods are used to reduce the size of the machine.

 à A  Non-Deterministic  finite automaton (NFA) is represented by 5-tuples.  

i.e. M = (Q, Σ, δ, q0, F)

* Q is a finite non-empty  set of states

* Σ is  a finite non-empty set of symbols 

    ( an alphabet)‏

* δ: QX Σ → 2Q (subset of Q)  is the transition function

* q0 ϵ Q is the start state

* F ϵ Q is a set of final states

3.	 ε-NFA

 à If there is a transition for  ε  symbol in NFA , then the automata  is called ε-NFA. 
An  ε-Non-Deterministic  finite automaton (NFA) is represented by 5-tuples.  

i.e. M = (Q, Σ, δ, q0, F)

* Q is a finite non-empty  set of states

* Σ is  a finite non-empty set of symbols 

    ( an alphabet)‏

* δ : QX  (Σ  { ε })→ 2Q (subset of Q)  is the transition function

* q0 ϵ Q is the start state

* F ϵ Q is a set of final states



1.25Automata Fundamentals

1.5.3 Language of an Automata

1. L(M)

 à The language of machine M

 à Set of all strings machine M accepts

2. L(DFA)

0
ˆ{ ( , ) }w q w p Fd = ∈

Where,

0
ˆ( , )q wd   is an extended transition function that  takes a state q0 and a string w and 

returns a state p which is in F = Regular language.

3. L(NFA)

0
ˆ{ ( , ) )w q w Fd j∩ ≠ - Regular language.

1.6 determInIstIc FInIte AutomAtA(dFA)

Deterministic finite Automata is a definite model of computation where there is 
single output for every symbol from every state.  The transition table of a DFA will be 

complete and unambiguous. There would not be any empty entry and multiple entries. 

1.6.1 String Processing

 à An automata processes the given string and gives Yes/No as the output.

 à During string processing, the symbols in the given string are processed one by one, 

from left to right according to the moves defined by the transition functions of the 
automata.

 à A set of transition function defines an automata.

 à During string processing, automata selects the transition function whose input 

matches with the current state (state and symbol) and performs a move to output 
state. 



1.26 Theory of Computation

1.6.2 String Processing in DFA

Problem   1.1

Let	M	=	(Q,	Σ,	δ,	q
0
,	F)		where	Q={	q

0
	,	q

1
	,q

2
	},	Σ,={a,b}	F={q

2
}

δ a b

→q0 q
1

q0

q
1

q
1

q
2

*  q
2

q
2

q
2

 à Show that the string w=  bbabb is accepted by the given FA, M.

0 0

0

1

2

2

ˆ ˆ( , ) ( , )
ˆ( , )
ˆ( , )

( , )

q bbabb q babb

                    = q abb

                    = q bb

                   q b

                   q F

d d

d

d

d

=

=

= ∈

 à There is a path from starting state to final state.

b b a b b
q0 q0 q1 q2 q F2q0

Therefore the given string is accepted.

Problem   1.2

Consider the following DFA. Compute 0
ˆ( ,1101)qd

 

q0 q1 
0 1 q2 

0,1 

1

0



1.27Automata Fundamentals

( ) ( ) ( )2 21 00 ,101   ˆ( ,1101  ) ,01 ,1  q Fq q q qd = = ∈==

So the string is not accepted.

1.7 non-determInIstIc FInIte AutomAtA(nFA)

NFA is the simple and initial model of computation .Constructing Automata to 

recognize a Language includes the following steps:

 r Design an NFA

 r Convert NFA to DFA

 r Minimize the DFA

1.7 .1 Designing NFA for a language

It is very easy to design NFA for a language by considering the common 

(compulsory) part of the strings in a given language. There are two types of NFAs.

 r NFA without ε-Transitions

 r ε-NFA

 à Designing NFA without ε-Transitions for a language

Problem   1.3

 Design an NFA for the following finite languages over the alphabet {a,b}

a. L={ε}

b. L={a}

c. L={b}

d. L={a,b}

e. L={aa,ab}

f. L={aba,abb,aaa}



1.28 Theory of Computation

Solutions:

a.	 L={ε}	

NFA   M=(Q,  Σ, δ, q0, {q0})

Where Q={ q0}

Σ={a,b}

 δ : Transition diagram

b. L={a} 

NFA   M=(Q,  Σ, δ, q0, {q
1
})

Where Q={ q0, q1
}

Σ={a,b}

 δ : Transition diagram

c. L={b} 

NFA   M=(Q,  Σ, δ, q0, {q
1
})

Where Q={ q0, q1
}

Σ={a,b}

 δ : Transition diagram

 
 

 

q
0

 a 
q

 

 

q
0 1

 b 
q

 

 

q
0 1



1.29Automata Fundamentals

d. L={a,b} 

NFA   M=(Q,  Σ, δ, q0, {q
1
, q

2
}) 

Where Q={ q0, q1
, q

2
}

Σ={a,b}

 δ : Transition diagram

e. L={aa,ab}

NFA   M=(Q,  Σ, δ, q0, {q
2
, q

3
})

Where Q={ q0, q1
, q

2
, q

3
}

Σ={a,b}

 δ : Transition diagram

f. L={aba,abb,aaa}

NFA   M=(Q,  Σ, δ, q0, {q
3
, q5, q6})

Where Q={ q0, q1
, q

2
, q

3
, q4, q5, q6}

Σ={a,b}

0

 a 
q

 

 

q

 

 

q

b 0 1

2

 

b 

a 
q

 

 

q

 

 

q

q

a 

0 1
2

3



1.30 Theory of Computation

 δ : Transition diagram

Problem   1.4

Design	an	NFA	without	ε-Transitions	for	the	following	infinite	languages	over	the	
alphabet {a,b}.

a. The set of all strings ending in aa (L={w|  w ends in aa})

b. The set of all strings with the substring aba(L={w|  w has substring aba}).

c. The set of all strings beginning with bb (L={w|  w begins with bb)}).

d. The set of all strings with even number of a’s (L={w|  w has even number 

of a’s}).

e. The set of all strings with even number of b’s(L={w|  w has even number 

of b’s }). 

f. The set of all strings with odd number of a’s (L={w|  w has odd number of 

a’s}).

g. The set of all strings with odd number of b’s (L={w|  w has odd number of 

b’s}).

h. The set of all strings whose third symbol from the right end is b (L={w|  w’s 
third symbol from the right end is b}).

i. The set of all strings whose third symbol from the left end is b (L={w|  w’s 
third symbol from the left end is b}).

 

b 

a 

b 

a a 
q0 q1 

 q3 

 q5 

q2 

q4 

 q6 

a 



1.31Automata Fundamentals

Solutions:

a. The set of all strings ending in aa.

NFA   M=(Q,  Σ, δ, q0, {q
2
})

Where Q={ q0, q1
, q

2
}

Σ={a,b}

 δ : Transition diagram

b. The set of all strings with the substring aba.

NFA   M = (Q,  Σ, δ, q0, {q
3
})

Where Q={ q0, q1
, q

2
, q

3
}

Σ={a,b}

 δ : Transition diagram

a,b

c. The set of all strings beginning with bb.

NFA   M=(Q,  Σ, δ, q0, {q
2
})

Where Q={ q0, q1
, q

2
}

Σ={a,b}

 a,b 

a 
q  

 

qq
a 

0 1 2



1.32 Theory of Computation

 δ : Transition diagram

d. The set of all strings with even number of a’s.

NFA   M=(Q,  Σ, δ, q0, {q0})

Where Q={ q0, q1
}

Σ={a,b}

 δ : Transition diagram

e. The set of all strings with even  number of b’s.

NFA   M=(Q,  Σ, δ, q0, {q0})

Where Q={ q0, q1
}

Σ={a,b}

 δ : Transition diagram

f. The set of all strings with odd  number of a’s.

NFA   M=(Q,  Σ, δ, q0, {q
1
})

Where Q={ q0, q1
}

Σ={a,b}

 a,b 

b 
q  

 

qq
b 

0 1
2

 

b 

a 

a 

 

 

q q

b 

0 1

 

a 

b 

b 

 

 

q q

a 

0 1



1.33Automata Fundamentals

 δ : Transition diagram

g. The set of all strings with odd  number of b’s.

NFA   M=(Q,  Σ, δ, q0, {q
1
})

Where Q={ q0, q1
}

Σ={a,b}

 δ : Transition diagram

h. The set of all strings whose third symbol from the right end is b.

NFA   M=(Q,  Σ, δ, q0, {q
3
})

Where Q={ q0, q1
 q

2
, q

3
}

Σ={a,b}

 δ : Transition diagram

i. The set of all strings whose third symbol from the left end is b.

NFA   M=(Q,  Σ, δ, q0, {q
3
})

Where Q={ q0, q1
 , q

2
, q

3
 }

Σ={a,b}

 b 

a 

a 
 

 

q q

b 

0 1

 a 

b 

b 
 

 

q q

a 

0 1

 

a,b 
q2 

a,b 

b 
q0  

 

q3 q1 
a,b 



1.34 Theory of Computation

 δ : Transition diagram

1. Automata for L

If the automata is given for a language Ḹ , then the automata for   can be easily  
constructed by changing all the non-final states to final states and final states to non-final 
states.

Given:

The FA of L= {w | w consists of 10 as substring}

M(L) =(Q,  Σ, δ, A, {C})

Where Q={ A, B ,C }

Σ={a,b}

 δ : Transition diagram

M( L ) = (Q,  Σ, δ, A, {A, B})

Where Q={ A, B ,C }

Σ={a,b}

 δ : Transition diagram

 

b 
q2 

a,b 

a,b 
q0  

 

q3 q1 
a,b 

 
0,1 1 

 C
1 0 

BA 

0 

 0,1 

0 

1 

1 

A 

 

C  
BA 

0 



1.35Automata Fundamentals

2. Automata for 1 2L L

The intersection of two regular languages can be constructed by taking Cartesian 

product of states.

Let, M (L
1
) = (Q

1
,  Σ, δ

1
, q

1
, F

1
)  

            M (L
2
) = (Q

2
,  Σ, δ

2
, q

2
, F

2
)  

Then M ( 1 2L L∩ ) = (Q
2
 X Q

2
, Σ, δ, (q

1
 ,q

2
), F

2
 X F

2
)  

Problem   1.5

Let L1 =   The set of all strings with even  number of b’s.

NFA   M(L
1
 ) = (Q,  Σ, δ

1
, p, {p})

Where Q={p, q }

Σ={a,b}

 δ
1
 : Transition diagram

Problem   1.6

Let L
2
 =  The set of all strings with odd  number of a’s.

NFA   M(L
2
) = (Q,  Σ, δ2, r, {s})

Where Q={ r, s }

Σ={a,b}

 

a 

b 

b 

 

 

p q 

a 



1.36 Theory of Computation

 δ
2
 : Transition diagram

Then, M(L
1 
∩ L

2
) = ({pr, ps, qr,qs}, {a,b}, δ, pr, ps)

1 2

1 2

( , ) ( ( , ), ( , ))
            ( , )

( , ) ( ( , ), ( , ))
            ( , )

pr a p a r a

p s

pr b p b r b

q r

d d d

d d d

=

=

=

=

1.7.2 String Processing in NFA   

Problem   1.7

For the NFA M given in the following table, test whether the strings 01122, 1221    

are accepted by M.

δ 0  1    2

→*q0 {q0,  q1, q2  } {q1, q2  } {q2  }

     *q1 Ф {q1, q2  } {q2  }

     *q2 Ф Ф {q2  }

 b 

a 

a 
 

 

r s 

b 

 

b 
a 

b 

a 

a 

b 

a 

b 

 

 

pr ps 

qr qs 



1.37Automata Fundamentals

0 0 1 2

0 1 2

1 2

1 2

2

ˆ.  ( ,01122) ({ , , },1122)
ˆ                       ({ ( ,1) ( ,1) ( ,1)},122)

ˆ                      ({ , },122)
ˆ                       = ({ , }, 22)
ˆ                       = ({

i q q q q

q q q

q q

q q

q

d d

d d d d

d

d

d

=

= ∪ ∪

=

2

},2)
                       = q F∈

There is at least one path from the starting state to final state. Therefore the given 
string is accepted. 

0 1 2

1 2

2

2

ˆ ˆ.   ( ,1221) ({ , }, 221)
ˆ                        = ({ ( , 2) ( , 2)},21)
ˆ                        = ({ },21)
ˆ                        = ({ },1)

                        =

ii q q q

q q

q

q

F

d d

d d d

d

d

f

=

∪

∉

There is no even a single path from starting state to final state. Therefore the given 
string is not accepted.

 

1 

q2 

q1 q2 q2 
0 

q1 q1 
2 

q0 
0 

q0 
1 1 2 

q2 q2∈F 

0 1 

 

q2 q2 q2 

q2 q2 q1 2 1 
q0 

1 2 

2 1 F∉f  
2 

F∉f
 



1.38 Theory of Computation

1.7.3 Equivalence of NFA and DFA (Converting NFA to DFA)

 Theorem   12

A  Language L is accepted by some DFA if and only if L is accepted by some 

NFA.

Proof by induction 

The  “if” part : If L is accepted by some NFA then L is accepted by some DFA. If 
D={Q

D
 , Σ, δ

D
, {q0},F

D
}  is the DFA constructed from NFA, N={Q

N
 , Σ, δ

N
, q0,FN

} by the 
subset construction ,then L(D) = L(N).

Proof

To prove by induction on 0 0
ˆ ˆ({ }, ) ( , )D Nq w q ww d d=              ... (1.6)

Observe that each of the d̂  functions returns a set of states from Q
N
, but ˆ

Dd  

interprets this set as one of the states of Q
D
 (which is the power set of Q

N
 ), while interprets 

this set as a subset of Q
N
.

Basis

Let 0w =  ; that is, w=e. By the basis definitions of d̂  for DFA’s and NFA’s, both 

0 0 0
ˆ ˆ({ }, ) and ( , ) are {q }D Nq qd e d e

Induction

Let  1w n= +  , and assume the statement for length n. Break  w as  w=xa, where    

a is the final symbol of w.

By the inductive hypothesis,

  0 0
ˆ ˆ({ }, ) ( , )D Nq x q xd d=

Let both these sets of N’s states be {P
1
, P

2
,...... P

k
} .i.e.

  { }0 0 1 2
ˆ ˆ({ }, ) ( , ) , ,....D N kq x q x p p pd d= =               ... (1.7)

The inductive part of the definition of  for the NFA’s say that



1.39Automata Fundamentals

  0
1

ˆ ( , ) ( , )
k

N N i
i

q w p ad d
=

=                  ... (1.8)

The subset construction, on the other hand , says that 

  { }1 2
1

( , ,.... , ) ( , )
k

D k N i
i

p p p a p ad d
=

=                ... (1.9)

From (1.7) and (1.9), the inductive part of the definition of d̂  for  DFA is written as:

 

{ }
0 0

1 2
1

ˆ ˆ({ }, ) ( ({ }, ), )

                 ( , ,.... , ) ( , )

D D D

k

D k N i
i

q w q x a

p p p a p a

d d d

d d
=

=

= =                                                                                                                       ... (1.10)

Thus, equations (1.8) and (1.10) demonstrate that

  0 0
ˆ ˆ({ }, ) ( , )D Nq w q wd d=

When we observe that D and N both accept w if and only if 0
ˆ ({ }, )D q wd  or

0
ˆ ( , )N q wd  respectively, contain a state in F

N
.

Hence, L(D) = L(N) is proved.

The “only if” part
If L is accepted by some DFA then L is accepted by some NFA.

We have only to convert a DFA into identical NFA.Put intuitively, if we have the 

transition diagram for a DFA, we can also Interpret it as the transition diagram of an NFA, 

which happens to have exactly one choice of transition in any situation.

More formally, let  D={Q, Σ, δ
D
, q0,F} be a DFA. Define N={Q, Σ, δ

N
, q0,F} to be 

the equivalent NFA.

Where, 
Nd   is defined by the rule:

If ( , )  then ( , ) { }D Nq a p q a pd d= =

It is then easy to show by induction on w  , that if 0 0
ˆ ˆ( , )  then ( , ) { }D Nq w p q w pd d= =  

As a consequence, ω is accepted by D if and only if it is accepted by N; i.e ., 
L(D)=L(N).



1.40 Theory of Computation

Subset construction method (with ‘Lazy Evaluation’) is used to convert NFA to 
DFA. In this method the transition functions are generated only for reachable states.

Method 1

Steps

1. Include the starting state of NFA (q0) in DFA as starting state of DFA.

2. Find the transition for all the symbols from q0

3. If the output state is new state, include it in DFA and find the transition for 
all the symbols from that state.

4. Repeat step3 until there are no more new states.

5. The state which includes final state of  NFA is the  final state of DFA.

Problem   1.8

Construct the DFA for the L={w|w ends in 01}

Transition Diagram of NFA

Transition Table of NFA

δ
D

0 1 2

→q0 {q0, q1
 } {q0} {q

2
 }

 {q0, q1
 } {q0, q1

 } { q0,q2
} {q

2
}

*  { q0,q2
} {q0, q

1
} {q0} {q

2
}

 0,1 

0 
q  

 

qq
1 

0 1 2



1.41Automata Fundamentals

Step 1:

Include q0

Step 2:

Find transitions for 0,1 from q0.

( )
( )

0 0 1

0 0

,0 { , }  - New state

,1 { }       - Existing state

q q q

q q

d

d

=

=

Step 3:

Find transitions for  0,1 from new state.

( )

( )

0 1 0 1

0 1 0 1

0 1 0 1

0 2 0 2

{ , },0 ( ,0) ( ,0)
                   { , } { , }    Existing state

{ , },1 ( ,1) ( ,1)
                   { } { } { , }    New state

q q q q

q q q q

q q q q

q q q q

d d d

j

d d d

= ∪

= ∪ =

= ∪

= ∪ =

Step 4:

Repeat step 3 for new state (s).

( )

( )

0 2 0 2

0 1 0 1

0 2 0 2

0 0

{ , },0 ( ,0) ( ,0)
                    { , } { , }       Existing state

{ , },1 ( ,1) ( ,1)             
                   { } } { }               New state

q q q q

q q q q

q q q q

q q

d d d

j

d d d

j

= ∪

= ∪ =

= ∪

= ∪ =

Transition Diagram of DFA

 

0 

1 

1 0 

0 

1 q0 {q0, q1} 

 

{q0, q2} 



1.42 Theory of Computation

Method 2                                                                                   

Input: Transition table of NFA

Output: Transition table of DFA

Steps

1. Draw the transition table for NFA (if not given)

2. Copy the first row of NFA table (transition function of start state) to DFA 
table.

3. The entries are considered as states of DFA.

4. If there is any new state, find the transition function for that new state using 
the following formula:

1

1

({ ,..., }, ) ( , )
k

D k N i
i

q q a q ad d
=

=

5. Continue  Step 4 until no more new states.

Transition Table of DFA

δ
D

0 1

→q0 {q0, q1
} {q0}

 {q0, q1
} {q0, q1

} { q0,q2
}

*  { q0,q2
} {q0, q1

} {q0}

Procedure

 ^ Copy the first row. {q0, q1
}is the new state.

 ^ Union of q0 row and q
1
 row. {q0, q2

 }is the new state.

 ^ Union of q0 row and q
2
  row. 

 ^ No more new states. So Stop



1.43Automata Fundamentals

Transition Diagram of DFA

Q  = {q0, { q0,q1
} ,{q0,q2

}}

Σ = {0,1}

q0 = q0

F  ={q0,q2
}

Problem   1.9

Consider the following NFA. Convert it into DFA.

Transition Table of NFA

δ
N

a b

→q0 { q0,q1
} {q0}

q
1

q
2

q
1

q
2

q
3

q
3

* q
3

- q
2

Procedure

 ^ Copy the first row. 

 ^ Identify the new state.

 ^ Find the transition for new state using Union operation.

 ^ Stop, if no more new states.

 

0 

1 

1 0 

0 

1 q0 {q0, q1} {q0, q2} 



1.44 Theory of Computation

Transition Diagram of DFA

Problem   1.10

Convert to the DFA the following NFA.

δ
N

0 1

→p { p,r } {q}

q { r,s } { p}

*r { p,s} { r }

* s { q,r } -

Transition Table of DFA

δ
D

0 1

→p { p,r } { q}

{ q} { r,s } { p}

 

a 

b b 

a b 

a 

a,b 

q0 {q0, q1 } {q0, q1,q2} {q0, q1,q3} 

 

{q0,q1,q2,q3} 

a,b 



1.45Automata Fundamentals

*{ p,r } { p,r,s } { q,r }

*{ r,s } { p,q,r,s } { r}

*{ p,r,s } { p,q,r,s } { q,r }

*{ r} { p,s} { r }

*{ p,q,r,s } { p,q,r,s } { p,q,r }

*{ p,s} { p,q,r } { q}

*{ p,q,r } { p,r,s } { p,q,r }

*{ q,r } { p,r,s } { p,r }

Transition Diagram of DFA

 

0 

0 

1 

0 

1 

0 

1 

1 
0 

1 

0 0 

1 

1 

0 

1 
1 

1 

1 0 

{r,s} 

{r} 

p 
 

 

{q,r } {p,r} 

q 
 

 

{p,r,s} 

{p,s}  

 

{p,q,r.s} 

 

 

 

 

  

{p,q,r} 



1.46 Theory of Computation

Problem   1.11

Convert the following NFA to a DFA and informally describe the language it 
accepts.

Transition table of given NFA

δ
N

0 1

→p { p,q } { p}

q { r,s } { t}

r { p,r} { t }

* s - -

*t - -

Transition table of DFA

δ
D

0 1

→p { p,q } { p}

{ p,q} {p,q, r,s } { p,t}

*{ p,q,r,s } { p,q,r,s } { p,t }

*{p,t} { p,q } { p}

Transition Diagram of DFA

 

0 

0 

1 
1 0 

0 

1 

{p}  

 

{p,q,r,s}} {p,q} 

 

 

{p,t} 

0 



1.47Automata Fundamentals

Problem   1.12

Convert to a DFA the following NFA.

0 1

→p {q,s} {q}

*q {r} {q,r}

r {s} {p}

*s - {p}

Transition Diagram of DFA

Language of DFA

 à The language of a DFA is defined by,

    0
ˆ( , )L(DFA)={w q w  is in F}d  

 

{q,s} 

{s} 
{r} 

[q,

s] 

{r,s} 

{q,r} 

{p,q,r} 

{q,r,s} 

{p} 

1 

0 

0 1 

1 

1 
1 1 1 

0 

0 

0 

0 

0 

   1 



1.48 Theory of Computation

 à And the language of a NFA is defined by,

   0
ˆ( ) { | ( , ) }L NFA w q w Fd j= ∩ ≠

 

* Where q0 is the start state

* F is the set of final states and

* w is a string.

* L(DFA) and L(NFA) are called Regular Languages.

1.8 FInIte AutomAtA wIth ePsIlon trAnsItIons

Finite Automata with Epsilon transitions is also called as ε-NFA . It contains 
epsilon edges. In transition table a column is allocated for epsilon and it gives the output 

for epsilon input.

 + A  Non-Deterministic  finite automaton with ε- Transitions (NFA) is represented 
by 5-tuples.  

i.e. M = (Q, Σ, δ, q0, F) 

* Q is a finite non-empty  set of states.

* Σ is  a finite non-empty set of symbols (an alphabet)

* δ : QX Σ U {ε} → 2Q  is the transition function

* q0 ϵ Q is the start state

* F ϵ Q is a set of final states

Transition Table of ε-NFA

δ
N

ε a b c

→p Ф {p} {q} {r}

q {p} {q} {r} Ф

*r {q} {r} Ф {p}



1.49Automata Fundamentals

ε-Closure

Epsilon closure of a state is the set of all states that are reachable by following the 

transition function from the given state through ε edge. 

Problem   1.13

Consider	the	ε-NFA.	Compute	ε-Closure	for	each	state.

δ
N

ε 0 1 2

→q0 q
1

q0 Ф Ф

q
1

q
2

Ф q
1

Ф

*q
2

Ф Ф Ф q
2

 r ε-Closure (q0) =   { q0 , q1
, q

2
}              

 r ε-Closure (q
1
) =   { q

1
, q

2
} 

 r ε-Closure (q
2
 ) =  {q

2
} 

1.8.1	 Designing	an	ε-NFA	or	NFA	with		ε-Transitions

Problem   1.14

Design	an	ε-NFA	for	the	language	which	consists	of	strings	that	has	1’s	followed	
by 2’s followed by 3’s.

Q = {p,q,r}

Σ = {1,2,3}

 

1 3 2 

e  e  
p q r 



1.50 Theory of Computation

Problem   1.15

Design	an	ε-NFA	for	the	language	b+.

Q = {p,q}

 Σ = {b}

Problem   1.16

Design	an	ε-NFA	for	the	language	which	consists	of	strings	with	all	a’s	followed	
by all b’s.

Q = {q,r}

Σ = {a,b}

1.8.2	 String	Processing	in	ε-NFA																																																																																							

Problem   1.17

For	the	ε-NFA	M	given	in	the	following	table,	test	whether	the	strings	aabccand		
abba  are accepted by M.

δ ε a b c

→p {q} {p} Ф Ф

q {r} Ф {q} Ф

*r Ф Ф Ф {r}

 

b 

e  

p q 

 a b 

q 
r 

e  



1.51Automata Fundamentals

Step 1:

Compute ε-Closure [states that  can be reached by traveling along zero or more ε 
arrows]  for all states .

 r ε-Closure (p) =    {p,q,r}                 ˆ( , )pd e 
 

 r ε-Closure (q) =  {q,r}                      ˆ( , )qd e 
 

 r ε-Closure (r ) =  {r}                         ˆ( , )rd e 
 

Step2:

Start with ε-closure (p)= {p,q,r}

 Where, p is the starting state of given ε –NFA.

1.	 (p)=	{p,q,r}

ˆ({ , , }, )
ˆ( ( ( , ) ( , ) ( , )), )
ˆ( ( ), )
ˆ({ , , }, )
ˆ

p q r aabcc

                          closure p a q a r a abcc

                         closure p abcc

                         p q r abcc

                         

d

d e d d d

d e

d

= − ∪ ∪

= −

=

= ( ( ( , ) ( , ) ( , )), )
ˆ({ , , }, )
ˆ( ( ( , ) ( , ) ( , )), )
ˆ({ , }, )

closure p a q a r a bcc

                         p q r bcc

                         closure p b q b r b cc

                         q r cc

                   

d e d d d

d

d e d d d

d

− ∪ ∪

=

= − ∪ ∪

=

ˆ( ( ( , ) ( , )), )
ˆ({ , }, )

      closure q c r c c

                         q r c

                         r F

d e d d

d

= − ∪

=

= ∈

 ^ Therefore the given string is accepted.



1.52 Theory of Computation

2. w=abba

ˆ({ , , }, )
ˆ( ( ( , ) ( , ) ( , )), )
ˆ( ( ), )
ˆ({ , , }, )
ˆ

p q r abba

                          closure p a q a r a bba

                          closure p bba

                          p q r bba

                          

d

d e d d d

d e

d

d

= − ∪ ∪

= −

=

= ( ( ( , ) ( , ) ( , )), )
ˆ({ , }, )
ˆ( ( ( , ) ( , )), )
ˆ({ , }, )

closure p b q b r b ba

                          q r ba

                          closure q b r b a

                          q r a

                          F

e d d d

d

d e d d

d

j

− ∪ ∪

=

= − ∪

=

= ∉

 ^ Therefore the given string is not accepted.

1.8.3	 Equivalence	of	ε-NFA	and		DFA.

An ε-NFA can be converted into DFA. The subset construction method (with ‘Lazy 
Evaluation’) is used to convert ε-NFA to DFA. In this method the transition functions are 
generated only for reachable states.

Input: Transition table of ε-NFA

Output: Transition table of DFA

Theorem

A language L is accepted by some   -NFA if and only if L is accepted by some 
DFA.

Proof

1. If part: If the L is accepted by some DFA then L is accepted by some  -NFA  

Suppose L=L(D)for some DFA. Turn D into an ε-NFA by adding transitions 
( , )qd e j=  for all states q of D. Technically we must also convert the transitions of D on 

input symbols, example, ( , )D q a pd = , into an NFA-transition to the set containing only 
p, that is, ( , ) { }E q a pd =



1.53Automata Fundamentals

Thus, the transitions of E and D are the same , but E explicitly states that there are 

no transitions out of any state on ε.

2. Only -If part: If the L is accepted by some  -NFA  then L is accepted by some 
DFA.

Let E = {Q
E
, Σ, δ

E
, q0, FE

} be an ε -NFA.  Apply the modified subset construction 
to produce the DFA.

 D = {Q
D
, Σ, δ

D
, q

D
, F

D
}   

 ^ We need to show that L(D) = L(E), and we do so by showing that the extended 
transition functions of E and D are the same.

 ^ Formally, we  show 0
ˆ ˆ( , ) ( , )E D Dq w q wd d=  by induction on the length of ω .

Basics

* If w  then w=ε.

* We know 
0 0

ˆ ( , ) ( )E q ECLOSURE qd e =

* We also know that 0( )Dq ECLOSURE q= , because that is how the start state 

of D is defined.

* Finally, for a DFA, we know that ˆ( , )p pd e =  for any state p, so in particular 

0
ˆ ( , ) ( )D Dq ECLOSURE qd e = .

* We have thus proved that 0
ˆ ˆ( , ) ( , )E D Dq qd e d e= .

Induction

* Suppose w=xa.

 r Where, a is the final symbol of  w and assume that the statement holds 
for x.

* That is, 
0

ˆ ˆ( , ) ( , )E D Dq x q xd d= .

* Let both these sets of states be {p
1
, p

2
,....p

k
}. By the definition of d̂  for ε- 

NFA’s, we compute 0
ˆ ( , )E q wd  by,



1.54 Theory of Computation

i. Let {r
1
, r

2
,....r

m
} be 1 ( , )k

i E ip ad= .

ii. Then 0 1
ˆ ( , ) ( )m

E j jq w ECLOSURE rd == 

* If we examine the construction of DFA D in the modified subset construction, 
we see that δ

D
({p

1
, p

2
,....p

k
},a) is constructed by the same above two steps (i) 

and (ii).

* Thus, ˆ ( , )D Dq wd , which is δ
D
({p

1
, p

2
,....p

k
},a) is the same set as 

0
ˆ ( , )E q wd .

* We have now proved that 0
ˆ ˆ( , ) ( , )E D Dq w q wd d=  and completed the inductive 

part.

Steps to convert ε-NFA to DFA

a. Compute the ε-Closure for each state.

b. Draw the transition table for ε-NFA (if not given)

c. Start state of DFA is ε-Closure(q0)

• Where q0 is  the start state of ε-NFA .

d. Find the transition function for  ε-Closure(q0).

e. The entries are considered as states of DFA.

f. If there is any new state, find the transition function for that new state using 
the following formula:

   1

1

({ ,..., }, ) ( ( , ))
k

D k N i
i

q q a closure q ad e d
=

= −

g. Continue the above step ‘f’ until no more new states.

1.8.4 Applications and Limitations of  FA

1. Applications of FA

i. Text Search

a. News Analyst - Searches on-line news



1.55Automata Fundamentals

b. Shopping robot – Searches current prices charged for an item

c. Amazon.com - Search some keywords

d. Lexical analyzer of a compiler - Identifies the token 

* Verifying the working of a physical system

* Design and construction of Softwares

ii. Advantages of Finite set of states in Automata

 ^  Implement a system with a fixed set of resources 

 ^  Implementing a system within a hardware circuit

 ^  Complementing a system using software with a finite set of codes.

2. Limitations of   FA

 ^ Some languages are not regular – i.e. we cannot construct   FA

Example: 

* B = {0n1n | n ≥ 0} is NOT regular!

* L=wwR

* L=WW

* L=WCWR

* C  = { w | w has equal number of 1s and 0s}

1.8.5 Complex Problems

1. Design a NFA that accepts set of all strings that begins with 00 and ends with 11. 
Convert it into DFA.

Analysis

 ^ Here we have two parts:

 r Begins with string1



1.56 Theory of Computation

 r Ends with string2

 ^ Let string1 be considered as s1s2 and string 2 be considered as s3s4 where s1,s2,s3 
and s4 are substrings.

 ^ For all s2 and s3, if s2≠s3, we can easily construct the NFA.

 ^ In this problem there is no such s2 and s3 where s2=s3. Therefore we can construct 
the NFA in one step as follows:

 ^ The DFA of this machine is given below:

δ
D

0 1

→ {A} {B} -

     {B} {C} -

     {C} {C} {C,D}

     {C,D} {C} {C,D,E}

*   {C,D,E} {C} {C,D,E}

Note: It is difficult to draw the NFA for the following languages wheres2=s3.

 ^ Set of all strings that begins with 01 and ends with 11 [s2=1] 

 ^ Set of all strings that begins with 01 and ends with 10 [s2=1] 

 ^ Set of all strings that begins with 01 and ends with 01 [s2=01]

 ^ Set of all strings that begins with 10 and ends with 10 [s2=10]

 ^ Set of all strings that begins with 00 and ends with 00 [s2=00]

 ^ Set of all strings that begins with 11 and ends with 11 [s2=00]

 

1 1 0 0 
A B C D E 

0,1 



1.57Automata Fundamentals

For these kinds of problems we can use the intersection property of regular 

languages.

Problem   1.18

Design a DFA that accepts set of all strings that begins with 01 and ends with 11. 

 à There are three steps, that are given below.

Step 1:

Design a DFA that accepts set of all strings that begins with 01

Step 2:

Design a DFA that accepts set of all strings that ends with 11.

Step 3:

Intersection between two DFAs (Lazy Evaluation-processing only reachable 
nodes)

 

0 1 

0,1 

A B C 

 

1 1 

0,1 

D E F 

 

1 

0 

1 
0 

0 

0 

0 

{AD} {BD} {CD} {CDE} {CDEF} 

1 



1.58 Theory of Computation

1.8.6 PROBLEMS

1.	 Consider	the	following	ε-NFA.	Covert	it	into	DFA
Transition Table of ε-NFA

δ
N

ε a b c

→p Ф {p} {q} {r}

q {p} {q} {r} Ф

*r {q} {r} Ф {p}

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε 
arrows] for all states.

 r ε-Closure (p) =    {p}                ˆ( , )pd e 
 

 r ε-Closure (q) =  {p,q}               ˆ( , )qd e 
 

 r ε-Closure (r ) =  {p,q,r}            ˆ( , )rd e 
 

Step 2:

Start with ε-closure (p)= {p}

 Where, p is the starting state of given ε –NFA.

Step 3:

Find the transition for{p}

({ }, ) ( ( , ))
( )

{ }
({ }, ) ( ( , ))

( )

D N

D N

p a closure p a

               closure p

               p                                                   New State

p b closure p b

                closure q

         

d e d

e

d e d

e

= −

= −

=

= −

= −

{ , }
({ }, ) ( ( , ))

( )
{ , , }

D N

       p q                                               New State             

p c closure p c

               closure r

               p q r

d e d

e

=

= −

= −

=



1.59Automata Fundamentals

Step 4:

Find the transition for {p,q}

({ , }, ) ( ( , ) ( , ))
( , )

{ , }
({ , }, ) ( ( , ) ( , ))

( , )
{ , , }

({

D N N

D N N

D

p q a closure p a q a

                   closure p q

                   p q

p q b closure p b q b

                   closure q r

                   p q r

d e d d

e

d e d d

e

d

= − ∪

= −

=

= − ∪

= −

=

, }, ) ( ( , ) ( , ))
( )

{ , , }

N Np q c closure p c q c

                   closure r

                   p q r

e d d

e

= − ∪

= −

=

Step 5:

Find the transition for {p,q,r}

({ , , }, ) ( ( , ) ( , ) ( , ))
( , , )

{ , , }
({ , , }, ) ( ( , ) ( , ) ( , ))

( ,

D N N N

D N N N

p q r a closure p a q a r a

                      closure p q r

                      p q r

p q r b closure p b q b r b

                      closure q

d e d d d

e

d e d d d

e

= − ∪ ∪

= −

=

= − ∪ ∪

= − )
{ , , }

({ , , }, ) ( ( , ) ( , ) ( , ))
( , )

{ , , }

D N N N

r

                      p q r

p q r c closure p c q c r c

                      closure p r

                      p q r

d e d d d

e

=

= − ∪ ∪

= −

=

Step 6:

No more new states. Stop the process.

Transition Table of DFA

δ
D

a b c

→{p} {p} {p,q} {p,q,r}

{p,q} {p,q} {p,q,r} {p,q,r}

*{p,q,r} {p,q,r} {p,q,r} {p,q,r}



1.60 Theory of Computation

Transition Diagram of DFA

2.	 Consider	the	following	ε-NFA.	Covert	it	into	DFA

δ ε a b c

→p {q,r} Ф {q} {r}

q Ф {p} {r} {p,q} 

*r Ф Ф Ф Ф

Step 1:

Compute ε-Closure [states that  can be reached by traveling along zero or more ε 
arrows]  for all states .

 r ε-Closure (p) =    {p,q,r}       ˆ( , )pd e 
 

 r ε-Closure (q) =  {q}              ˆ( , )qd e 
 

 r ε-Closure (r ) =  {r}               ˆ( , )rd e 
 

Step 2:

Start with ε-closure (p)= {p,q,r}

 Where, p is the starting state of given ε - NFA

Step 3:

Find the transition for {p,q,r}

({ , , }, ) ( ( , ) ( , ) ( , ))
                       ( )
                       { , , }

D N N Np q r a closure p a q a r a

closure p

p q r

d e d d d

e

= − ∪ ∪

= −

=

 

c 

b 

a a,b,c 

b,c 

a 

{p} {p,q} {p,q,r} 



1.61Automata Fundamentals

({ , , }, ) ( ( , ) ( , ) ( , ))
                       ( , )
                       { , }                                                    New State

({ , , }, ) (

D N N N

D

p q r b closure p b q b r b

closure q r

q r

p q r c closure

d e d d d

e

d e

= − ∪ ∪

= −

=

= − ( , ) ( , ) ( , ))
                       ( , , )
                       { , , }

N N Np c q c r c

closure p q r

p q r

d d d

e

∪ ∪

= −

=

Step 4:

Find the transition for {q,r}

({ , }, ) ( ( , ) ( , ))
                   ( )
                   { , , }

({ , }, ) ( ( , ) ( , ))
                   ( )
                   { }          

D N N

D N N

q r a closure q a r a

closure p

p q r

q r b closure q b r b

closure r

r

d e d d

e

d e d d

e

= − ∪

= −

=

= − ∪

= −

=                                     New State

({ , }, ) ( ( , ) ( , ))
                  ( , )
                  { , , }

D N Nq r c closure q c r c

closure p q

p q r

d e d d

e

= − ∪

= −

=

Step 5:

Find the transition for {r}

({ }, ) ( ( , ))
               ( )
                                                     Dead State

({ }, ) ( ( , ))
               ( )
               

({ }

D N

D N

D

r a closure r a

closure

r b closure r b

closure

r

d e d

e j

j

d e d

e j

j

d

= −

= −

=

= −

= −

=

, ) ( ( , ))
               ( )
               

Nc closure r c

closure

e d

e j

j

= −

= −

=



1.62 Theory of Computation

Step 6:

No more new states. Stop the process.

Transition Table of DFA

δ
D

a b c

→*{p,q,r} {p,q,r} {q,r} {p,q,r}

*{q,r} {p,q,r} {r} {p,q,r}

*{r} Ф Ф Ф

Transition Diagram of DFA

3.	 Consider	the	following	ε-NFA.	Covert	a,b,c	it	into	DFA.

Transition Table of ε-NFA

δ
N

ε 0 1 2

→ q0 q
1

q0 Ф Ф

q
1

q
2

Ф q
1

Ф

*q
2
 Ф Ф Ф q

2

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε 
arrows]  for all states .

 r ε-Closure (q0) =  { q0, q1
, q

2
}         0

ˆ( , )qd e 
 

 

b b 

a,c 

{q,r} {r} 

Ф 

{p,q,r} 

a,c 



1.63Automata Fundamentals

 r ε-Closure (q
1
) =  { q

1
 ,q

2
}              1

ˆ( , )qd e 
 

 r ε-Closure (q
2
 ) = { q

2
}                    

2
ˆ( , )qd e 

 
Step 2:

Start with ε-closure (q0)= { q0, q1
, q

2
}

 Where, q0 is the starting state of given ε –NFA.

Step 3:

Find the transition for { q0, q1
, q

2
}                                                        

0 1 2 0 1 2

0

0 1 2

0 1 2 0 1 2

({ , , },0) ( ( ,0) ( ,0) ( ,0))
                          ( )
                          { , , }

({ , , },1) ( ( ,1) ( ,1) ( ,1))
               

D N N N

D N N N

q q q closure q q q

closure q

q q q

q q q closure q q q

d e d d d

e

d e d d d

= − ∪ ∪

= −

=

= − ∪ ∪

1

1 2

0 1 2 0 1 2

           ( )
                          { , }                                                              New State

({ , , }, 2) ( ( , 2) ( , 2) ( , 2))
                

D N N N

closure q

q q

q q q closure q q q

e

d e d d d

= −

=

= − ∪ ∪

2

2

           ( )
                           { }                                                                 New State

closure q

q

e= −

=

Step 4:

Find the transition for {q
1
,q

2
}

1 2 1 2

1 2 1 2

({ , },0) ( ( ,0) ( ,0))
                     ( )
                                                                        Dead State

({ , },1) ( ( ,1) ( ,1

D N N

D N N

q q closure q q

closure

q q closure q q

d e d d

e j

j

d e d d

= − ∪

= −

=

= − ∪

1

1 2

1 2

2

2

))
                     ( )
                     { , }

({ , }, 2) ( ( , 2) ( , 2))
                   ( )
                   { }

D N N

closure q

q q

q r closure q q

closure q

q

e

d e d d

e

= −

=

= − ∪

= −

=



1.64 Theory of Computation

Step 5:

Find the transition for {q
2
}

2 2

2 2

({ },0) ( ( ,0))
                 ( )
                                                  Dead State

({ },1) ( ( ,1))
                ( )
                 

D N

D N

q closure q

closure

q closure q

closure

d e d

e j

j

d e d

e j

j

= −

= −

=

= −

= −

=

2 2

2

2

                                 Dead State

({ }, 2) ( ( , 2))
                ( )
                { }

D Nq closure q

closure q

q

d e d

e

= −

= −

=

Step 6:

No more new states. Stop the process.

Transition Table of DFA

δ
D

0 1 2

→*{ q0, q1
, q

2
} { q0, q1

, q
2
} { q

1
, q

2
} {q

2
}

*{ q
1
, q

2
} Ф { q

1
, q

2
} {q

2
}

*{q
2
} Ф Ф {q

2
}

Transition Diagram of DFA

 

Ф 

0 

1 

1 

0,1,2 

0,1 

2 

2 

 

{q0,q1,q2} 

{q1,q2} 
{q2} 

0 

2 

q0,q1
,q

2
}



1.65Automata Fundamentals

Q = {{q0, q1
, q

2
},{ q

1
, q

2
},{q

2
} }

Σ  = {0,1,2}

q0= {q0, q1
, q

2
}

F  = {{q0, q1
, q

2
},{ q

1
, q

2
},{q

2
}}

4.	 Consider	the	following	ε-NFA.	Covert	it	into	DFA

δ
N

ε a b

→ p {r} {q} {p,r}

q Ф {p} Ф

*r {p,q} {r} {p}

Step 1:

Compute ε-Closure [states that  can be reached by traveling along zero or more ε 
arrows]  for all states.

 r ε-Closure (p) =   {p,q,r}           ˆ( , )pd e 
 

 r ε-Closure (q) =   {q}                ˆ( , )qd e 
 

 r ε-Closure (r ) =  {p,q,r}            ˆ( , )rd e 
 

Step 2:

Start with ε-closure (p)= { p, q, r}

 Where, p is the starting state of given ε –NFA

Step 3:

Find the transition for { p,q,r}

({ , , }, ) ( ( , ) ( , ) ( , ))
                       ( )
                       ( , , )
                       { , , }

D N N Np q r a closure p a q a r a

closure q p r

closure p q r

p q r

d e d d d

e

e

= − ∪ ∪

= − ∪ ∪

= −

=



1.66 Theory of Computation

({ , , }, ) ( ( , ) ( , ) ( , ))
                       ({{ , } { }})
                       ({ , })
                       { , , }

D N N Np q r b closure p b q b r b

closure p r p

closure p r

p q r

d e d d d

e j

e

= − ∪ ∪

= − ∪ ∪

= −

=

Transition Table of DFA

δ
D

a b

→*{ p,q,r} { p,q,r} { p,q,r}



1.67Automata Fundamentals

1. Convert the following NFAs to a DFA .

a. 

a b

→p {p,q} p

q r r 

r s -
*s s s

b.

δ a b

→ p {q,s} {q}
*   q {r } {q,r }
   r {s} {p}
*  s ϕ {p}

c.

 

δ a b

→ p {p,q} {p}
   q {r,s } {t}
   r {p,r} {t}
*  s ϕ ϕ
   * t ϕ ϕ

2. Consider the following  ε- NFA. Compute the ε- Closure of each state and find it’s 
equivalent DFA .

a.

δ ε a b c

→p {q,r} - {q} {r}
q - {p} {r} {p,q}
*r - - - {r}

REVIEW QUESTIONS



1.68 Theory of Computation

b.      

δ ε a b c

→p ϕ {p} {q} {r}
q {p} {q} {r} ϕ
*r {q} {r} ϕ {p}

3. Construct a minimized DFA for the DFA given below.        

a.

δ 0 1

→  A B E

B C F

*C D H

D E H

E F I

*F G B
G H B
H I C

*I A E

b.

δ 0 1

→ A B A

B A C

C D B
*D D A

E D F

F G E

G F G

H G D

4. Construct (DFA ) an Automata for the following Language

 a. D  = { w | w has equal number of occurrences of 01 and 10}

 b. D ={{ w | w  begins with 10 and ends with 10}

 c. D ={{ w | w  begins with 01 and ends with 01}



1.69Automata Fundamentals

 d. D ={{ w | w  begins with 10 and ends with 00}

 D ={{ w | w  begins with 10 and ends with 01}

5. Consider the following ε-NFA. 

δ ε 0 1

→ p {r} {q} {p,r}
   q Φ {p } Φ
 *  r {p,q} {r} {p}

 a. Compute the ε-closure of each state.

 b. List all the possible strings of length 3 or less accepted by the automaton.

 c. Convert the automaton to a DFA.

 d. Compute 0
ˆ( ,0110)qd , where q0 is the start state.

6. Obtain the DFA equivalent to the following ε-NFA.  

ε a b c

→p - {p} {q} {r}
q {p} {q} {r} -
*r {q} {r} - {p}

7. Let L be a language accepted by a NFA then show that there exists a DFA that 

accepts L.

8. Design a NFA that accepts set of all strings that begins with bb and ends with aa. 
Convert it into DFA.

9. Construct a minimized DFA for the DFA given below. 

δ 0 1

→ a b c

     b c d

     c c d

   *d d d

   *e e e

   *f f e

 



1.70 Theory of Computation

10. Design a NFA that accepts empty string or string starts and ends with 0.  Convert 
it into DFA.

11. Define NFA. Explain its significance. Convert  the given NFA to DFA. Prove that 
both NFA and DFA accepts the string 0110.





























































































































































































































































 

 

 

 

 

 

 

 

UNIT IV 

PROPERTIES OF CONTEXT FREE 

LANGUAGES 

 













































































































































 

 

 

 

 

 

 

 

UNIT V 

UNDECIDABILITY 

 



















































 
 

UNIT - 5 
UNDECIDABILITY 

 

Non Recursive Enumerable (RE) Language – Undecidable Problem with RE – 
Undecidable Problems about TM – Post‘s Correspondence Problem, The Class P 
and NP 

RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES 

Recursively Enumerable Language 

A language  L   *    is recursively enumerable if there exist a Turing machine, M that 
accepts every string, w Land does not accept strings that are not in L. 

If the input string is accepted, M halts with the answer, “YES”. 

If the string is not an element of L, then M may not halt and enters into infinite loop. 
 

w є L 

w  L 

 
YES 

 
Loops Forever 

The language, L is Turing Acceptable. 
 

Recursive Language 

A language is said to be recursive if there exists of Turing machine, M that accepts 
every string, w L and rejects those strings that are not in L. 

If the input is accepted, M halts with the answer,” YES” 
 

w є L 
 

w  L 

  

w L the Turing machine doesn‟t accept the string. 

 
YES 

NO 

 
M 

 
M 



 

 
M1 

 
M2 

 
M3 

If w L, then M halts with answer, “NO”. This is also called as Turing Decidable 
language. 

 
 
PROPERTIES OF RECURSIVE AND RE LANGUAGES 
1. The union of two recursive language is recursive 
2. The language L and its complement L are recursively enumerable, then L is 

recursive. 
3. The complement of a recursive language is recursive. 
4. . The Union of two recursively enumerable languages is recursively enumerable. 
5. The intersection of two recursive language is recursive. 
6. The intersection of two recursively enumerable language is recursively enumerable 

 
Proofs on the Properties 

Property-1 

The union of two recursively enumerable languages is recursively enumerable. 
 

Proof: 

Let L1 and L2 be two recursively enumerable languages accepted by the Turing 
machines M1 and M2. 

If a string wL1 then M1 returns “YES”, accepting the input string: Else loops 
forever. Similarly if a string w L2 then M2 returns “YES”, else loops forever. 

The Turing machine M3 that performs the union of L1 and L2 is given as 
 

RE 
YES 

 
 

YES 
 

 
 

RE 
YES 

 

RE 

Here the  output  of M1 and  M2 are written  on the  input tape of M3. The turning 
machine, M3 returns “YES”, if at least one of the outputs of M1 and M2 is “YES”. The M3 
decides on L1UL2 that halts with the answer, “YES” if 
forever if both M1 and M2 loop forever. 

w L1 or w L2 . Else M3 loops 

Hence the union of two recursively enumerable languages is also recursively 
enumerable. 

 
 
wєΣ* 



 
 

 
M2 

 
 

M3 

 

 

Property – 2 

A language is recursive if and only if both it and its complement are recursively 
enumerable. 

 
Proof 

Let L and L be two recursively enumerable languages accepted by the Turing 
machines M1 and M2. If a string, w L, it is accepted by M1 and M1 halts with answer 
“YES”. Else M1 enters into infinite loop. 

If a string, w L w L , then it is accepted by M2 and M2 halts with answer “YES”. 
Otherwise M2 loops forever. 

The Turing machine, M3 that simulates M1 and M2 simultaneously is given as 
 

w L1 

 
 

YES 
 

 
 
 

w L YES 
 

From the above design of TM, if w L, if w L, then M1 accepts w and halts with 
“YES”. 

If w L, then M2 accepts ww L and halts with “YES”. 

Since M1 and M2 are accepting the complements of each other, one of them is 
guaranteed to halt for every input, wєΣ*. 

Hence M3 is a Turing machine that halts for all strings. 

Thus if the language and its complement are recursively enumerable, then they are 
recursive. 

 
Property - 3 

The complement of a recursive language is recursive. 
 

Proof  

Let L be a recursive language accepted by the turning machine, M1. 

Let L be a recursive language accepted by the Turing machine M2. 

 
 
wєΣ* 

YES 
M1 



 

 

M2 

 

M1 

The construction of M1 and M2 are given as, 

w L 
 

 L 
YES NO 

   
 

w L NO YES 
   

R R 

Let w L, then M1 accepts w and halts with “YES”. 

M1 rejects w if w Land halts with “NO” 

M2 is activated once M1 halts. 

M2 works on L and hence if M1 returns “YES”, M2 halts with “NO”. 

If M1 returns “NO”, then M2 halts with “YES” 

Thus for all w, where w L or w L , M2 halts with either “YES” or “NO” 

Hence the complement of a recursive language is also recursive. 

Property – 4 
The union of two recursive language is recursive. 

Proof:- 

Let L1 and L2 be two recursive languages that are accepted by the Turing machines M1 
and M2, given by 

L(M1) = L1 

L(M2) = L2 

Let M3 be the Turing machine constructed by the union of M1 and M2. M3 is 
constructed as follows. 

 
YE 

 
 
 
 
 
 
 
 

NO 

YES 

NO 

wєΣ* 

M3 
YES 

NO 

 
M2 

 
M1 



 
 

3

 

 

The Turing machine M3 first simulates M1 with the input string, w. 

If w L1 , then M1 accepts and thus M3 also accepts since L(M3) = L(M1) u L(M2). 
 

If M1 rejects string w L1  ,  then  M3  simulates  M2.  M3  halts  with  “YES”  if  M2 
accepts „w‟, else returns “NO”. 

 
Hence M3, M2, M1 halt with either YES or NO on all possible inputs. 

Thus the union of two recursive languages is also recursive. 

Property – 5 

The intersection of two recursive language is recursive. 
 

Proof:-  

Let L1 and L2 be two recursive languages accepted by M1 and M2 where 
L(M1) = L1 

L(M2) = L2 

Let M3 be the Turing machine that is constructed by the intersection of M1 and M2, M3 
is constructed as follows. 

 
 

wєΣ* 
NO 

YES 

 
NO 

 
 
 

M LM3   L(M1) L(M2 ) 
 

   YES   
YES 

 
NO 

 
The Turing machine M3 simulates M1 with the input string,w. 

If w L1 , then M1 halts along with M3 with answer “NO”, since L(M3)=L(M1) 
L(M2). If then M1 accepts with the answer “YES” and M3 simulates M2. 

If M2 accepts the string, then the answer of M2 and M3 are “YES” and halts. Else, M2 
and M3 halts with answer “NO”. 

 

M2 

 
M1 



 

 
YES 

 
M1  

 
M3 

YES  
M2 

Thus, the intersection of two recursive languages is recursive. 
 

Property – 6 
Intersection of two recursively enumerable languages is recursively enumerable. 

 

Proof:- 

Let L1 and L2 be two recursively enumerable languages accepted by the Turing 
machine M1 and M2. 

 

If a string 
rejecting w L1 . 

w L1 then M1 returns “YES” accepting the input. Else will not halt after 

Similarly if a string, w L2 , then M2 returns “YES” else rejects „w‟ and loop forever. 

The Turing machine, M3 = M1  M2 is given as 

w L1 Rejects & Never Halts 
 
 

YES 
 

Loop Forever 
 
 

w L2 
Rejects & Never Halts 

 

Here the output of M1 and M2 are written the input tape of M3. The machine, M3 
returns “YES” if both the outputs of M1 and M2 is “YES”. 

If at least one of M1or M2 is NO it rejects „w‟ and never halts. 
 

Thus M3 decides on L1  L2 that halts if and only if 
loops forever along with M1 or M2 or both 

w L1 and w L2 . Else M3 

Hence the intersection of two recursively enumerable languages is recursively 
enumerable. 

 
THE HALTING PROBLEM 
 The halting problem is the problem of finding if the program/machine halts or loop 

forever. 

 The halting problem is un-decidable over Turing machines. 

 

wЄ∑* 



 
 



 

 

Description 

 Consider the Turing machine, M and a given string , the problem is to determine 
whether M halts by either accepting or rejecting , or run forever. 

 Example 
while (1) 
{ 

prinf(“Halting problem”); 
} 

 The above code goes to an infinite loop since the argument of while loop is true 
forever. 

 Thus it doesn‟t halts. 

 Hence Turing problem is the example for undecidability. 

 This concept of solving the halting problem being proved as undecidable was done 
by Turing in 1936. 

 The undecidability can be proved by reduction technique. 

Representation of the halting set 
The halting set is represented as, 

h(M, )  1 if M halts on input 

0 otherwise 
where, 

 
 
 

Theorem 

 

M  Turing machine 

  Input string 

 

Proof 

Halting problem of Turing machine is unsolvable / undecidable. 
 

The theorem is proved by the method of proof by contradiction. 
Let us assume that Turing machine is solvable / decidable. 

Construction of H1 

M 





HALT 
LOOP FOREVER 

Halting 
machine H1 



 

H2 

Halting 
machine H2 

 Consider, a string describing M and input string,  for M. 

 Let H1 generates “halt” if H1 determines that the turing machine, M stops after 
accepting the input, . 

 Otherwise H1 loops forever when, M doesn‟t stops on processing . 
 

Construction of H2 
 

M HALT 
LOOP 

 
H2 is constructed with both the inputs being M. 

H2 determines M and halts if M halts otherwise loops forever. 
 

Construction of H3 
 

M HALT 
LOOP 

LOOP 

HALT 
 

Let H3 be constructed from the outputs of H2. 

If the outputs of H2 are HALT, then H3 loops forever. 

Else, if the output of H2 is loop forever, then H3 halts. 

Thus H3 acts contractor to that of H2. 

H3 
 
 

 Let the output of H3 be given as input to itself. 

 If the input is loop forever, then H3 acts contradictory to it, hence halts. 

 And if the input is halt, then H3 loops by the construction. 

 Since the result is incorrect in both the cases, H3 doesnot exist. 

 Thus H2 doesnot exist because of H3. 

 Similarly H1 doesnot exist, because of H2. 

Thus halting problem is undecidable. 

H3 

 
H3 



 
 

M 

 
M 

p 

 

 

PARTIAL SOLVABILITY 
Problem types 

There are basically three types of problems namely 

 Decidable / solvable / recursive 

 Undecidable / unsolvable 

 Semi decidable / partial solvable / recursively enumerable 

Decidable / solvable problems 
A problem, P is said to be decidable if there exists a turing machine, TM that 

decides P. 

Thus P is said to be recursive. 

Consider a Turing machine, M that halts with either „yes‟ or „no‟ after computing the 
input.  

 ∑* YES (if  L) 

NO (if  L) 
 

The machine finally terminates after processing 

It is given by the function, 

F ()  1 if p() 

0 if p() 

The machine that applies Fp() is said to be turing computable. 

Undecidable problem 
A problem, P is said to be undecidable if there is a Turing machine, TM that doesn‟t 

decides P. 
 

Semi decidable / partial solvable / recursively enumerable 
A problem, P is said to be semi decidable, if P is recursively enumerate. 
A problem is RE if M terminates with „YES‟ if it accepts   L; and doesn‟t halt if 

 L. 
Then the problem is said to be partial solvable / Turing acceptable. 

 ∑* YES (if  L) 
LOOP FOREVER (if   L) 



 

p 

Partial solvability of a machine is defined as, 

F ()  1 if p() 

undefined if  p() 

Enumerating a language 

Consider a k-tape turing machine. Then the machine M enumerates the language L 
(such that L  ∑*) if 

 The tape head never moves to the left on the first tape. 

 No blank symbol (B) on the first tape is erased or modified. 

 For all   L, where there exists a transition rule, i on tape 1 with contents 

1 # 2 # 3 # ... # n #  # (for n  0) 

Where 1, 2 , 3, ..... , n ,  are distinct elements on L. 

If L is finite, then nothing is printed after the # of the left symbol 

That is, 

 If L is a finite language then the TM, M either 

o Halts normally after all the elements appear on the first tape (elements are 
processed) 

 

or 

o Continue to process and make moves and state changes without 
scanning/printing other string on the first tape. 

If the language, L is finite, the Turing machine runs forever. 

Theorem 

A language L  ∑* is recursively enumerable if and only if L can be enumerated by 
some TM. 

Proof 
 
 
 

k(M1)]. 

Let M1 be a Turing machine that enumerates L. 

And let M2 accepts L. M2 can be constructed as a k-tape Turing machine [k(M2) > 

M2 simulates M1 and M1 pauses whenever M2 scans the „#‟ symbol. 



 
 

M1 
LOOP FOREVER 

( L) 

 
M2 

 

 

M2 compares its input symbols to that of the symbols before „#‟ while, M1 is in pause. 

If the comparison finds a match of the string, M2 accepts L. 

Here M2 is a semi acceptor TM for L 

 Scans the input string, 

 Runs the transition rules of M1 

 If M1 outputs , then  is accepted and M1 hats 

If   L, M1 will output  and M2 will eventually accept „‟ and halts. 

If   L, then M1 will never provide an output  and so M2 will never halt. 
 
 
 
 
 
 

 ∑* 

 ∑* 
HALTS 

 

(L) 
 
 
 
 
 

Infinite loop 

HALTS 
 

 

( L) 

 
LOOP FOREVER 

( L) 
Never halts 

Thus M2 is partially solvable / Turing acceptable for L. 
 
 
POST CORRESPONDENCE PROBLEM (PCP) 

Post correspondence problem, known as PCP is an unsolvable combinatorial problem. 

This Undecidable problem was formulated by Emil Post in 1946. 
 
A PCP consists of two lists of string over some alphabet Σ; the two lists must be of equal length.  

Generally A=w1,w2, w3, …….wk and B= x1, x2 ,x3, ……xk for some integer k. For each i , the 

pair (wi , xi ) is said to be a corresponding pair.  

We say this instances of PCP has a solution, if there is a sequence of one or more integers  

i1, i2,……., im that, when interpreted as indexes for strings in the A and B lists, yield the same 

string.  

wi1 wi2 ……. wim = xi1 xi2 ……. xim . We say the sequence i1, i2,……., im is a solution to this 

instance of PCP 

 
M2 

 
M1 



 

EXAMPLE 

1. For Σ = {a, b} with A = {a, aba3, ab} and B = {a3, ab, b}, Does the PCP with A and B 
have a solution? 

Solution: 
The sequence obtained from A and B = (2, 1, 1, 3) as, 

 

A2 A1 A1 A3 

aba3 a a ab 

B2 B1 B1 B3 

ab a3 a3 b 

Thus A2A1A1A3 = B2B1B1B3 = aba3a3b = aba6b 

The PCP given has a solution (2,1,1,3) with the two lists of elements. 

2. Let Σ = {0, 1}. Let A and B be the lists of three strings defined as 
 

 A B 
I wi xi 
1 1 111 
2 10111 10 
3 10 0 

Solution: 

Consider the sequence (2, 1, 1, 3) 

A2A1A1A3 => w2w1w1w3 = 101111110 

B2B1B1B3 => X2X1X1X3 = 101111110 

Thus the PCP has (2, 1, 1, 3) sequences as solution 
 

The Diagonalization Language Ld 

 We define Ld, the diagonalization language, as follows: 

Let w1, w2, w3, . . .  be an enumeration of all binary strings. 

Let M1, M2, M3, . . . be an enumeration of all Turing machines. 

 

Let   Ld = { Wi | Mi  does not accept Wi }. 

 

The language Ld, the diagonalization language, is the set of strings Wi 

such that Wi is not in L(Mi). That is, Ld consists of all strings w such 

that the TM (M ) does not accept when given w as input. 

 



 
 

Theorem: Ld is not a recursively enumerable language. 
Proof: 

Suppose Ld = L(Mi) for some TM Mi. 

 This gives rise to a contradiction. Consider what Mi will do on an 

input string wi. 

If Mi accepts wi, then by definition wi cannot be in Ld. 

If Mi does not accepts wi, then by definition wi is in Ld. 

we must conclude there is no Turing machine that can define Ld. 

Hence Ld is not a recursively enumerable language.  

 
UNIVERSAL TURING MACHINE 

Motive of UTM 

A single Turing machine has a capability of performing a function such as addition, 
multiplication etc. 

 
For computing another function, other appropriate Turing machine is used. To do so, the 

machine has to be re-written accordingly. 
 

Hence Turing proposed “Stored Program Computer” concept in 1936 that executes the 
program/instructions using the inputs, stored in the memory. 

 
The instructions and inputs are stored on one or more tapes. 

 
Concept of UTM 
 
 
The universal Turing machine, Tu takes over the program and the input set to process 
 the program.   
 
The program and the inputs are encoded and stored on different tapes of a multi-tape Turing machine. 
 

The Tu thus takes up T, w where T is the special purpose Turing machine that passes the 
program in the form of binary string, w is the data set that is to be processed by T. 

 
 
 
 
 

Input 

Tape of M 

State of M 0000…0BB… 
 

 

 
 

<T, w> 

0001010000101…. 

Finite 
control 



 

Input to the Tu 
The universal Turing machine, Tu is always provided with the code for Transitions, 

e(T) and code for input, e(w) as 

TM  e(T)e(w) 
 

For example, if the input data, w=”baa”, then 

e(w) = 10001001001 

This e(w) will be appended to e(T) of Tu. 

Construction of Tu 

As in the figure for universal Turing machine, there are three tapes controlled by a 
finite control component through heads for each tape. 

Tape -1  Input tape and also serves as output tape. It contain e(T) e(w). 

Tape-2  Tape of the TM/Working tape during the simulation of TM 

Tape -3  State of the TM, current state of the T in encoded form. 

Operation of UTM  
Theorm :(Lu is Recursively enumerable ) 

           (To prove this Theorem it is necessary to construct a turning machine that accepts 
Lu) 

 UTM checks the input to verify whether the code for TM=<T,w> is a legitimate 
for some TM. 

 
o If the input is not accepted, UTM halts with rejecting, w 

 Initialize the second tape to have e(w), that is to have the input, w in encoded form. 
                           Place the code of the initial state on the third tape and move the head of the finite   

                                                                                                                                                                                  state control on the first cell of second tape. 

 To simulate a move of the Turing machine, UTM searches for the transition - 
oi 1oj 1ok 1ol 1om on the first tape, with oi (initial state/current state) on tape -3 and 
o j (input symbol to be processed) on tape- 2. 

 The state transition is done by changing the tape -3 content as 
transition. 

 Replace o j by ol on tape-2 to indicate the input change. 

ok as in the 



 
 

d

 Depending on om [m=1 stop, m=2 Left, m=3 Right], move the head on 
tape-2 to the position of the next 1 to the left/right/stop accordingly 

 If TM has no transition, matching the simulated state and tape symbol, then no 
transition will be found. This happens when the TM stops also. 

 If the TM, T enters halt (accepting state), then UTM accepts the input, w 
Thus for every coded pair <T, w>, UTM simulates T on w, if and only if T accepts the 

input string, w. 
Thus U TM simulates M and accepts W.Thus Lu is  recursively enumerable 

 
Definition of Universal Language [Lu] 

The universal language, Lu is the set of all binary strings , where  represents the 
ordered pair <T, w> where 

T Turing machine 
w any input string accepted by T 

It can also be represented as  = e(T) e(w) . 
Theorem 

Lu is the recursively enumerable but not recursive . 
 

Proof 

From the definition and operations of UTM, we know that Lu is recursively 
enumerable. 

Lu accepts the string w if it is processed by the TM,T. Else, rejects „w‟ and the 
machine doesn‟t halts forever. 

To prove that Lu is not recursive, the proof can be done by contradiction. Let Lu is 
 Turing decidable [recursive], and then by definition acceptable.  

Lu (complement of Lu) is Turing  

 
 

We can show that Lu is Turing acceptable, that leads to Ld to be Turing acceptable. 
But we know that Ld is not Turing acceptable. 

Hence Lu is not Turing decidable by proof by contradiction. 
 

Proof on Lu is during acceptable  Ld is Turing acceptable 
 
 

w 
 
 
 

Suppose “A” is the algorithm that recognizes Lu . 
 

Then L is recognizes as follows. Given a string w(0,1)* determined easily, the   
value of I such that w = wi. 

Integer value, I in binary is the corresponding code for TM, Ti. Provide <Ti, wi> to the 

Accept Accept 
w111w 

Reject Reject 
T for Ld 

Copy 
Hypothetical 

algorithm 
T for Lu 



 

algorithm A and accept, w if and only if Ti accepts wi. 

So the algorithm accepts w if and only if w = wi which is in L(Ti). 

This is the algorithm for Ld. Hence Lu is Recursively Enumerable but not recursive. 
 

TRACTABLE AND INTERACTABLE PROBLEMS 
Tractable Problems/Languages 

The languages that can be recognized by a Turing machine in finite time and with 
reasonable space constraint is said to be tractable. 

Example: If the language L1 Time (f), then L is tractable and is less complex in 
nature  

 
Example: If L2  Time (f), L2 is complex and cannot be tractable in limited time. 

Tractable problems are those that can be solved in polynomial time period. 

Intractable Problems 

The languages that cannot be recognized by any Turing machine with reasonable space 
and time constraint is called intractable problems. 

These problems cannot be solved in finite polynomial time. Even problems with 
moderate input size cannot achieve feasible solution   

 
P AND NP  PROBLEMS 

 
 These refer to how long it takes a program to run.  Problems in class P can be solved with 

algorithms that run in polynomial time. 

An algorithm that finds the smallest integer in an array.  One way to do this is by iterating over all 

the integers of the array and keeping track of the smallest number you've seen up to that 

point.  Every time you look at an element, you compare it to the current minimum, and if it's 

smaller, you update the minimum. 

How long does this take?  Let's say there are n elements in the array.  For every element the 

algorithm has to perform a constant number of operations.  Therefore we can say that the 

algorithm runs in O(n) time, or that the runtime is a linear function of how many elements are in 

the array.  So this algorithm runs in linear time. 
You can also have algorithms that run in quadratic time (O(n^2)), exponential time (O(2^n)), or 

even logarithmic time (O(log n)).  Binary search (on a balanced tree) runs in logarithmic time 

because the height of the binary search tree is a logarithmic function of the number of elements in 

the tree. 

 

 



 
 

If the running time is some polynomial function of the size of the input, for instance if the 

algorithm runs in linear time or quadratic time or cubic time, then we say the algorithm runs in 

polynomial time and the problem it solves is in class P. 

NP  
 There are a lot of programs that don't (necessarily) run in polynomial time on a regular computer,    

but do run in polynomial time on a nondeterministic Turing machine.  These programs solve  

problems in NP, which stands for nondeterministic polynomial time.  A nondeterministic Turing 

machine can do everything a regular computer can and more. This means all problems in P are also 

in NP. 

An equivalent way to define NP is by pointing to the problems that can be verified in polynomial 

time.  This means there is not necessarily a polynomial-time way to find a solution, but once you 

have a solution it only takes polynomial time to verify that it is correct. 

P = NP, which means any problem that can be verified in polynomial time can also be solved in 

polynomial time and vice versa.  If they could prove this, it would revolutionize computer science 

because people would be able to construct faster algorithms for a lot of important problems. 

 
NP-hard 

 Solve a problem by reducing it to a different problem. Reduce Problem B to Problem A if, given 

a solution to Problem A, It can easily construct a solution to Problem B.  (In this case, "easily" 

means "in polynomial time.") 

 

If a problem is NP-hard, this means , reduce any problem in NP to that problem.   It can solve 

that problem, I can easily solve any problem in NP.  If we could solve an NP-hard problem in 

polynomial time, this would prove P = NP. 

NP-complete 

 

A problem is NP-complete if the problem is both 

 NP-hard, and 
 in NP. 

 A technical point: O(n) actually means the algorithm runs in asymptotically linear time, which 
means the time complexity approaches a line as n gets very large.  Also, O(n) is technically an 
upper bound, so if the algorithm ran in sublinear time you could still say it's O(n), even if that's 
not the best description of it. 
 
** Note that if the input has many different parameters, like n and k, it might be polynomial in n 
and exponential in k 


