UNIT I

AUTOMATA FUNDAMENTALS

1.1 INTRODUCTION TO AUTOMATA THEORY

Automata theory is the study of abstract machines and the computational problems can be solved using these machines. Abstract machines are called automata. The name comes from the Greek word (Avió $\mu \alpha \tau \alpha$).

It means doing something by itself. An automaton can be a finite representation of a formal language that may be an infinite set. Automata are used as theoretical models for computing machines, and are used for proofs about computability. The automata theory is essential for,

The study of the limits of computation
Designing and checking the behaviour of digital circuits.
Pattern searching in Websites
Verifying systems of all types that have a finite number of distinct states, such as communications protocols or protocols for secure exchange information

1.1.1 INTRODUCTION TO FORMAL LANGUAGES

Formal languages are the system used to train the machines in recognizing certain commands or instructions. These languages are the abstraction of natural languages, since they are expended by the machines. Formal languages are of five types. They are:

ㄱ Regular Languages (RL)
\square Context free Languages (CFL)
\square Context Sensitive Languages (CSL)

ㅁ) Recursive Languages
ㄱ Recursively Enumerable Languages (RE)
Int These languages are recognized by specific automata/machines and grammars.
\square Regular grammars (type 3) and finite automata recognize regular languages.
\square Context free grammars (Type 2) and push down automata recognize context free languages.
\square Context sensitive grammars (Type 1) and Linear Bounded Automata (LBA) recognize context sensitive languages.
\square Unrestricted grammars (phrase structure grammar) (Type 0).
\square Turing machines recognize recursively enumerable languages.
|milt Total Turing Machines (TTM) that halt for every input are used to recognize recursive languages.

1. Formal Language Theory

Formal language theory describes languages as a set of operations over an alphabet. It is closely linked with automata theory, as automata are used to generate and recognize formal languages. Automata are used as models for computation; formal languages are the preferred mode of specification for any problem that must be computed.

2. Computability theory

Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. It is closely related to the branch of mathematical logic called recursion theory.

3. Models of Computation

The computation models that are developed by formal language theory are,
i) Finite State Automata
ii) Regular expression
iii) Push down Automata
iv) Linear bounded automata
v) Turing machine

The computational models and the languages understandable by these models are tabulated below.

Table 1.1 The Computational Models

Machines	Grammars/ Languages	Category	
Finite State Automata (Regular Expression)	Regular	Type 3	Simple
Push Down Automata	Context Free	Type 2	
Linear Bounded Automata	Context Sensitive	Type 1	
Turing Machine	Phrase Structure	Type 0	Complex
Uncomputable			

1.1.2 Basic Mathematical Notation and Techniques

1. Alphabet

An alphabet is a finite, nonempty set of symbols.

Example:

i. $\sum=\{0,1\}$
ii. $\sum=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

2. String

A string over an alphabet is a finite sequence of symbols from that alphabet.

Example:

i. 01001 over $\sum=\{0,1\}$
ii. aaabbbbccc over $\sum=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

3. Length of a string

The length of a string is the count of symbols in that string.

Example:

i. $|01001|=5$
ii. \mid aaabbbbccc $\mid=10$
iii. $\left|0^{3} 1^{5}\right|=8$

4. Power of an alphabet

The power of an alphabet $\sum \mathrm{k}$, is the set of all strings over \sum with length k .

Examples:

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& \Sigma^{2}=\{00,01,10,11\} \\
& \Sigma^{3}=\{000,001,010,011,100,101,110,111\} \\
& \Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111 \ldots \ldots \ldots \ldots .\} \\
& =\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \text {. } \\
& =\Sigma^{0} \cup \Sigma^{+} \\
& \Sigma^{+}=\{0,1,00,01,10,11,000,001,010,011,100,101,110,111 \ldots \ldots \ldots \ldots . .\} \\
& =\Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \text {. }
\end{aligned}
$$

5. Language (L)

The language of an Automata is a set of strings accepted by the automata.

Examples:

i. Set of even length strings over an alphabet $\{\mathrm{a}, \mathrm{b}\}$.
ii. Set of odd length strings over an alphabet $\{0,1\}$.

6. Set-former notation of a Language

i. $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ consists of an equal number of 0 's and 1 's $\}$

$$
\mathrm{L}=\{\varepsilon, 01,10,0011,1100,0101,1010,1001,0110, \ldots \ldots \ldots\}
$$

ii. $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ is a binary integer that is prime $\}$

$$
L=\{10,11,101,111, \ldots \ldots .\}
$$

7. Complement of a Language $(\overline{\mathrm{L}})$

i. $\mathrm{L}=\{w \mid w$ contains 101 as substring $\}$
$\overline{\mathrm{L}}=\{w \mid w$ does not contain 101 $\}$
ii. $\mathrm{L}=\{w \mid w$ contains abb as substring $\}$
$\mathrm{L}=\{w \mid w$ does not contain abb $\}$

1.2 INTRODUCTION TO FORMAL PROOF

A formal proof or derivation is a finite sequence of sentences called well-formed formulas in the case of a formal language each of which is an axiom or follows from the preceding sentences in the sequence by a rule of inference. But in deductive proofs, the truth of a statement is shown by a detailed sequence of steps and reasons.

Some computer scientists take the extreme view that a formal proof of the correctness of a program should go hand-in-hand with the writing of the program itself. We doubt that doing so is productive. Some also say that proof has no place in the discipline of programming.
T. The slogan "if you are not sure your program is correct, run it and see" is commonly offered by them.

Testing programs is surely essential. However, testing goes only so far, since you cannot try your program on every input.

To make your iteration or recursion correct, you need to set up an inductive hypothesis, and it is helpful to reason, formally or informally, that the hypothesis is consistent with the iteration or recursion.

This process of understanding the workings of a correct program is essentially the same as the process of proving theorems by induction.
(T) Automata theory covers methodologies of formal proof. It can be of either :

Inductive kind

Recursive proofs of a parameterized statement that use the statement itself with lower values of the parameter.

$>$ Deductive kind

A sequence of justified steps.

1.2.1 Deductive Proofs

A deductive proof consists of a sequence of statements whose truth leads us from some initial statement, called the hypothesis or the given statement(s), to a conclusion statement.

Im* Each step in the proof must follow, by some accepted logical principle, from either the given facts, or some of the previous statements in the deductive proof, or a combination of these.

Tum The hypothesis may be true or false, typically depending on values of its parameters. Often, the hypothesis consists of several independent statements connected by a logical AND.

In The theorem that is proved when we go for a hypothesis H to a conclusion C is the statement "if H then C". We say that C is deduced from H.

N| An example theorem of the form "if H then C " will illustrate these points.

\section*{| Theorem | 1 |
| :--- | :--- |}

If $x \geq 4$, then $2^{x} \geq x^{2}$.

Proof

The hypothesis H is " $\mathrm{x} \geq 4$ ". This hypothesis has a parameter, x and thus is neither true nor false. Rather, its truth depends on the value of x .

$$
H \text { is true for } x=6 \text { and false for } x=2 .
$$

|n* The conclusion C is " $2^{\mathrm{x}} \geq \mathrm{x}^{2}$ ". This statement also uses parameter x and is true for certain values of x and not others.

Example:

C is false for $\mathrm{x}=3$, since $2^{3}=8$, which is not as large as $3^{2}=9$. On the other hand, C is true for $x=4$, since $2^{4}=4^{2}=16$. For $x=5$, the statement is also true, since $2^{5}=3^{2}$ is at least as large as $5^{2}=25$.

Perhaps you can see the intuitive argument that tells us the conclusion $2^{x}=x^{2}$ will be true whenever $x \geq 4$. We already saw that it is true for $x=4$. As x grows larger than 4 , the left side, 2^{x} doubles each time x increases by 1 .

However, the right side, x^{2}, grows by the ratio $(\mathrm{x}+1 / \mathrm{x})^{2}$.
If $x \geq 4$, then $(x+1) / x$ cannot be greater than 1.25 , and therefore $(x+1 / x)^{2}=$ $(1.25) 2=1.5625$.

Since $1.5625<2$, each time x increases above 4 the left side 2^{x} grows more than the right side x^{2}.

* Thus, as long as we start from a value like $x=4$ the inequality $2^{x} \geq x^{2}$ is already satisfied.

Theorem

If x is the sum of the squares of four positive integers, then $2^{x} \geq \mathrm{x}^{2}$.

Proof

In deductive proof, we go from a hypothesis H to a conclusion C , i.e., if H then C .

Step 1:

x is the sum of the squares of four integers. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be four integers.

$$
\mathrm{x}=\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2+\mathrm{d} 2
$$

Step 2:

The integers being squared are at least 1 .

$$
\mathrm{a} \geq 1 ; \mathrm{b} \geq 1 ; \mathrm{c} \geq 1 ; \mathrm{d} \geq 1
$$

Step 3:
Since the integers is at least 1 , then its squares is also at least 1 .

$$
\mathrm{a}^{2} \geq 1 ; \mathrm{b}^{2} \geq 1 ; \mathrm{c}^{2} \geq 1 ; \mathrm{d}^{2} \geq 1
$$

Step 4:
From Step 1 and Step 3, we can inter that x is sum of four squares and each squares is at least $1 . x$ is at least $1+1+1+1 x \geq 4$.

Step 5:

Step 4 is the hypothesis of the previous problem ($2^{x} \geq x^{2}$ if $x \geq 4$). We can conclude that,

$$
2^{x} \geq x^{2} \text { (or) } a^{2}+b^{2}+c^{2}+d^{2}
$$

1.2.2 Reduction to Definitions

If the hypothesis does not use familiar terms like integer, multiplication, addition etc., then we can convert all terms in the hypothesis to their definitions.

Theorem
 3

A set S is finite if there exists an integer n such that S has exactly n elements. $|S|=n$. Where,
n - Number of elements in the set S .
S and T - Both subsets of some infinite set U .
T - Complement of S (with respect to U) if $\mathrm{S} \mathrm{U} \mathrm{T}=\mathrm{U}$ and $\mathrm{S} \cap \mathrm{T}=\Phi$
T-Infinite.

Proof

We can use proof by contradiction. It is a technique where we assume that the conclusion is false. Then use that assumption together with hypothesis, prove the opposite of one of the given statements of the hypothesis. So the only possibility that remains is that the conclusion is true whenever the hypothesis is true.

Here T is finite (because we assume the conclusion is false), but T is infinite .

Given

Let us assume T is finite, along with the statement of the hypothesis, S is finite. i.e., $|\mathrm{S}|=\mathrm{n}$ for some integer $\mathrm{n} .|\mathrm{T}|=\mathrm{m}$ for some integer m .

Now given statement tells us that $\mathrm{S} U \mathrm{~T}=|\mathrm{S}|+|\mathrm{T}|=\mathrm{n}+\mathrm{m}, \mathrm{n}+\mathrm{m}$ is a integer it follows U is finite. But it contradicts the given statement U is infinite.

So the conclusion is true whenever the hypothesis is true. Therefore T is infinite.

1.2.3 Other Theorem Forms

1. If - then

The most common forms of if - then statements are if H then C can be rewritten as
i. H implies C
ii. H only if C
iii. C if H
iv. Whenever H holds, C follows.

U1" So the theorem if $x \geq 4,2^{x}=x^{2}$ can be rewritten as
(a) $x \geq 4$, implies $2^{x}=x^{2}$
(b) $\mathrm{x} \geq 4$ only if $2^{\mathrm{x}}=\mathrm{x} 2$
(c) $2 x=x_{2}$ if $x \geq 4$
(d) Whenever $\mathrm{x} \geq 4$ holds, $2^{\mathrm{x}}=\mathrm{x} 2$ follows.
2. If - and - only - if statements

The statements of the form "A if and only if B" or "Aiff B" has two if - then statements, is "if A then B" and "if B then A".

Note:

$\mathrm{L}_{\mathrm{x}} ل^{-}$Floor of real number x , is the greatest integer equal to or less than x .

Theorem

Let x be a real number. Then $L_{x}{ }^{\lrcorner}=\Gamma^{x} \eta$, if and only if x is an integer.

Proof

$$
\begin{align*}
& \left.\mathrm{L}_{x}\right\rfloor \leq x \text { by definition of floor } \tag{1.1}\\
& \Gamma^{x} \geq x \text { by definition of ceiling } \tag{1.2}
\end{align*}
$$

We are given with $\left.L_{x}\right\lrcorner=\Gamma^{x}{ }_{7}$
Substituting (1.1) in (1.2), we get,

$$
\Gamma_{7} \leq x .
$$

Since $\Gamma^{x_{7}} \geq \mathrm{x}$, by arithmetic inequality we get

$$
\Gamma^{x} 7=x .
$$

3. Theorems that appear "Not to be if-then statements.

Theorem 5

$$
\operatorname{Sin} 2 \theta,+\operatorname{Cos} 2 \theta=1 .
$$

It does not have any hypothesis. This theorem can be written in if-then is "if θ, is an angle, then $\sin 2 \theta+\cos 2 \theta=1$ ".

1.3 ADDITIONAL FORMS OF PROOF

The following are the additional forms of proofs.
ㄱ Proofs about sets
\square Proofs by contradiction
\square Proofs by counter example

1.3.1 Proofs About Sets

U14 Sets contain symbols to form character strings.
N
If E and F are two expressions representing sets, the statement $\mathrm{E}=\mathrm{F}$ means that two sets represented are same. i.e., every element in the set represented by E is in the set represented by F and vice versa.

Example:

Union of sets obeys commutative law. Let S and R be sets. Then $R U S=S U R$. If
E is the expression in $R \cup S$ and F is the expression $S U R$, then $E=F$, an element x is in E iff x is in F.

Theorem 6

Distributive law of union over intersection. Let $\mathrm{R}, \mathrm{S}, \mathrm{T}$ be sets. Then prove that

$$
R \cup(S \cap T)=(R \cup S) \cap(R \cup T)
$$

Proof

Aiff B has two parts. That are,

- If part: "if B then A"
- Only if part: if A then B, which is equivalent form "A only if B".

Let E is the expression in $R \cap(S \cup T)$ and F is the expression in $(R \cup S) \cap(R \cup T)$.
1.. If part: if x is in E, x is in F

Statement	Justification
(a) x is in $R \cap(S U T)$	(a) Given
(b) x is in R or x is in $(S \cap T)$	(a) and definition of union.
(c) x is in R or x is in both S and T	(b) and definition of intersection.
(d) x is in $R \cup S$	(c) and definition of union.
(e) x is in $R \cup T$	(c) and definition of union.
(f) x is in $(R \cup S) \cap(R \cup T)$	(d), (c) and definition of intersection.

2. We can also prove it by "only - if" statement.

Statement	Justification
(a) x is in $(R \cup S) \cap(R \cup T)$	Given
(b) x is in $R \cup S$	(a) and definition of intersection.
(c) x is in $R U T$	(a) and definition of intersection.
(d) x is in R or x is in both S and T	(b), (c) and reasoning about unions.
(e) x is in R or x is in $S \cap T$	(d) and definition of intersections.
(f) x is in $R U(S \cap T)$	(e) and definition of union.

Example:

"if $x \geq 4$, then $2 x \geq x 2$ ". Then the contrapositive of this statement is "if not $2 x \geq$ $x 2$, then not $x \geq 4$ ". It is otherwise "not $a \geq b$ " is equal to $a<b$.
not $\mathrm{x} \geq 4$ is $\mathrm{x}<4$
not $2 x \geq x 2$ is $2 x<x 2$.
i.e., "if $2 x<x 2$, then $x<4$ "

1.3.2 Proof by Contradiction

1. It is derived from Latin meaning reduction to the "absurd".
2. In proof by contradiction, we assume that the theorem is false and then show that this assumption leads to an obviously false consequence, called a contradiction.
3. Another way to prove a statement of the form "if H then C " is to prove the statement "H and not C implies falsehood".

Step 1:

State by assuming both the hypothesis H and the negation of the conclusion C .

Step 2:

Compute the proof by showing that something known to be false follows logically from H and C . This form of proof is called proof by contradiction.

Example:

Jack Sees Jill, who has just come in from outdoors. On observing that she is completely dry, he knows that it is not raining.

Proof

His proof $=$ that it is not raining
Assume the negation of conclusion, ie, it is raining, then Jill would be wet. But she is not wet, so it must not be raining.

Theorem 7

Let S be a finite subset of some infinite set U. Let T be complement of S with respect to U . Then T is infinite.

Proof

$$
\mathrm{H}=\mathrm{S} \text { is finite set of } \mathrm{U}
$$

U is an infinite set
T is the complement of S with respect to U .

Conclusion C = "T is infinite"

* We proceed to prove the theorem by proof by contradiction.
* We assume not C is true. T is finite.

From the assumption S is finite, if T is also finite, then $\mathrm{U}=\mathrm{S} \mathrm{U} \mathrm{T}$ is also finite. But hypothesis says U is infinite. Therefore the logical statement is false.

1.3.3 Proofs by Counter Examples

It is an exception to a proposition general rule. i.e. Specific instance of the falsity of a universal quantification.

Example:

The statement "all students are lazy".

Proof

Counter example, a hardworking diligent student counters the statement.

Theorem 8

All primes are odd.

Proof

The integer 2 is prime, but 2 is even.

Theorem 9

There is no pair of integers a and b such that $a \bmod b=b \bmod a$.

Proof

Let us assume $\mathrm{a}<\mathrm{b}$.
$\mathrm{a} \bmod \mathrm{b}=\mathrm{a} \quad \mathrm{a}=\mathrm{qb}+\mathrm{r}$
$\mathrm{a}=0 \times \mathrm{b}+\mathrm{a} . \quad \mathrm{q}=$ quotient $\quad \mathrm{r}=$ remainder.
But $\mathrm{b} \bmod \mathrm{a}<\mathrm{a}$, is between $0-1$. Thus when $\mathrm{a}<\mathrm{b}, \mathrm{b} \bmod \mathrm{a}<\mathrm{a} \bmod \mathrm{b}$, so $\mathrm{a} \bmod$ $\mathrm{b}=\mathrm{b} \bmod \mathrm{a}$ is impossible. It is same argument for $\mathrm{a}>\mathrm{b}$ also.

Consider $\mathrm{a}=\mathrm{b} . \mathrm{a} \bmod \mathrm{b}=\mathrm{b} \bmod \mathrm{a}=0(\mathrm{x} \bmod \mathrm{x}=0)$ by counter example, let us take $\mathrm{a}=\mathrm{b}=2, \mathrm{a} \bmod \mathrm{b}=\mathrm{b} \bmod \mathrm{a}=0$ i.e., $2 \bmod 2=2 \bmod 2=0$.

1.4 INDUCTIVE PROOFS

1.4.1 Induction on Integers

Proof by Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose, let $\mathrm{P}(\mathrm{n})$ be a statement about a non-negative integer n. The principle of mathematical induction is that $\mathrm{P}(\mathrm{n})$ follows from:
$\square \quad \mathrm{P}(1)$
ㅁ $\mathrm{P}(\mathrm{n}-1)$ implies $\mathrm{P}(\mathrm{n})$ for all $\mathrm{n} \geq 1$.
Condition (a) is called basis and the condition (b) is called inductive step, because it connects Pn with $\mathrm{Pn}+1$.

1.4.2 Structural Inductions

In* In automata theory, there are several recursively defined structures about which we need to prove statements.

Int The examples are trees and expressions.
In Like inductions, all recursive definitions have a basis case, where one or more elementary structures are defined, and an inductive step, where more complex structures are defined in terms of previously defined structures.

In* Structural induction is a proof method that is used in mathematical logic, computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction.

Int A recursive definition or inductive definition is one that defines something in terms of itself (that is, recursively), in a useful way.

Example:

Let us take expressions using the arithmetic operators + and *, with both numbers and variables allowed as operands.

Basis

Any number or letter (i.e., a variable) is an expression.

Induction

If E and F are expressions, then so are $\mathrm{E}+\mathrm{F}, \mathrm{E} * \mathrm{~F}$, and (E).

Example:

Both 2 and x are expressions by the basis. The inductive step tells us $\mathrm{x}+2,(\mathrm{x}+2)$ and $2^{*}(x+2)$ are all expressions. Notice how each of these expressions depends on the previous ones being expressions.

When we have a recursive definition, we can prove theorems about it using the following proof form, which is called structural induction.

Let $\mathrm{S}(\mathrm{X})$ be a statement about the structures X that are defined by some particular recursive definition.
"II* As a basis, prove $\mathrm{S}(\mathrm{X})$ for the basis structure(s) X .
(1) For the inductive step, take a. structure X that the recursive definition says is formed from $\mathrm{Y} 1, \mathrm{Y} 2, \ldots, \mathrm{Yk}$. Assume that the statements $\mathrm{S}(\mathrm{Y} 1), \mathrm{S}(\mathrm{Y} 2), \ldots . ., \mathrm{S}(\mathrm{Yk})$, and use these to prove $\mathrm{S}(\mathrm{X})$.

Our conclusion is that $\mathrm{S}(\mathrm{X})$ is true for all X . The following Theorem gives the facts and proof for trees and expressions.

Theorem
 10

Every tree has one more node than it has edges.

Proof

The formal statement $\mathrm{S}(\mathrm{T})$ we need to prove by structural induction is: "if T is a tree, and T has n nodes and e edges, then $\mathrm{n}=\mathrm{e}+1$ ".

Basis

The basis case is when T is a single node. Then $\mathrm{n}=1$ and $\mathrm{e}=0$, so the relationship $\mathrm{n}=\mathrm{e}+1$ holds.

Induction

Let T be a tree built by the inductive step of the definition, from root node N and k smaller trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}}$. We may assume that the statements $\mathrm{S}(\mathrm{Ti})$ hold for $\mathrm{i}=1,2, \ldots$, k. That is, let T_{i} have n_{i} nodes and e_{i} edges; then $n_{i}=e_{i}+1$.

The nodes of T are node N and all the nodes of the T_{i} 's. There are thus $1+\mathrm{n}_{\mathrm{t}}+\mathrm{n}_{2}$ $+\ldots .+\mathrm{n}_{\mathrm{k}}$ nodes in T . The edges of T are the k edges we added explicitly in the inductive definition step, plus the edges of the T_{i} 's.

Hence, T has $k+e_{1}+e_{2}+\ldots .+e_{k}$ edges
If we substitute $e_{i}+1$ for ni in the count of the number of nodes of T we find that Thas $1+\left[e_{1}+1\right]+\left[e_{2}+1\right]+\ldots .+\left[e_{k}+1\right]$ nodes

Since there are k terms in (1.3), we can regroup (1.4) as

$$
\begin{equation*}
\mathrm{k}+1+\mathrm{e}_{1}+\mathrm{e}_{2}+\ldots .+\mathrm{ek} \tag{1.5}
\end{equation*}
$$

This expression is exactly 1 more than the expression (1.3) that was given for the number of edges of T . Thus, T has one more node than it has edges.

Theorem 11

Every expression has an equal number of left and right parentheses.

Proof

Formally, we prove the statement $\mathrm{S}(\mathrm{G})$ about any expression G that is defined by the recursion example described earlier the numbers of left and right parentheses in G are the same.

Basis

If G is defined by the basis, then G is a number or variable. These expressions have 0 left parentheses and 0 right parentheses, so the numbers are equal.

Induction

There are three rules whereby expression G may have been constructed according to the inductive step in the definition:

$$
\begin{array}{ll}
\square & \mathrm{G}=\mathrm{E}+\mathrm{F} \\
\square & \mathrm{G}=\mathrm{E} * \mathrm{~F} \\
\square & \mathrm{G}=(\mathrm{E})
\end{array}
$$

We may assume that $S(E)$ and $S(F)$ are true; that is, E has the same number of left and right parentheses, say n of each, and F likewise has the same number of left and right parentheses, say m of each. Then we can compute the numbers of left and right parentheses in G for each of the three cases, as follows:

1. If $G=E+F$

Then G has $\mathrm{n}+\mathrm{m}$ left parentheses and $\mathrm{n}+\mathrm{m}$ right parentheses; n of each come from E and m of each come from F.

2. If $\mathbf{G}=\mathbf{E}$ * \mathbf{F}

The count of parentheses for G is again $n+m$ of each, for the same reason as in case (i).

3. If $G=(E)$

Then there are $\mathrm{n}+1$ left parentheses in G -- one left parenthesis is explicitly shown, and the other n are present in E . Likewise, there are $\mathrm{n}+1$ right parentheses in G ; one is explicit and the other n are in E .

In each of the three cases, we see that the numbers of left and right parentheses in G are the same. This observation completes the inductive step and completes the proof.

1.4.3 Mutual Inductions

nut Sometimes, we cannot prove a single statement by induction, but rather need to prove a group of statements $\mathrm{S} 1(\mathrm{n}), \mathrm{S} 2(\mathrm{n}), \ldots ., \mathrm{Sk}(\mathrm{n})$ together by induction on n .
nu* Automata theory provides many such situations. In the following example we sample the common situation where we need to explain what an automaton does by proving a group of statements, one for each state.
ntw These statements tell under what sequences of inputs the automaton gets into each of the states.

Strictly speaking, proving a group of statements is no different from proving the conjunction (logical AND) of all the statements. For instance, the group of statements $\mathrm{S}_{1}(\mathrm{n}), \mathrm{S}_{2}(\mathrm{n}), \ldots, \mathrm{S}_{\mathrm{k}}(\mathrm{n})$ could be replaced by the single statement

$$
\mathrm{S}_{1}(\mathrm{n}) \operatorname{AND~}_{2}(\mathrm{n}) \text { AND } \ldots . \operatorname{AND~}_{\mathrm{S}_{\mathrm{k}}}(\mathrm{n})
$$

However, when there are really several independent statements to prove, it is generally less confusing to keep the statements separate and to prove them all in their own parts of the basis and inductive steps. This sort of proof is called mutual induction. We will illustrate the necessary steps for a mutual recursion.

Example:

Let us take the on/off switch, which can be represented as an automaton. The automaton itself is reproduced as given below.

Since on pushing the button switches the state between on and off, and the switch starts out in the off state, we expect that the following statements will together explain the operation

Push of the switch

1. S1 (n)

The automaton is in state off after n pushes if and only if n is even.

2. S 2 (n)

The automaton is in state on after n pushes if and only if n is odd.
We might suppose that S 1 implies S2 and vice-versa, since we know that a number n cannot be both even and odd. However, what is not always true about an automaton is that it is in one and only one state. It happens that the automaton is always in exactly one state, but that fact must be proved as part of the mutual induction.

We give the basis and inductive parts of the proofs of statements $\mathrm{S} 1(\mathrm{n})$ and $\mathrm{S} 2(\mathrm{n})$ below. The proofs depend on several facts about odd and even integers:

* if we add or subtract 1 from an even integer.
* We get an odd integer
* If we add or subtract 1 from an odd integer we get an even integer.

Basis

For the basis, we choose $\mathrm{n}=0$. Since there are two statements, each of which must be proved in both directions (because S1 and S 2 are each "if-and-only-if" statements), there are actually four cases to the basis, and four cases to the induction as well.

i. [S1; If]

Since 0 is in fact even, we must show that after 0 pushes, the automaton is in state off. Since that is the start state, the automaton is indeed in state off after 0 pushes.

ii. [S1; Only-if]

The automaton is in state off after 0 pushes, so we must show that 0 is even. But 0 is even by definition of "even", so there is nothing more to prove.

iii. [S2; If]

The hypothesis of the "if" part of S2 is that 0 is odd. Since this hypothesis H is false, any statement of the form "if H then C" is true, which has discussed earlier. Thus, this part of the basis also holds.

iv. [S2; Only-if]

The hypothesis, that the automaton is in state on after 0 pushes, is also false, since the only way to get to state on is by following an arc labeled Push, which requires that the button be pushed at least once. Since the hypothesis is false, we can again conclude that the if-then statement is true.

1.5 FINITE AUTOMATA

Finite state automaton is an abstract model of a computer. It is represented in the figure. The components of the automaton are: Input Tape, Finite Control and Tape Head.

Fig. 1.1 The Working Model of a Finite Automata

Operation

String Processing (scans the string from left to right, one symbol at a time and moves from state to state) using its transition function.

Output: Yes/No (Accepted/Rejected)

1.5.1 Mathematical Representation

A Finite Automaton(FA) is represented by a 5 -tuple machine.
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

* Q is a finite non-empty set of states
* Σ is a finite non-empty set of symbols
* (an alphabet)
* $\delta: \mathrm{QX} \Sigma \rightarrow \mathrm{Q}$ is the transition function
* $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
* $\mathrm{F} \in \mathrm{Q}$ is a set of final states

1. Transition function

It is a function which guides the automata in string processing. It takes two inputs (a state, a symbol) and gives one output (state). Transition function can be represented in three ways. They are,

i. Diagrammatic representation

Nodes and edges are used. Nodes represent the states and edges represent the moves. The labels of the edges represent the processing symbols. There are two types of nodes: a) single circled node indicating non-final (non-accepting) state; b) double circled node indicating final state.

ii. Tabular representation

It consists of Rows and columns. Rows indicate state and columns indicate symbol. The entries of the table indicate the output state. The arrow and star symbols are used to point out the starting and final states respectively.

iii. Functional representation

The name of the function is δ. The input parameters are q, a.

* Where q is a state and a is a symbol. The function returns a state p .

Example:

The automata of the language $\mathrm{L}=\{w \mid w$ contains ab$\}$

2. Diagrammatic Representation - Transition diagram

Fig. 1.2 The transition diagram of FA for the language $L=\{w \mid w$ contains $a b\}$ $\delta:$

$$
\begin{aligned}
\mathrm{Q} & =\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \\
\Sigma & =\{\mathrm{a}, \mathrm{~b}\} \\
\mathrm{q}_{0} & =\mathrm{q}_{0} \\
\mathrm{~F} & =\mathrm{q}_{2}
\end{aligned}
$$

Table 1.2 The transition table of FA for the language $L=\{w \mid w$ contains $a b\}$

$\boldsymbol{\Delta}$	\mathbf{a}	\mathbf{b}
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{0}
q_{1}	q_{1}	q_{2}
$* \mathrm{q}$	q	q

3. Functional Representation - Transition functions

$\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\mathrm{q}_{1}$	$\delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\mathrm{q}_{0}$
$\delta\left(\mathrm{q}_{1}, \mathrm{a}\right)=\mathrm{q}_{1}$	$\delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\mathrm{q}_{2}$
$\delta\left(\mathrm{q}_{2}, \mathrm{a}\right)=\mathrm{q}_{2}$	$\delta\left(\mathrm{q}_{2}, \mathrm{~b}\right)=\mathrm{q}_{2}$

1.5.2 Types of Finite Automata

1. Deterministic

|um If there is exactly one output state in every transition function of an automata, then the automata is called Deterministic finite Automata (DFA)

Int A Deterministic finite automaton (DFA) is represented by a 5 -tuple machine
i.e. $M=\left(Q, \Sigma, \delta, \mathrm{q}_{0}, F\right)$

* Q is a finite non-empty set of states
* Σ is a finite non-empty set of symbols
* (an alphabet)
* $\delta: \mathrm{QX} \Sigma \rightarrow \mathrm{Q}$ is the transition function
* $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
* $F \in Q$ is a set of final states

2. Non-Deterministic

Int If there is zero or more output states in any of the transition functions of an automata then that automata is called Non-Deterministic Finite Automata (NFA).

NFA is the preliminary form of a machine, which can be easily constructed using the basic constraints of a language.
nut Then it can be converted into DFA using subset construction method and finally minimization methods are used to reduce the size of the machine.

IU* A Non-Deterministic finite automaton (NFA) is represented by 5-tuples.
i.e. $M=(Q, \Sigma, \delta, q 0, F)$

* Q is a finite non-empty set of states
* Σ is a finite non-empty set of symbols (an alphabet)
* $\delta: \mathrm{QX} \Sigma \rightarrow 2^{\mathrm{Q}}$ (subset of Q) is the transition function
* $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
* $\mathrm{F} \in \mathrm{Q}$ is a set of final states

3. ε-NFA

Int If there is a transition for ε symbol in NFA, then the automata is called ε-NFA. An ε-Non-Deterministic finite automaton (NFA) is represented by 5 -tuples.
i.e. $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

* Q is a finite non-empty set of states
* Σ is a finite non-empty set of symbols
(an alphabet)
* $\delta: \mathrm{QX}(\Sigma\{\varepsilon\}) \rightarrow 2^{\mathrm{Q}}$ (subset of Q) is the transition function
* $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
* $\mathrm{F} \in \mathrm{Q}$ is a set of final states

1.5.3 Language of an Automata

1. $\mathrm{L}(\mathrm{M})$

III* The language of machine M
Int Set of all strings machine M accepts
2. L(DFA)

$$
\left\{w \mid \hat{\delta}\left(q_{0}, w\right)=p \in F\right\}
$$

Where,
$\hat{\delta}\left(q_{0}, w\right)$ is an extended transition function that takes a state q_{0} and a string w and returns a state p which is in $\mathrm{F}=$ Regular language.

3. L(NFA)

$\left\{w \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \varphi\right)$ - Regular language.

1.6 DETERMINISTIC FINITE AUTOMATA(DFA)

Deterministic finite Automata is a definite model of computation where there is single output for every symbol from every state. The transition table of a DFA will be complete and unambiguous. There would not be any empty entry and multiple entries.

1.6.1 String Processing

nut An automata processes the given string and gives Yes/No as the output.
During string processing, the symbols in the given string are processed one by one, from left to right according to the moves defined by the transition functions of the automata.
|"II* A set of transition function defines an automata.
nut During string processing, automata selects the transition function whose input matches with the current state (state and symbol) and performs a move to output state.

1.6.2 String Processing in DFA

Problem

Let $M=\left(\mathbf{Q}, \Sigma, \boldsymbol{\delta}, \mathbf{q}_{0}, \mathbf{F}\right)$ where $\mathbf{Q}=\left\{\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}\right\}, \boldsymbol{\Sigma},=\{\mathbf{a}, \mathbf{b}\} \mathbf{F}=\left\{\mathbf{q}_{2}\right\}$

$\boldsymbol{\delta}$	\mathbf{a}	\mathbf{b}
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{0}
q_{1}	q_{1}	q_{2}
$* \mathrm{q}_{2}$	q_{2}	q_{2}

nilt Show that the string $w=$ bbabb is accepted by the given FA, M.

$$
\begin{aligned}
\hat{\delta}\left(q_{0}, \underline{b} b a b b\right) & =\hat{\delta}\left(q_{0}, \underline{b} a b b\right) \\
& =\hat{\delta}\left(q_{0}, \underline{a b b}\right) \\
& =\hat{\delta}\left(q_{1}, \underline{b} b\right) \\
& =\delta\left(q_{2}, \underline{b}\right) \\
& =q_{2} \in F
\end{aligned}
$$

nill There is a path from starting state to final state.

$q_{0} |$| | b | q_{0} | b | q_{0} | a | a_{1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | b | q_{2} | b | $q_{2} \in F$ | |

Therefore the given string is accepted.

Consider the following DFA. Compute $\hat{\delta}\left(q_{0}, 1101\right)$

$$
\hat{\delta}\left(q_{0}, 1101\right)=\left(q_{2}, 101\right)=\left(q_{1}, 01\right)=\left(q_{0}, 1\right)=q_{2} \in F
$$

So the string is not accepted.

1.7 NON-DETERMINISTIC FINITE AUTOMATA(NFA)

NFA is the simple and initial model of computation .Constructing Automata to recognize a Language includes the following steps:
\square Design an NFA
ㄱ Convert NFA to DFA
\square Minimize the DFA

1.7 . 1 Designing NFA for a language

It is very easy to design NFA for a language by considering the common (compulsory) part of the strings in a given language. There are two types of NFAs.
\square NFA without ε-Transitions
口 ε-NFA
Int Designing NFA without ε-Transitions for a language

Problem
 1.3

Design an NFA for the following finite languages over the alphabet $\{\mathbf{a}, \mathrm{b}\}$
a. $\mathrm{L}=\{\varepsilon\}$
b. $\mathrm{L}=\{\mathrm{a}\}$
c. $\mathrm{L}=\{\mathrm{b}\}$
d. $\mathrm{L}=\{\mathrm{a}, \mathrm{b}\}$
e. $\mathrm{L}=\{\mathrm{aa}, \mathrm{ab}\}$
f. $L=\{a b a, a b b, a a a\}$

Solutions:

a. $\mathbf{L}=\{\varepsilon\}$

NFA $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{0}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

b. $L=\{a\}$

NFA $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{1}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

c. $\mathbf{L}=\{\mathbf{b}\}$

NFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{q_{1}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$

δ : Transition diagram

d. $\mathrm{L}=\{\mathbf{a}, \mathbf{b}\}$

MFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

e. $\mathrm{L}=\{\mathbf{a a}, \mathbf{a b}\}$

NRA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{2}, \mathrm{q}_{3}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

f. $L=\{a b a, a b b, a a a\}$

MFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{\mathrm{q}_{3}, \mathrm{q}_{5}, \mathrm{q}_{6}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}, \mathrm{q}_{5}, \mathrm{q}_{6}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$

δ : Transition diagram

Problem
1.4

Design an NFA without ε-Transitions for the following infinite languages over the alphabet $\{\mathbf{a}, \mathrm{b}\}$.
a. The set of all strings ending in aa $(\mathrm{L}=\{w \mid w$ ends in aa $\})$
b. The set of all strings with the substring $\operatorname{aba}(\mathrm{L}=\{w \mid w$ has substring aba$\})$.
c. The set of all strings beginning with $\mathrm{bb}(\mathrm{L}=\{w \mid w$ begins with bb$)\})$.
d. The set of all strings with even number of a's $(\mathrm{L}=\{w \mid$ whas even number of a's $\}$).
e. The set of all strings with even number of $\mathrm{b} ’ \mathrm{~s}(\mathrm{~L}=\{w \mid$ whas even number of b's \}).
f. The set of all strings with odd number of a's $(\mathrm{L}=\{w \mid$ whas odd number of a's $\}$).
g. The set of all strings with odd number of b 's $(\mathrm{L}=\{w \mid w$ has odd number of b's $\}$).
h. The set of all strings whose third symbol from the right end is $\mathrm{b}(\mathrm{L}=\{w \mid w$'s third symbol from the right end is $b\}$).
i. The set of all strings whose third symbol from the left end is $\mathbf{b}(\mathrm{L}=\{w \mid w$'s third symbol from the left end is $b\}$).

Solutions:

a. The set of all strings ending in aa.

NFA $M=\left(Q, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{2}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

b. The set of all strings with the substring aba.

NFA $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{3}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$

δ : Transition diagram

c. The set of all strings beginning with bb.

NFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{q_{2}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$

$$
\Sigma=\{\mathrm{a}, \mathrm{~b}\}
$$

δ : Transition diagram

d. The set of all strings with even number of a's.

NFA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{0}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

e. The set of all strings with even number of b's.

NFA $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{0}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

f. The set of all strings with odd number of a's.

$$
\begin{aligned}
& \text { NFA } \mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{1}\right\}\right) \\
& \text { Where } \mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

δ : Transition diagram

g. The set of all strings with odd number of b's.

NFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{q_{1}\right\}\right)$
Where $Q=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

h. The set of all strings whose third symbol from the right end is b.
NFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{q_{3}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1} \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

i. The set of all strings whose third symbol from the left end is b.

NFA $M=\left(Q, \Sigma, \delta, q_{0},\left\{q_{3}\right\}\right)$
Where $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$

$$
\Sigma=\{\mathrm{a}, \mathrm{~b}\}
$$

δ : Transition diagram

1. Automata for $\overline{\mathbf{L}}$

If the automata is given for a language $\overline{\bar{L}}$, then the automata for can be easily constructed by changing all the non-final states to final states and final states to non-final states.

Given:

The FA of $L=\{w \mid w$ consists of 10 as substring $\}$
$\mathrm{M}(\mathrm{L})=(\mathrm{Q}, \Sigma, \delta, \mathrm{A},\{\mathrm{C}\})$
Where $\mathrm{Q}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

$\mathrm{M}(\bar{L})=(\mathrm{Q}, \Sigma, \delta, \mathrm{A},\{\mathrm{A}, \mathrm{B}\})$
Where $\mathrm{Q}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ : Transition diagram

2. Automata for $L_{1} \cap L_{2}$

The intersection of two regular languages can be constructed by taking Cartesian product of states.

Let, $\quad M\left(L_{1}\right)=\left(Q_{1}, \Sigma, \delta_{1}, \mathrm{q}_{1}, \mathrm{~F}_{1}\right)$

$$
\mathrm{M}\left(\mathrm{~L}_{2}\right)=\left(\mathrm{Q}_{2}, \Sigma, \delta_{2}, \mathrm{q}_{2}, \mathrm{~F}_{2}\right)
$$

Then $\mathrm{M}\left(L_{1} \cap L_{2}\right)=\left(\mathrm{Q}_{2} \mathrm{XQ}_{2}, \Sigma, \delta,\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right), \mathrm{F}_{2} \mathrm{X} \mathrm{F}_{2}\right)$

Problem	1.5

Let $\mathrm{L} 1=$ The set of all strings with even number of b 's.
NFA $\mathrm{M}\left(\mathrm{L}_{1}\right)=\left(\mathrm{Q}, \Sigma, \delta_{1}, \mathrm{p},\{\mathrm{p}\}\right)$
Where $\mathrm{Q}=\{\mathrm{p}, \mathrm{q}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
δ_{1} : Transition diagram

\section*{| Problem | 1.6 |
| :--- | :--- |}

Let $L_{2}=$ The set of all strings with odd number of a's.
NFA $M\left(L_{2}\right)=(\mathrm{Q}, \Sigma, \delta 2, \mathrm{r},\{\mathrm{s}\})$
Where $\mathrm{Q}=\{\mathrm{r}, \mathrm{s}\}$

$$
\Sigma=\{a, b\}
$$

δ_{2} : Transition diagram

Then, $\mathrm{M}\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right)=(\{\mathrm{pr}, \mathrm{ps}, \mathrm{qr}, \mathrm{qs}\},\{\mathrm{a}, \mathrm{b}\}, \delta, \mathrm{pr}, \mathrm{ps})$

$$
\begin{aligned}
\delta(p r, a) & =\left(\delta_{1}(p, a), \delta_{2}(r, a)\right) \\
& =(p, s) \\
\delta(p r, b) & =\left(\delta_{1}(p, b), \delta_{2}(r, b)\right) \\
& =(q, r)
\end{aligned}
$$

1.7.2 String Processing in NFA

Problem 1.7

For the NFA M given in the following table, test whether the strings 01122, 1221 are accepted by \mathbf{M}.

$\boldsymbol{\delta}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\rightarrow * \mathrm{q} 0$	$\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}$	$\{\mathrm{q} 1, \mathrm{q} 2\}$	$\{\mathrm{q} 2\}$
${ }^{*} 11$	Φ	$\{\mathrm{q} 1, \mathrm{q} 2\}$	$\{\mathrm{q} 2\}$
$* \mathrm{q} 2$	Φ	Φ	$\{\mathrm{q} 2\}$

$$
\text { i. } \begin{aligned}
\delta\left(q_{0}, \underline{0} 1122\right) & =\hat{\delta}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \underline{1122}\right) \\
& =\hat{\delta}\left(\left\{\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \cup \delta\left(q_{2}, 1\right)\right\}, 122\right) \\
& =\hat{\delta}\left(\left\{q_{1}, q_{2}\right\}, \underline{1} 22\right) \\
& =\hat{\delta}\left(\left\{q_{1}, q_{2}\right\}, \underline{2} 2\right) \\
& =\hat{\delta}\left(\left\{q_{2}\right\}, \underline{2}\right) \\
& =q_{2} \in F
\end{aligned}
$$

There is at least one path from the starting state to final state. Therefore the given string is accepted.

$$
\text { ii. } \begin{aligned}
\hat{\delta}\left(q_{0}, \underline{1221}\right) & =\hat{\delta}\left(\left\{q_{1}, q_{2}\right\}, \underline{2} 21\right) \\
& =\hat{\delta}\left(\left\{\delta\left(q_{1}, 2\right) \cup \delta\left(q_{2}, 2\right)\right\}, 21\right) \\
& =\hat{\delta}\left(\left\{q_{2}\right\}, \underline{21}\right) \\
& =\hat{\delta}\left(\left\{q_{2}\right\}, 1\right) \\
& =\phi \notin F
\end{aligned}
$$

There is no even a single path from starting state to final state. Therefore the given string is not accepted.

1.7.3 Equivalence of NFA and DFA (Converting NFA to DFA)

Theorem 12

A Language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof by induction

The "if" part : If L is accepted by some NFA then L is accepted by some DFA. If $\mathrm{D}=\left\{\mathrm{Q}_{\mathrm{D}}, \Sigma, \delta_{\mathrm{D}},\left\{\mathrm{q}_{0}\right\}, \mathrm{F}_{\mathrm{D}}\right\}$ is the DFA constructed from NFA, $\mathrm{N}=\left\{\mathrm{Q}_{\mathrm{N}}, \Sigma, \delta_{\mathrm{N}}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{N}}\right\}$ by the subset construction ,then $\mathrm{L}(\mathrm{D})=\mathrm{L}(\mathrm{N})$.

Proof

To prove by induction on $|\omega| \hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right)=\hat{\delta}_{N}\left(q_{0}, w\right)$
Observe that each of the $\hat{\delta}$ functions returns a set of states from Q_{N}, but $\hat{\delta}_{D}$ interprets this set as one of the states of Q_{D} (which is the power set of Q_{N}), while interprets this set as a subset of Q_{N}.

Basis

Let $|w|=0$; that is, $w=e$. By the basis definitions of $\hat{\delta}$ for DFA's and NFA's, both $\hat{\delta}_{D}\left(\left\{q_{0}\right\}, \varepsilon\right)$ and $\hat{\delta}_{N}\left(q_{0}, \varepsilon\right)$ are $\left\{\mathrm{q}_{0}\right\}$

Induction

Let $|w|=n+1$, and assume the statement for length n . Break w as $w=x a$, where a is the final symbol of w.

By the inductive hypothesis,

$$
\hat{\delta}_{D}\left(\left\{q_{0}\right\}, x\right)=\hat{\delta}_{N}\left(q_{0}, x\right)
$$

Let both these sets of N's states be $\left\{P_{p}, P_{2}, \ldots . . . P_{k}\right\}$.i.e.

$$
\begin{equation*}
\hat{\delta}_{D}\left(\left\{q_{0}\right\}, x\right)=\hat{\delta}_{N}\left(q_{0}, x\right)=\left\{p_{1}, p_{2}, \ldots p_{k}\right\} \tag{1.7}
\end{equation*}
$$

The inductive part of the definition of for the NFA's say that

$$
\begin{equation*}
\hat{\delta}_{N}\left(q_{0}, w\right)=\bigcup_{i=1}^{k} \delta_{N}\left(p_{i}, a\right) \tag{1.8}
\end{equation*}
$$

The subset construction, on the other hand, says that

$$
\begin{equation*}
\delta_{D}\left(\left\{p_{1}, p_{2}, \ldots . p_{k}\right\}, a\right)=\bigcup_{i=1}^{k} \delta_{N}\left(p_{i}, a\right) \tag{1.9}
\end{equation*}
$$

From (1.7) and (1.9), the inductive part of the definition of $\hat{\delta}$ for DFA is written as:

$$
\begin{align*}
\hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right) & =\delta_{D}\left(\hat{\delta}_{D}\left(\left\{q_{0}\right\}, x\right), a\right) \\
& =\delta_{D}\left(\left\{p_{1}, p_{2}, \ldots . p_{k}\right\}, a\right)=\bigcup_{i=1}^{k} \delta_{N}\left(p_{i}, a\right) \tag{1.10}
\end{align*}
$$

Thus, equations (1.8) and (1.10) demonstrate that

$$
\hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right)=\hat{\delta}_{N}\left(q_{0}, w\right)
$$

When we observe that D and N both accept w if and only if $\hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right)$ or $\hat{\delta}_{N}\left(q_{0}, w\right)$ respectively, contain a state in F_{N}.

Hence, $L(D)=L(N)$ is proved.

The "only if" part

If L is accepted by some DFA then L is accepted by some NFA.
We have only to convert a DFA into identical NFA.Put intuitively, if we have the transition diagram for a DFA, we can also Interpret it as the transition diagram of an NFA, which happens to have exactly one choice of transition in any situation.

More formally, let $\mathrm{D}=\left\{\mathrm{Q}, \Sigma, \delta_{\mathrm{D}}, \mathrm{q}_{0}, \mathrm{~F}\right\}$ be a DFA. Define $\mathrm{N}=\left\{\mathrm{Q}, \Sigma, \delta_{\mathrm{N}}, \mathrm{q}_{0}, \mathrm{~F}\right\}$ to be the equivalent NFA.

Where, δ_{N} is defined by the rule:
If $\delta_{D}(q, a)=p$ then $\delta_{N}(q, a)=\{p\}$
It is theneasy toshow by induction on $|w|$, that if $\hat{\delta}_{D}\left(q_{0}, w\right)=p$ then $\hat{\delta}_{N}\left(q_{0}, w\right)=\{p\}$
As a consequence, ω is accepted by D if and only if it is accepted by N ; i.e ., $L(D)=L(N)$.

Subset construction method (with 'Lazy Evaluation') is used to convert NFA to DFA. In this method the transition functions are generated only for reachable states.

Method 1

Steps

1. Include the starting state of NFA (q0) in DFA as starting state of DFA.
2. Find the transition for all the symbols from q0
3. If the output state is new state, include it in DFA and find the transition for all the symbols from that state.
4. Repeat step3 until there are no more new states.
5. The state which includes final state of NFA is the final state of DFA.

Problem	1.8

Construct the DFA for the $L=\{w \mid w$ ends in 01$\}$

Transition Diagram of NFA

Transition Table of NFA

$\boldsymbol{\delta}_{\mathbf{D}}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
$*\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{2}\right\}$

Step 1:

Include q_{0}

Step 2:

Find transitions for 0,1 from q_{0}.

$$
\begin{array}{ll}
\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} & \text { - New state } \\
\delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} & \text { - Existing state }
\end{array}
$$

Step 3:

Find transitions for 0,1 from new state.

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{1}\right\}, 0\right) & =\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right) \\
& =\left\{q_{0}, q_{1}\right\} \cup \varphi=\left\{q_{0}, q_{1}\right\} \quad \text { Existing state } \\
\delta\left(\left\{q_{0}, q_{1}\right\}, 1\right) & =\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \\
& =\left\{q_{0}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\} \quad \text { New state }
\end{aligned}
$$

Step 4:

Repeat step 3 for new state (s).

$$
\begin{aligned}
\delta\left(\left\{q_{0}, q_{2}\right\}, 0\right) & =\delta\left(q_{0}, 0\right) \cup \delta\left(q_{2}, 0\right) & & \\
& =\left\{q_{0}, q_{1}\right\} \cup \varphi=\left\{q_{0}, q_{1}\right\} & & \text { Existing state } \\
\delta\left(\left\{q_{0}, q_{2}\right\}, 1\right) & =\delta\left(q_{0}, 1\right) \cup \delta\left(q_{2}, 1\right) & & \\
& \left.=\left\{q_{0}\right\} \cup \varphi\right\}=\left\{q_{0}\right\} & & \text { New state }
\end{aligned}
$$

Transition Diagram of DFA

Method 2

Input: Transition table of NFA
Output: Transition table of DFA

Steps

1. Draw the transition table for NFA (if not given)
2. Copy the first row of NFA table (transition function of start state) to DFA table.
3. The entries are considered as states of DFA.
4. If there is any new state, find the transition function for that new state using the following formula:

$$
\delta_{D}\left(\left\{q_{1}, \ldots, q_{k}\right\}, a\right)=\bigcup_{i=1}^{k} \delta_{N}\left(q_{i}, a\right)
$$

5. Continue Step 4 until no more new states.

Transition Table of DFA

$\boldsymbol{\delta}_{\mathbf{D}}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$
$*\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$

Procedure

* Copy the first row. $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$ is the new state.
* Union of q_{0} row and q_{1} row. $\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$ is the new state.
* Union of q_{0} row and q_{2} row.
* No more new states. So Stop

Transition Diagram of DFA

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{q}_{0},\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}\right\} \\
& \Sigma=\{0,1\} \\
& \mathrm{q}_{0}=\mathrm{q}_{0} \\
& \mathrm{~F}=\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}
\end{aligned}
$$

Problem
 1.9

Consider the following NFA. Convert it into DFA.

Transition Table of NFA

$\boldsymbol{\delta}_{\mathbf{N}}$	\mathbf{a}	\mathbf{b}
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{3}
$* \mathrm{q}_{3}$	-	q_{2}

Procedure

* Copy the first row.
* Identify the new state.
* Find the transition for new state using Union operation.
* Stop, if no more new states.

Transition Diagram of DFA

Problem
 1.10

Convert to the DFA the following NFA.

$\boldsymbol{\delta}_{\mathbf{N}}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{q}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}\}$
$*_{\mathrm{r}}$	$\{\mathrm{p}, \mathrm{s}\}$	$\{\mathrm{r}\}$
$*_{\mathrm{s}}$	$\{\mathrm{q}, \mathrm{r}\}$	-

Transition Table of DFA

δ_{D}	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{q}\}$
$\{\mathrm{q}\}$	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}\}$

$*\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{r}\}$
$*\{\mathrm{p}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{r}\}$	$\{\mathrm{p}, \mathrm{s}\}$	$\{\mathrm{r}\}$
$*\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{p}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{q}\}$
$*\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{r}\}$

Transition Diagram of DFA

Problem 1.11

Convert the following NFA to a DFA and informally describe the language it accepts.

Transition table of given NFA

$\boldsymbol{\delta}_{\mathrm{N}}$	$\mathbf{0}$	$\boldsymbol{1}$
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{t}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
${ }^{\mathrm{s}} \mathrm{s}$	-	-
${ }^{\mathrm{t}}$	-	-

Transition table of DFA

$\boldsymbol{\delta}_{\mathbf{D}}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{t}\}$
$*\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$	$\{\mathrm{p}, \mathrm{t}\}$
$*\{\mathrm{p}, \mathrm{t}\}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$

Transition Diagram of DFA

Problem	1.12

Convert to a DFA the following NFA.

	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{s}\}$	$\{\mathrm{q}\}$
${ }^{*} \mathrm{q}$	$\{\mathrm{r}\}$	$\{\mathrm{q}, \mathrm{r}\}$
r	$\{\mathrm{s}\}$	$\{\mathrm{p}\}$
${ }^{*} \mathrm{~s}$	-	$\{\mathrm{p}\}$

Transition Diagram of DFA

Language of DFA

THE The language of a DFA is defined by,

$$
L(D F A)=\left\{w \mid \hat{\delta}\left(q_{0}, w\right) \text { is in } F\right\}
$$

In And the language of a NFA is defined by,

$$
L(N F A)=\left\{w \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \varphi\right\}
$$

* Where q_{0} is the start state
* F is the set of final states and
* w is a string.
* L(DFA) and L(NFA) are called Regular Languages.

1.8 FINITE AUTOMATA WITH EPSILON TRANSITIONS

Finite Automata with Epsilon transitions is also called as ε-NFA. It contains epsilon edges. In transition table a column is allocated for epsilon and it gives the output for epsilon input.

A Non-Deterministic finite automaton with ε - Transitions (NFA) is represented by 5 -tuples.
i.e. $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

* Q is a finite non-empty set of states.
* Σ is a finite non-empty set of symbols (an alphabet)
* $\delta: \operatorname{QX} \Sigma \cup\{\varepsilon\} \rightarrow 2^{\mathrm{Q}}$ is the transition function
* $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
* $F \in Q$ is a set of final states

Transition Table of ε-NFA

$\boldsymbol{\delta}_{\mathbf{N}}$	$\boldsymbol{\varepsilon}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow \mathrm{p}$	Φ	$\{\mathrm{p}\}$	$\{q\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{q\}$	$\{\mathrm{r}\}$	Φ
$* \mathrm{r}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ	$\{\mathrm{p}\}$

ع-Closure

Epsilon closure of a state is the set of all states that are reachable by following the transition function from the given state through ε edge.

Problem	1.13

Consider the ε-NFA. Compute ε-Closure for each state.

$\boldsymbol{\delta}_{\mathrm{N}}$	$\boldsymbol{\varepsilon}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\rightarrow \mathrm{q}_{0}$	q_{1}	q 0	Φ	Φ
q_{1}	q_{2}	Φ	q_{1}	Φ
${ }^{*} \mathrm{q}_{2}$	Φ	Φ	Φ	q_{2}

\square - \quad-Closure $\left(\mathrm{q}_{0}\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\square \quad \varepsilon$-Closure $\left(\mathrm{q}_{1}\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$\square \quad \mathrm{\varepsilon}$-Closure $\left(\mathrm{q}_{2}\right)=\left\{\mathrm{q}_{2}\right\}$

1.8.1 Designing an ε-NFA or NFA with ε-Transitions

Problem 1.14

Design an ε-NFA for the language which consists of strings that has 1 's followed by 2 's followed by 3 's.

$$
\begin{aligned}
& \mathrm{Q}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\} \\
& \Sigma=\{1,2,3\}
\end{aligned}
$$

Problem 1.15

Design an ε-NFA for the language $\mathbf{b}+$.

$$
\begin{aligned}
& \mathrm{Q}=\{\mathrm{p}, \mathrm{q}\} \\
& \Sigma=\{\mathrm{b}\}
\end{aligned}
$$

Problem 1.16

Design an ε-NFA for the language which consists of strings with all a's followed by all b's.

$$
\begin{aligned}
& \mathrm{Q}=\{\mathrm{q}, \mathrm{r}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

1.8.2 String Processing in ε-NFA

Problem	1.17

For the ε-NFA M given in the following table, test whether the strings aabccand abba are accepted by M.

$\boldsymbol{\delta}$	$\boldsymbol{\varepsilon}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow \mathrm{p}$	$\{\mathrm{q}\}$	$\{\mathrm{p}\}$	Φ	Φ
q	$\{\mathrm{r}\}$	Φ	$\{\mathrm{q}\}$	Φ
$* \mathrm{r}$	Φ	Φ	Φ	$\{\mathrm{r}\}$

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε arrows] for all states .

\square	ε-Closure $(\mathrm{p})=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	
\square		$[\hat{\delta}(p, \varepsilon)\rceil$
\square	ε-Closure $(\mathrm{q})=\{\mathrm{q}, \mathrm{r}\}$	
\square	ε-Closure $(\mathrm{r})=\{\mathrm{r}\}$	$[\hat{\delta}(q, \varepsilon)]$
		$[\hat{\delta}(r, \varepsilon)]$

Step2:

Start with ε-closure $(p)=\{p, q, r\}$
Where, p is the starting state of given ε-NFA.

1. $(p)=\{p, q, r\}$

$$
\begin{aligned}
\hat{\delta}(\{p, q, r\}, \underline{a} a b c c) & \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(p, a) \cup \delta(q, a) \cup \delta(r, a)), \underline{a b c c}) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(p), a b c c) \\
& =\hat{\delta}(\{p, q, r\}, \underline{a b c c}) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(p, a) \cup \delta(q, a) \cup \delta(r, a)), b c c) \\
& =\hat{\delta}(\{p, q, r\}, \underline{b c c}) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(p, b) \cup \delta(q, b) \cup \delta(r, b)), \underline{c} c) \\
& =\hat{\delta}(\{q, r\}, \underline{c c}) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(q, c) \cup \delta(r, c)), \underline{c}) \\
& =\hat{\delta}(\{q, r\}, \underline{c}) \\
& =r \in F
\end{aligned}
$$

* Therefore the given string is accepted.

2. $w=a b b a$

$$
\begin{aligned}
\hat{\delta}(\{p, q, r\}, \underline{a b b a}) & \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(p, a) \cup \delta(q, a) \cup \delta(r, a)), \underline{b} b a) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(p), b b a) \\
& =\hat{\delta}(\{p, q, r\}, \underline{b} b a) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(p, b) \cup \delta(q, b) \cup \delta(r, b)), b a) \\
& =\hat{\delta}(\{q, r\}, \underline{b} a) \\
& =\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(q, b) \cup \delta(r, b)), \underline{a}) \\
& =\hat{\delta}(\{q, r\}, \underline{a}) \\
& =\varphi \notin F
\end{aligned}
$$

* Therefore the given string is not accepted.

1.8.3 Equivalence of $\varepsilon-N F A$ and DFA.

An ε-NFA can be converted into DFA. The subset construction method (with 'Lazy Evaluation') is used to convert ε-NFA to DFA. In this method the transition functions are generated only for reachable states.

Input: Transition table of ε-NFA
Output: Transition table of DFA

Theorem

A language L is accepted by some -NFA if and only if L is accepted by some DFA.

Proof

1. If part: If the L is accepted by some DFA then L is accepted by some -NFA

Suppose $\mathrm{L}=\mathrm{L}(\mathrm{D})$ for some DFA . Turn D into an ε-NFA by adding transitions $\delta(q, \varepsilon)=\varphi$ for all states q of D . Technically we must also convert the transitions of D on input symbols, example, $\delta_{D}(q, a)=p$, into an NFA-transition to the set containing only p, that is, $\delta_{E}(q, a)=\{p\}$

Thus, the transitions of E and D are the same, but E explicitly states that there are no transitions out of any state on ε.

2. Only -If part: If the L is accepted by some -NFA then L is accepted by some DFA.

Let $\mathrm{E}=\left\{\mathrm{Q}_{\mathrm{E}}, \Sigma, \delta_{\mathrm{E}}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{E}}\right\}$ be an ε-NFA. Apply the modified subset construction to produce the DFA.

$$
\mathrm{D}=\left\{\mathrm{Q}_{\mathrm{D}}, \Sigma, \delta_{\mathrm{D}}, \mathrm{q}_{\mathrm{D}}, \mathrm{~F}_{\mathrm{D}}\right\}
$$

* We need to show that $\mathrm{L}(\mathrm{D})=\mathrm{L}(\mathrm{E})$, and we do so by showing that the extended transition functions of E and D are the same.
* Formally, we show $\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right)$ by induction on the length of ω.

Basics

* If $|w|$ then $w=\varepsilon$.
* We know $\hat{\delta}_{E}\left(q_{0}, \varepsilon\right)=\operatorname{ECLOSURE}\left(q_{0}\right)$
* We also know that $q_{D}=\operatorname{ECLOSURE}\left(q_{0}\right)$, because that is how the start state of D is defined.
* Finally, for a DFA, we know that $\hat{\delta}(p, \varepsilon)=p$ for any state p , so in particular $\hat{\delta}_{D}\left(q_{D}, \varepsilon\right)=\operatorname{ECLOSURE}\left(q_{0}\right)$.
* We have thus proved that $\hat{\delta}_{E}\left(q_{0}, \varepsilon\right)=\hat{\delta}_{D}\left(q_{D}, \varepsilon\right)$.

Induction

* Suppose $w=x a$.
- Where, a is the final symbol of w and assume that the statement holds for x.
* That is, $\hat{\delta}_{E}\left(q_{0}, x\right)=\hat{\delta}_{D}\left(q_{D}, x\right)$.
* Let both these sets of states be $\left\{p_{1}, p_{2}, \ldots p_{k}\right\}$. By the definition of $\hat{\delta}$ for ε NFA's, we compute $\hat{\delta}_{E}\left(q_{0}, w\right)$ by,
i. Let $\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots . \mathrm{r}_{\mathrm{m}}\right\}$ be $\bigcup_{i=1}^{k} \delta_{E}\left(p_{i}, a\right)$.
ii. Then $\hat{\delta}_{E}\left(q_{0}, w\right)=\bigcup_{j=1}^{m} \operatorname{ECLOSURE}\left(r_{j}\right)$
* If we examine the construction of DFA D in the modified subset construction, we see that $\delta_{\mathrm{D}}\left(\left\{p_{1}, p_{2}, \ldots . p_{k}\right\}, a\right)$ is constructed by the same above two steps (i) and (ii).
* Thus, $\hat{\delta}_{D}\left(q_{D}, w\right)$, which is $\delta_{\mathrm{D}}\left(\left\{p_{l}, p_{2}, \ldots . p_{k}\right\}, a\right)$ is the same set as $\hat{\delta}_{E}\left(q_{0}, w\right)$.
* We have now proved that $\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right)$ and completed the inductive part.

Steps to convert ε-NFA to DFA

a. Compute the ε-Closure for each state.
b. Draw the transition table for ε-NFA (if not given)
c. Start state of DFA is ε-Closure $\left(\mathrm{q}_{0}\right)$

- Where q_{0} is the start state of ε-NFA.
d. Find the transition function for ε - $\operatorname{Closure}\left(\mathrm{q}_{0}\right)$.
e. The entries are considered as states of DFA.
f. If there is any new state, find the transition function for that new state using the following formula:

$$
\delta_{D}\left(\left\{q_{1}, \ldots, q_{k}\right\}, a\right)=\bigcup_{i=1}^{k} \varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{i}, a\right)\right)
$$

g. Continue the above step ' f ' until no more new states.

1.8.4 Applications and Limitations of FA

1. Applications of FA

i. Text Search
a. News Analyst - Searches on-line news
b. Shopping robot - Searches current prices charged for an item
c. Amazon.com - Search some keywords
d. Lexical analyzer of a compiler - Identifies the token

* Verifying the working of a physical system
* Design and construction of Softwares

ii. Advantages of Finite set of states in Automata

* Implement a system with a fixed set of resources
* Implementing a system within a hardware circuit
* Complementing a system using software with a finite set of codes.

2. Limitations of FA

* Some languages are not regular - i.e. we cannot construct FA

Example:

* $B=\left\{0^{n} I^{n} \mid n \geq 0\right\}$ is NOT regular!
* $L=w w^{R}$
* $L=W W$
* $L=W C W R$
* $C=\{w \mid w$ has equal number of 1 s and 0 s$\}$

1.8.5 Complex Problems

1. Design a NFA that accepts set of all strings that begins with 00 and ends with 11 . Convert it into DFA.

Analysis

* Here we have two parts:
\square Begins with string1
\square Ends with string2
* Let string1 be considered as s1s2 and string 2 be considered as s3s4 where s1,s2,s3 and s4 are substrings.
* For all s 2 and s 3 , if $\mathrm{s} 2 \neq \mathrm{s} 3$, we can easily construct the NFA.
* In this problem there is no such $s 2$ and $s 3$ where $s 2=s 3$. Therefore we can construct the NFA in one step as follows:

* The DFA of this machine is given below:

$\boldsymbol{\delta}_{\mathbf{D}}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow\{\mathrm{A}\}$	$\{\mathrm{B}\}$	-
$\{\mathrm{B}\}$	$\{\mathrm{C}\}$	-
$\{\mathrm{C}\}$	$\{\mathrm{C}\}$	$\{\mathrm{C}, \mathrm{D}\}$
$\{\mathrm{C}, \mathrm{D}\}$	$\{\mathrm{C}\}$	$\{\mathrm{C}, \mathrm{D}, \mathrm{E}\}$
$*\{\mathrm{C}, \mathrm{D}, \mathrm{E}\}$	$\{\mathrm{C}\}$	$\{\mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Note: It is difficult to draw the NFA for the following languages wheres $2=\mathrm{s} 3$.

* Set of all strings that begins with 01 and ends with 11 [s2=1]
* Set of all strings that begins with 01 and ends with 10 [s2=1]
* Set of all strings that begins with 01 and ends with 01 [s2=01]
* Set of all strings that begins with 10 and ends with 10 [s2=10]
* Set of all strings that begins with 00 and ends with 00 [s2=00]
* Set of all strings that begins with 11 and ends with 11 [s2=00]

For these kinds of problems we can use the intersection property of regular languages.

Problem 1.18

Design a DFA that accepts set of all strings that begins with 01 and ends with 11.
In* There are three steps, that are given below.

Step 1:

Design a DFA that accepts set of all strings that begins with 01

Step 2:

Design a DFA that accepts set of all strings that ends with 11.

Step 3:
Intersection between two DFAs (Lazy Evaluation-processing only reachable nodes)

1.8.6 PROBLEMS

1. Consider the following ε-NFA. Covert it into DFA

Transition Table of ε-NFA

$\boldsymbol{\delta}_{\mathbf{N}}$	$\boldsymbol{\varepsilon}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow \mathrm{p}$	Φ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ
$*_{\mathrm{r}}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ	$\{\mathrm{p}\}$

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε arrows] for all states.

$$
\begin{array}{lll}
\square & \varepsilon \text {-Closure }(\mathrm{p})=\{\mathrm{p}\} & {[\hat{\delta}(p, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{q})=\{\mathrm{p}, \mathrm{q}\} & {[\hat{\delta}(q, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{r})=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\} & {[\hat{\delta}(r, \varepsilon)]}
\end{array}
$$

Step 2:
Start with ε-closure $(p)=\{p\}$

$$
\text { Where, } \mathrm{p} \text { is the starting state of given } \varepsilon-\text { NFA. }
$$

Step 3:
Find the transition for $\{p\}$

$$
\begin{array}{rlr}
\delta_{D}(\{p\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, a)\right) & \\
& =\varepsilon-\operatorname{closure}(p) & \\
& =\{p\} & \\
\delta_{D}(\{p\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, b)\right) & \\
& =\varepsilon-\operatorname{closure}(q) & \\
& =\{p, q\} & \\
\delta_{D}(\{p\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, c)\right) & \\
& =\varepsilon-\operatorname{closure}(r) & \\
& =\{p, q, r\} &
\end{array}
$$

Step 4:

Find the transition for $\{p, q\}$

$$
\begin{aligned}
\delta_{D}(\{p, q\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, a) \cup \delta_{N}(q, a)\right) \\
& =\varepsilon-\operatorname{closure}(p, q) \\
& =\{p, q\} \\
\delta_{D}(\{p, q\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, b) \cup \delta_{N}(q, b)\right) \\
& =\varepsilon-\operatorname{closure}(q, r) \\
& =\{p, q, r\} \\
\delta_{D}(\{p, q\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, c) \cup \delta_{N}(q, c)\right) \\
& =\varepsilon-\operatorname{closure}(r) \\
& =\{p, q, r\}
\end{aligned}
$$

Step 5:

Find the transition for $\{p, q, r\}$

$$
\begin{aligned}
\delta_{D}(\{p, q, r\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, a) \cup \delta_{N}(q, a) \cup \delta_{N}(r, a)\right) \\
& =\varepsilon-\operatorname{closure}(p, q, r) \\
& =\{p, q, r\} \\
\delta_{D}(\{p, q, r\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, b) \cup \delta_{N}(q, b) \cup \delta_{N}(r, b)\right) \\
& =\varepsilon-\operatorname{closure}(q, r) \\
& =\{p, q, r\} \\
\delta_{D}(\{p, q, r\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, c) \cup \delta_{N}(q, c) \cup \delta_{N}(r, c)\right) \\
& =\varepsilon-\operatorname{closure}(p, r) \\
& =\{p, q, r\}
\end{aligned}
$$

Step 6:

No more new states. Stop the process.

Transition Table of DFA

$\boldsymbol{\delta}_{\mathbf{D}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow\{\mathrm{p}\}$	$\{\mathrm{p}\}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$

Transition Diagram of DFA

2. Consider the following ε-NFA. Covert it into DFA

$\boldsymbol{\delta}$	$\boldsymbol{\varepsilon}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{r}\}$	Φ	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	Φ	$\{\mathrm{p}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}\}$
$*_{\mathrm{r}}$	Φ	Φ	Φ	Φ

Step 1:
Compute ε-Closure [states that can be reached by traveling along zero or more ε arrows] for all states .

$$
\begin{array}{lll}
\square & \varepsilon \text {-Closure }(\mathrm{p})=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\} & {[\hat{\delta}(p, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{q})=\{\mathrm{q}\} & {[\hat{\delta}(q, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{r})=\{\mathrm{r}\} & {[\hat{\delta}(r, \varepsilon)]}
\end{array}
$$

Step 2:
Start with ε-closure $(p)=\{p, q, r\}$
Where, p is the starting state of given ε - NFA
Step 3:
Find the transition for $\{p, q, r\}$

$$
\begin{aligned}
\delta_{D}(\{p, q, r\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, a) \cup \delta_{N}(q, a) \cup \delta_{N}(r, a)\right) \\
& =\varepsilon-\operatorname{closure}(p) \\
& =\{p, q, r\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{D}(\{p, q, r\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, b) \cup \delta_{N}(q, b) \cup \delta_{N}(r, b)\right) \\
& =\varepsilon-\operatorname{closure}(q, r) \\
& =\{q, r\} \\
\delta_{D}(\{p, q, r\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, c) \cup \delta_{N}(q, c) \cup \delta_{N}(r, c)\right) \\
& =\varepsilon-\operatorname{closure}(p, q, r) \\
& =\{p, q, r\}
\end{aligned}
$$

Step 4:

Find the transition for $\{\mathrm{q}, \mathrm{r}\}$

$$
\begin{aligned}
\delta_{D}(\{q, r\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(q, a) \cup \delta_{N}(r, a)\right) \\
& =\varepsilon-\operatorname{closure}(p) \\
& =\{p, q, r\} \\
\delta_{D}(\{q, r\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(q, b) \cup \delta_{N}(r, b)\right) \\
& =\varepsilon-\operatorname{closure}(r) \\
& =\{r\} \quad \text { New State } \\
\delta_{D}(\{q, r\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(q, c) \cup \delta_{N}(r, c)\right) \\
& =\varepsilon-\operatorname{closure}(p, q) \\
& =\{p, q, r\}
\end{aligned}
$$

Step 5:

Find the transition for $\{r\}$

$$
\begin{aligned}
\delta_{D}(\{r\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(r, a)\right) \\
& =\varepsilon-\operatorname{closure}(\varphi) \\
& =\varphi \\
\delta_{D}(\{r\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(r, b)\right) \quad \text { Dead State } \\
& =\varepsilon-\operatorname{closure}(\varphi) \\
& =\varphi \\
\delta_{D}(\{r\}, c) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(r, c)\right) \\
& =\varepsilon-\operatorname{closure}(\varphi) \\
& =\varphi
\end{aligned}
$$

Step 6:

No more new states. Stop the process.

Transition Table of DFA

$\boldsymbol{\delta}_{\mathbf{D}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\rightarrow^{*}\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$
$*\{\mathrm{r}\}$	Φ	Φ	Φ

Transition Diagram of DFA

3. Consider the following ε-NFA. Covert a,b,c it into DFA.

Transition Table of ε-NFA

$\boldsymbol{\delta}_{\mathrm{N}}$	$\boldsymbol{\varepsilon}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{0}	Φ	Φ
q_{1}	q_{2}	Φ	q_{1}	Φ
$* \mathrm{q}_{2}$	Φ	Φ	Φ	q_{2}

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε arrows] for all states .

$$
\square \quad \varepsilon \text {-Closure }\left(\mathrm{q}_{0}\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \quad\left[\hat{\delta}\left(q_{0}, \varepsilon\right)\right]
$$

$$
\begin{array}{lll}
\square & \varepsilon \text {-Closure }\left(\mathrm{q}_{1}\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\} & {\left[\hat{\delta}\left(q_{1}, \varepsilon\right)\right]} \\
\square & \varepsilon \text {-Closure }\left(\mathrm{q}_{2}\right)=\left\{\mathrm{q}_{2}\right\} & {\left[\hat{\delta}\left(q_{2}, \varepsilon\right)\right]}
\end{array}
$$

Step 2:

Start with ε-closure $\left(\mathrm{q}_{0}\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
Where, q_{0} is the starting state of given $\varepsilon-$ NFA.

Step 3:

Find the transition for $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$

$$
\begin{array}{rlrl}
\delta_{D}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 0\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{0}, 0\right) \cup \delta_{N}\left(q_{1}, 0\right) \cup \delta_{N}\left(q_{2}, 0\right)\right) & \\
& =\varepsilon-\operatorname{closure}\left(q_{0}\right) & & \\
& =\left\{q_{0}, q_{1}, q_{2}\right\} & & \\
\delta_{D}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 1\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{0}, 1\right) \cup \delta_{N}\left(q_{1}, 1\right) \cup \delta_{N}\left(q_{2}, 1\right)\right) & \\
& =\varepsilon-\operatorname{closure}\left(q_{1}\right) & \text { New State } \\
& =\left\{q_{1}, q_{2}\right\} & & \\
\delta_{D}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 2\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{0}, 2\right) \cup \delta_{N}\left(q_{1}, 2\right) \cup \delta_{N}\left(q_{2}, 2\right)\right) & \\
& =\varepsilon-\operatorname{closure}\left(q_{2}\right) & \text { New State }
\end{array}
$$

Step 4:

Find the transition for $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$

$$
\begin{aligned}
\delta_{D}\left(\left\{q_{1}, q_{2}\right\}, 0\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{1}, 0\right) \cup \delta_{N}\left(q_{2}, 0\right)\right) \\
& =\varepsilon-\operatorname{closure}(\varphi) \\
& =\varphi \\
\delta_{D}\left(\left\{q_{1}, q_{2}\right\}, 1\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{1}, 1\right) \cup \delta_{N}\left(q_{2}, 1\right)\right) \\
& =\varepsilon-\operatorname{closure}\left(q_{1}\right) \\
& =\left\{q_{1}, q_{2}\right\} \\
\delta_{D}(\{q, r\}, 2) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{1}, 2\right) \cup \delta_{N}\left(q_{2}, 2\right)\right) \\
& =\varepsilon-\operatorname{closure}\left(q_{2}\right) \\
& =\left\{q_{2}\right\}
\end{aligned}
$$

Step 5:

Find the transition for $\left\{\mathrm{q}_{2}\right\}$

$$
\begin{array}{rlr}
\delta_{D}\left(\left\{q_{2}\right\}, 0\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{2}, 0\right)\right) & \\
& =\varepsilon-\operatorname{closure}(\varphi) & \\
& =\varphi & \text { Dead State } \\
\delta_{D}\left(\left\{q_{2}\right\}, 1\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{2}, 1\right)\right) & \\
& =\varepsilon-\operatorname{closure}(\varphi) & \\
& =\varphi & \\
\delta_{D}\left(\left\{q_{2}\right\}, 2\right) & =\varepsilon-\operatorname{closure}\left(\delta_{N}\left(q_{2}, 2\right)\right) & \\
& =\varepsilon-\operatorname{closure}\left(q_{2}\right) & \\
& =\left\{q_{2}\right\} &
\end{array}
$$

Step 6:
No more new states. Stop the process.

Transition Table of DFA

$\boldsymbol{\delta}_{\mathbf{D}}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\rightarrow^{*}\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
$*\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	Φ	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
$*\left\{\mathrm{q}_{2}\right\}$	Φ	Φ	$\left\{\mathrm{q}_{2}\right\}$

Transition Diagram of DFA

$$
\begin{aligned}
& \mathrm{Q}=\left\{\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\},\left\{\mathrm{q}_{2}\right\}\right\} \\
& \Sigma=\{0,1,2\} \\
& \mathrm{q}_{0}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\} \\
& \mathrm{F}=\left\{\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\},\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\},\left\{\mathrm{q}_{2}\right\}\right\}
\end{aligned}
$$

4. Consider the following e-NFA. Covert it into DFA

$\boldsymbol{\delta}_{\mathbf{N}}$	$\boldsymbol{\varepsilon}$	\mathbf{a}	\mathbf{b}
$\rightarrow \mathrm{p}$	$\{\mathrm{r}\}$	$\{\mathrm{q}\}$	$\{\mathrm{p}, \mathrm{r}\}$
q	Φ	$\{\mathrm{p}\}$	Φ
$*_{\mathrm{r}}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}\}$

Step 1:

Compute ε-Closure [states that can be reached by traveling along zero or more ε arrows] for all states.

$$
\begin{array}{lll}
\square & \varepsilon \text {-Closure }(\mathrm{p})=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\} & {[\hat{\delta}(p, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{q})=\{\mathrm{q}\} & {[\hat{\delta}(q, \varepsilon)]} \\
\square & \varepsilon \text {-Closure }(\mathrm{r})=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\} & {[\hat{\delta}(r, \varepsilon)]}
\end{array}
$$

Step 2:

Start with ε-closure $(p)=\{p, q, r\}$
Where, p is the starting state of given $\varepsilon-$ NFA
Step 3:
Find the transition for $\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$

$$
\begin{aligned}
\delta_{D}(\{p, q, r\}, a) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, a) \cup \delta_{N}(q, a) \cup \delta_{N}(r, a)\right) \\
& =\varepsilon-\operatorname{closure}(q \cup p \cup r) \\
& =\varepsilon-\operatorname{closure}(p, q, r) \\
& =\{p, q, r\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{D}(\{p, q, r\}, b) & =\varepsilon-\operatorname{closure}\left(\delta_{N}(p, b) \cup \delta_{N}(q, b) \cup \delta_{N}(r, b)\right) \\
& =\varepsilon-\operatorname{closure}(\{\{p, r\} \cup \varphi \cup\{p\}\}) \\
& =\varepsilon-\operatorname{closure}(\{p, r\}) \\
& =\{p, q, r\}
\end{aligned}
$$

Transition Table of DFA

δ_{D}	a	b
$\rightarrow^{*}\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$

REVIEW QUESTIONS

1. Convert the following NFAs to a DFA .
a.

	a	b
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	p
q	r	r
r	s	-
${ }^{*} \mathrm{~s}$	s	s

b.

δ	a	b
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{s}\}$	$\{\mathrm{q}\}$
$* \mathrm{q}$	$\{\mathrm{r}\}$	$\{\mathrm{q}, \mathrm{r}\}$
r	$\{\mathrm{s}\}$	$\{\mathrm{p}\}$
$* \mathrm{~s}$	ϕ	$\{\mathrm{p}\}$

c.

δ	a	b
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{t}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
$* \mathrm{~s}$	ϕ	ϕ
$* \mathrm{t}$	ϕ	ϕ

2. Consider the following ε - NFA. Compute the ε - Closure of each state and find it's equivalent DFA.
a.

δ	ε	a	b	c
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{r}\}$	-	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	-	$\{\mathrm{p}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}\}$
${ }^{\mathrm{r}} \mathrm{r}$	-	-	-	$\{\mathrm{r}\}$

b.

δ	ε	a	b	c
$\rightarrow \mathrm{p}$	ϕ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ
${ }^{\mathrm{r}} \mathrm{r}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ	$\{\mathrm{p}\}$

3. Construct a minimized DFA for the DFA given below.
a.

δ	0	1
$\rightarrow \mathrm{~A}$	B	E
B	C	F
${ }^{*} \mathrm{C}$	D	H
D	E	H
E	F	I
${ }^{*} \mathrm{~F}$	G	B
G	H	B
H	I	C
${ }^{*} \mathrm{I}$	A	E

b.

δ	0	1
$\rightarrow \mathrm{~A}$	B	A
B	A	C
C	D	B
${ }^{*} \mathrm{D}$	D	A
E	D	F
F	G	E
G	F	G
H	G	D

4. Construct (DFA) an Automata for the following Language
a. $\mathrm{D}=\{w \mid w$ has equal number of occurrences of 01 and 10$\}$
b. $\mathrm{D}=\{\{w \mid w$ begins with 10 and ends with 10$\}$
c. $\mathrm{D}=\{\{w \mid w$ begins with 01 and ends with 01$\}$
d. $\mathrm{D}=\{\{w \mid w$ begins with 10 and ends with 00$\}$

$$
D=\{\{w \mid w \text { begins with } 10 \text { and ends with } 01\}
$$

5. Consider the following ε-NFA.

δ	ε	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{r}\}$	$\{\mathrm{q}\}$	$\{\mathrm{p}, \mathrm{r}\}$
q	Φ	$\{\mathrm{p}\}$	Φ
${ }^{*} \mathrm{r}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}\}$

a. Compute the ε-closure of each state.
b. List all the possible strings of length 3 or less accepted by the automaton.
c. Convert the automaton to a DFA.
d. Compute $\hat{\delta}\left(q_{0}, 0110\right)$, where q_{0} is the start state.
6. Obtain the DFA equivalent to the following ε-NFA.

	ε	a	b	c
$\rightarrow \mathrm{p}$	-	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	-
$*_{\mathrm{r}}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	-	$\{\mathrm{p}\}$

7. Let L be a language accepted by a NFA then show that there exists a DFA that accepts L.
8. Design a NFA that accepts set of all strings that begins with bb and ends with aa. Convert it into DFA.
9. Construct a minimized DFA for the DFA given below.

δ	0	1
$\rightarrow \mathrm{a}$	b	c
b	c	d
c	c	d
${ }^{*} \mathrm{~d}$	d	d
${ }^{\mathrm{e}}$	e	e
${ }_{\mathrm{f}}$	f	e

10. Design a NFA that accepts empty string or string starts and ends with 0 . Convert it into DFA.
11. Define NFA. Explain its significance. Convert the given NFA to DFA. Prove that both NFA and DFA accepts the string 0110.

UNIT -2
REGULAR EXPRESSIONS AND LANGUAGES
TEGULAR EXPRESSION:-
The language accepted by finite automata are easily described with simple expression is called Regular Expression. The method of representing language Each regular Sanguage are denoted is as $r \rightarrow 1$ (r)

* ReGular lanGUaGE:-

A language accepted by finite automate is called regular Janguage.

* RULES FOR DETERMINING A REGULAR EXPRESSION OYER AN INPUT ALPHABET:-
(1) \varnothing is a regular expression that denotes the empty set \{\}
(2) \& is a regular expression that denotes the $\{\xi\}$
(3) For each ' a in $;$, a is a regular expression that denotes the set contain $\{a\}$
(4) If r and s are regular expression that denotes the Sanguage $L(r)$ and $L(s)$
(i) $(r) /(s)$ (or) $(x)+(s)=1(r) \cup L(s)$
(ii) (r). (s) $=\perp(r) \perp(s)$
(iii) $(r)^{*}=(\perp(r))^{*}$

REPRESENTATION OF REGULAR EXPRESSION

Write a regular expression for the sanguage accepting
(1) All combinations of a^{\prime} s

$$
L=\{\xi, a, a a, a 9 a, a 9 a a \ldots\}
$$

$$
R \cdot E=a^{*}
$$

(2) All combinations of a's except null string

$$
L=\{a, a a, a a a, a a a a \ldots\}
$$

$$
R \cdot E=a^{+}
$$

(3) containing any number of O 's and is

$$
\begin{aligned}
L= & \{\xi, 0,1,00,11,01,10 \ldots\} \\
& R \cdot E=(0+1)^{*}(0 r)(0,1)^{*}
\end{aligned}
$$

(4) containing 0 's and l's except null string.

$$
\begin{aligned}
L= & \{0,1,00,11,01,10 \ldots\} \\
& R \cdot E=(0+1)^{+} \text {(or) }(0,1)^{+}
\end{aligned}
$$

(5) Starting with 101
$L=\{101,10100,1010101, \ldots$.
$R \cdot E=101(0+1)^{*}$
(6) Ending with 110
$\alpha=\{00110,010110,110110 \ldots\}$

$$
R \cdot E=(0+1) * 110
$$

(4) string containing subshing as 1001
$I=\{010010,10100101, \ldots$.

$$
R \cdot E=(0+1) * 1001(0+1)^{*}
$$

(8) string starting with । and ending with 0 .

$$
\begin{aligned}
& L=\{10,1000,1100 \ldots \ldots\} \\
& R \cdot E= \pm(0+1) * 0
\end{aligned}
$$

(9) Any number of a^{\prime} 's followed by any number of b's followed by atleast ic.

$$
2 *=a * b^{*} c+
$$

(01) Exactly string angth is 2

$$
\begin{gathered}
1=\{00,0,10,11\} \\
R \cdot F=(0+1)(0+1) \text { (or) } \\
(0+1)^{2}
\end{gathered}
$$

(11) Alleast string length is 2
$\alpha=\{00,010,0110, \ldots$.

$$
R \cdot E=(0+1)(0+1)(0+1) *
$$

(12) string length is almost 2 .

$$
L=\{\varepsilon, 0,1,00,01,10,11\}
$$

$$
R \cdot F=(\xi+0+1)(\xi+0+1)
$$

(13) Shing length with wen $t=\{01,0110,111000 \ldots .$.

$$
R \cdot E=(t 0+1)(0+10)^{A}
$$

(44) shring ungth with odd

$$
\alpha=\{1,010,11001, \ldots .\}
$$

$R \cdot E=(0+1)(10+1)(0+1))^{*}$ (or)

$$
R \cdot E=((O+1)(0+1))^{*}(0+1)
$$

(15) Number of ' a ' is exactly'2
$L=\{b a a b, a b a b, b b a a \ldots\}$ $R \cdot E=b^{*} a b^{*} a b^{*}$
(16) Number of ' a ' is atteast 2 ouer the input alphabetz. $1=\{b a a a b, b a b b a \ldots$. R.E $=b^{*} a b^{*} a(a+b)^{*}$
(17) Atmost thro ' a ' $I=\{u, a, a b, a a, b b, b a, b\}$ 2. $E=b^{*}(a+6) b^{*}(a+\varepsilon) b^{*}$
(f) mumber of a^{\prime} is even 1. $\{a a b$, bababaa.... $\}$

$$
R \cdot E=\left(b^{*} a b^{*} a b^{*}\right)^{*}
$$

(19) Number of ' a ' is odd $L=\{a b, b a b a b a, \ldots$.

$$
\text { R.E }=\left(b^{*} a b^{*} a b^{*}\right)^{*} a
$$

(20) starting $\&$ ending urith diffesent symbol.
$1=\{a b, a b b, a a b, a a b b \ldots\}$

$$
\begin{aligned}
R \cdot E= & \left(a(a+b)^{*} b\right)+ \\
& \left(b(a+b)^{*} a\right)
\end{aligned}
$$

(ג) starring I ending with same symbol.
1-\{aba, baab, bbb...\}

$$
\begin{aligned}
R \cdot E= & \left(a(a+b)^{*} a\right)+ \\
& \left(b(a+b)^{*} b\right)
\end{aligned}
$$

(22) Third charaiter from right end of string is always b.

$$
\text { R.E }=(a+b)^{*} b(a+b)(a+b)
$$

$L=\{a b a a, b a b a b, a b a b a a \ldots\}$
(23) from the left end $4^{\text {th }}$ one should be a.
$\mathcal{L}=\{a b b a b$, oabaa, $b a b a b \ldots\}$ E.E $=(a+b)(a+b)(a+b) a(a+b)^{*}$
(24) string length divisible by 3 (or) $1 \omega 1 \% 3$

$$
\text { k.E }=((a+b)(a+b)(a+b))^{*}
$$

(25) $|w|=\bmod 3$

$$
\begin{gathered}
R \cdot E=((a+b)(a+b)(a+b))^{*} \\
(a+b)(a+b)
\end{gathered}
$$

(26) Write Regular Expression to denote the Sanguage unity auept all the strings urtipch begins (or) ends with either oo (or) 11.
solon:-

$$
\begin{array}{r}
\alpha_{1}=(00+11)(0+1)^{*} \quad L_{2}=(0+1)^{*}(00+11) \\
R \cdot E=\alpha_{1}+L_{2} \\
R_{1}=(00+11)(0+1)^{*}+(0+1)^{*}(00+11)
\end{array}
$$

* Regular Expression into finite automata conversion USING THOMSON'S RULE:-
* THEOREM:-

Every language defined by the regular expression is also defined by finite automata cor

Let ' r ' be a regular expression then there exists aNFA with ξ-transition that except $L(r)$

* PROOF:-

Suppose $L=L(x)$ for a regular expression ' x ' we show that $L=L(E)$ for some $\&-N F A$ with
(i) Exactly only one auepting state.
(ii) No Edges into the initial state.
(iii) No Edges out of the accepting state.

* BASIS RULE:-
(i) \varnothing to final state.

That means no path from initial state
(ii) $4, \rightarrow 0 \rightarrow$ (0)

The Jangunge that hat $\{4$? trnue only palh from starting state to auepting sitate vith label \&e.

$$
r=a
$$

$$
\xrightarrow[\text { TNDUCTION RULE }]{r-a}
$$

(0) -NTA ;

$$
\rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0-4 \cdot N+A
$$

i) $\quad r=a b$ (IONIATINATION) :-

$$
\rightarrow 0 \rightarrow 0 \rightarrow 0 \text {-NFA } O \text { O } O \rightarrow{ }^{a} \rightarrow 0 \rightarrow{ }^{b} 0-4-N P A
$$

(ii) $r=a+b(a) r=,a / b$ (UNION):-

$$
\rightarrow 0 \xrightarrow{a, b}(0) \quad N E A
$$

iii)(CLOSURE) $r=a *$

PROBLEMS
Convert Regular Expression into Finite automata 1) $\mathrm{COO}+11)$
soin:-

$$
x_{1}=00
$$

$$
r_{2}=11
$$

$$
\rightarrow(E) \rightarrow^{\prime} \text { (F) }{ }^{\prime} \text { (G) }
$$

(2) $(a / b) * a b b$
$r_{1}=a$
$r_{2}=b$

$$
r_{3}=a / b
$$

$$
r_{n}=(a \mid b)^{*} a
$$

$$
r_{0}=(a \mid b)^{*} a b
$$

$r_{T}=(a \mid b)^{*} a b b$

(4) $a b c(a b+c d)^{*}$

$$
\begin{align*}
& \text { (4) } a b c(a b+c a) \text { (b) } \rightarrow \text { (7) } \rightarrow \text { (8)- } \\
& r_{1}=a b \tag{d}\\
& r_{2}=c d
\end{align*} \rightarrow \text { (4) } \rightarrow \text { (10) } \rightarrow \text { (11) }
$$

$$
r_{3}=(a b+c d)
$$

$$
r_{4}=(a b+e d)^{*}
$$

$$
r_{5}=a b c(a b+c d)^{*}
$$

(5) $(a b+c)$ * b

$$
r_{1}=a b
$$

$$
\begin{equation*}
r_{2}=c \tag{}
\end{equation*}
$$

$$
r_{3}=(a b+1)
$$

$$
r_{A}=(a b+c)^{4} b
$$

CONVERSION FROM FINITE AUTOMATA INTO
REGULAR EXPRESSION :-
There are 3 me thuds.

1) Formula method cor) Rij method.
2) Arden's theorem.
3) State silmination Technique.

IDENTITY RULES

$$
\begin{aligned}
& 1)(\xi+R)^{*}=R^{*} \\
& \Rightarrow(\varphi+R)+R^{*}=R^{*}
\end{aligned}
$$

3) $R^{*}(\varphi+R)=R^{*}$
4) $R+R S^{*}=R S^{*}$
5) $\varepsilon+R R^{*}=R^{*}$
b) $S+R=R$
T) $R \cdot S Q=R$
6) $R+R=R$
7) $R R^{*}=R^{+}$
(0) $R+\phi=R$
8) $R \cdot \phi=\varnothing$
9) $\phi^{*}=\varepsilon$
(3) $\xi^{*}=\varphi$
(i) $\left(R^{*}\right)^{*}=R^{*}$
10) $R R^{*}=R^{*} R \neq R^{*}$
11) $(R+s)^{*}=R^{*} s^{*}$
(1+) $(R+S)^{*}=\left(R^{x}+S^{x}\right)^{*}$
12) $(P+Q) R=P R+Q R$
13) $R(P+Q)=R P+R Q$
14) $(R S)^{*} \neq R * S^{*}$

Rif ${ }^{(1 C)}$ METHOD/FORMULA METHOD
Rip ${ }^{[k]}$ stands for set of all strings that tales the DFA from state qi to state qi without going through any number higher than k. We can write the reverse of

$$
\begin{aligned}
& \text { reverse of } \\
& R_{i j}(k)=R_{i j}^{(k-1)}+R_{i k}^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}^{(k-1)} \\
& \text { wrthere } k=0 \text { to }
\end{aligned}
$$

$$
\text { where } k=0 \text { to } n
$$

Number of iteration $\rightarrow k+1$ [otok]

Langrage accepted by $F A, L(A)=R_{i j}(k) \Rightarrow$ no. of. states initial final
state state
PROBLEMS
Convert the following Finite Automata into
(1)
 Regular Expression.
sold :-

$$
81: 1(A)=R_{12}^{(2)}
$$

S2: Using Formula,

$$
\begin{aligned}
& R_{i j}^{(k)}=R_{i j}^{(k-1)}+R_{i k}^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}(k-1) \\
& R_{12}^{(2)}=R_{12}^{(1)}+R_{12}^{(1)}\left(R_{22}^{(1))}\right)^{*} R_{22}^{(1)}
\end{aligned}
$$

case (i): $k=0$
In $k=0$, if $P=j$ then add u
4 Translation

$$
\begin{array}{ll}
R_{11}=0+\varepsilon & R_{21}=\varnothing \\
R_{12}=1 & R_{22}=0+1+\varphi
\end{array}
$$

$$
\begin{aligned}
& 1 \rightarrow 1 \\
& 1 \rightarrow 2 \\
& 2 \rightarrow 1 \\
& 2 \rightarrow 2
\end{aligned}
$$

case (ii): $k=1$

$$
\begin{aligned}
R_{12}^{(1)} & =R_{12}^{(0)}+R_{11}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{12}^{(0)} \\
& =1+(0+4)(0+\varepsilon 1)^{*}(1) \\
& =1+(0+4) 0^{*}(1) \\
& =1+0 *(1) \\
& =0 * 1 \\
R_{22}^{(1)} & =R_{22}^{(0)}+R_{21}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{12}^{(0)} \\
& =\left(0+1+\varepsilon()+\phi(0+\varepsilon e)^{*}(1)\right. \\
& =(0+1+2)+\phi
\end{aligned}
$$

$$
\begin{aligned}
& =0+1+\varepsilon e \\
R_{11}^{(1)} & =R_{11}^{(0)}+R_{11}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{11}^{(0)} \\
& =(0+r)+(0+4)(0+\varepsilon)^{*}(0+\varepsilon) \\
& =0+\varepsilon+0^{*} \\
& =0 * \\
R_{21}^{(1)} & =R_{21}^{(0)}+R_{21}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{11}^{(0)} \\
& =\varnothing^{(0)}+\varnothing(0+\varepsilon)^{*}(0+\varepsilon) \\
& =\varnothing .
\end{aligned}
$$

case (iii) : $k=2$

$$
\text { (iii): } \begin{aligned}
R_{12}^{(2)} & =R_{12}^{(1)}+R_{12}^{(1)}\left(R_{22}^{(1)}\right)^{*} R_{22}^{(1)} \\
& =0^{* 1}+0 * 1(0+1+\mu)^{*}(0+1+u) \\
& =0^{* 1}\left[\varepsilon+(0+1+\varepsilon)^{*}(0+1+\varepsilon)\right] \\
& =0 * 1\left[\&+(0+1+\varepsilon)^{*}\right] \\
& =0 * 1\left[\varepsilon 1+(0+1)^{*}\right] \\
& =0 * 1(0+1)^{*}
\end{aligned}
$$

(2) Obtain the regular expression denoting the Language accepted by the following DFA using Rig method.

Son:-
si: $\alpha(A)=R_{11}{ }^{(8)}$
S2: Using the formula,

$$
\begin{aligned}
& R_{p j}(k)=R_{i j}(k-1)+R_{p k}{ }^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}^{(k-1)} \\
& \Rightarrow R_{11}^{(3)}=R_{11}^{(2)}+R_{13}^{(2)}\left(R_{33}^{(2)}\right) *^{*} R_{31}^{(2)} \\
& R_{11}^{(2)}=R_{11}^{(1)}+R_{12}^{(1)}\left(R_{22}^{(1)}\right) * R_{21}^{(1)} \\
& R_{13}{ }^{(2)}=R_{13}^{(1)}+R_{12}^{(1)}\left(R_{22}(1)\right) * R_{23}^{(1)} \\
& R_{33}{ }^{(R)}=R_{33}{ }^{(1)}+R_{32}{ }^{(1)}\left(R_{22}^{(1))}\right) * R_{23}{ }^{(1)} \\
& R_{31}{ }^{(2)}=R_{31}^{(1)}+R_{32}{ }^{(1)}\left(R_{22}(1)\right)^{*} R_{21}(1)
\end{aligned}
$$

S 3: case (1): $k=0$

$$
\begin{array}{lll}
R_{11}^{(0)}=0+\varrho & R_{21}(0)=\varnothing & R_{31}^{(0)}=0 \\
R_{12}(0)=1 & R_{22}(0)=1+\varepsilon & R_{32}^{(0)}=1 \\
R_{13}(0)=\varnothing & R_{23}(0)=0 & R_{33}(0)=\$ \varnothing
\end{array}
$$

case (ii) : $k=1$

$$
\begin{aligned}
R_{11}^{(1)} & =R_{11}^{(0)}+k_{11}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{11}^{(0)} \\
& =(0+\varepsilon)+(0+\varepsilon)(0+\varepsilon)^{*}(\theta+\varepsilon) \\
& =(0+\varepsilon)+(0+\varepsilon)^{x}(0+\varepsilon) \\
& =(0+\varepsilon)+(0+\varepsilon)^{*} \\
& =(0+\varphi)+0 * \\
& =0 *
\end{aligned}
$$

$$
\begin{aligned}
& R_{12}^{(1)}=R_{12}^{(0)}+R_{11}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{12}^{(0)} \\
& =1+(O+E Q)(O+S Q)^{*}(1) \\
& =1+(0+51)^{*}(1) \\
& =1+0 * 1 \\
& =0 * 1 \% \text {. } \\
& R_{13}^{(1)}=R_{13}^{(0)}+R_{11}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{13}^{(0)} \\
& =\phi+(0+\varphi)(0+\mu) * \varnothing \\
& =\phi+\varnothing \\
& =\varnothing \\
& R_{21}{ }^{(1)}=R_{21}^{107}+R_{21}^{107}\left(R_{11}^{107}\right)^{*} R_{11}^{107} \\
& =\phi+\phi(0+\varepsilon)^{*}(0+\varepsilon) \\
& =\phi+\phi \\
& =\phi
\end{aligned}
$$

$$
\begin{aligned}
R_{22}(1) & =R_{22}^{(0)}+R_{21}^{109}\left(R_{11}^{109}\right)^{*} R_{12}^{(0)} \\
& =(1+\varphi)+\phi(0+\varphi)^{*(1)} \\
& =(1+\varphi)+\varnothing \\
& =1+\varphi
\end{aligned}
$$

$$
\begin{aligned}
R_{23}{ }^{(1)} & =R_{23}{ }^{(0)}+R_{21}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{13}(0) \\
& =0+1(0+\varepsilon)^{*} \phi \\
& =0+\phi \\
& =0 . \\
R_{31}{ }^{(1)} & =R_{31}{ }^{(0)}+R_{31}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{11}(0) \\
& =0+0(0+\varepsilon)^{*}(0+\varepsilon) \\
& =0+0(0+\varepsilon)^{*} \\
& =0+00^{*}=00^{*} 11 .
\end{aligned}
$$

case (ii) $k=2$

$$
\begin{aligned}
R_{11}^{12)} & =R_{11}^{11}+R_{12}^{11)}\left(R_{22}^{(1)}\right)^{4} R_{21}^{(1)} \\
& =0^{*}+0^{H} 1\left(1+\varepsilon_{1}\right)^{4} \phi^{\prime} \\
& =0^{*}+\phi^{1} \\
& =0^{x}
\end{aligned}
$$

$$
\begin{aligned}
R_{13}^{(2)} & =R_{13}^{(1)}+R_{12}^{11)}\left(R_{22}^{11)}\right)^{*} R_{23}^{11} \\
& =\varnothing+0 * 1(1+4)^{*} 0 \\
& =\varnothing+0 * 1 \cdot 1^{*} 0 \\
& =0 * 11^{*} 0 \\
R_{33}^{(2)} & =R_{33}^{(11)}+R_{32}^{(1)}\left(R_{22}^{(1)}\right)^{*} R_{23} \\
& =\varepsilon+\left(1+00^{* 1)(1+\varepsilon)^{*} 0}\right. \\
& =\xi+\left(1+00^{* 1)^{*} 0}\right.
\end{aligned}
$$

$$
R_{31}{ }^{(2)}=R_{31}^{(1)}+R_{32}^{(1)}\left(R_{22}(1)\right)^{*} R_{21}^{(1)}
$$

$$
=00^{*}+1(1+u)^{*} \varnothing
$$

$$
=00^{x}+\varnothing
$$

$$
=004
$$

case chi): $16=3$

$$
\begin{aligned}
& R_{11}(3)=R_{11}^{(2)}+R_{13}^{(1)}\left(R_{33}^{(2)}\right)^{*} R_{31}^{(2)} \\
&=0^{*}+0^{*} 11^{*} 0\left(51+\left(1+00^{* 1} 1\right) 1^{*} 0\right)^{*} \\
& 00
\end{aligned}
$$

ARDEN'S THEOREM:-
If P and Q are taro regular expression over ε and of P does not obtain \& from the following equation in R given by, $R=Q+R P$ as a Unique solution. (i.e) $R=Q P^{*}$ PROOF:- (METHO DI)

$$
R=Q+R P
$$

Replace R by $Q P^{*}$

$$
\begin{aligned}
R & =Q+Q P^{*} P \\
& =Q\left[\xi+P^{*} P\right] \\
R & =Q P^{*}
\end{aligned}
$$

CMETITOD2): Ne are checking $R=Q P^{*}$ as a only unique

$$
R=Q+R P
$$

Replace R by $Q+R P$

$$
\begin{aligned}
R & =Q+(Q+R P) P \\
& =Q+Q P+R P^{2} \\
& =Q+Q P+(Q+R P) P^{2} \\
& =Q+Q P+Q P^{2}+R P^{3} \\
& \vdots \\
& =Q+Q P+Q P^{2}+\cdots \cdots+Q P^{n}+R P^{(n+1)}\left(R=Q P^{*}\right) \\
& =Q+Q P+Q P^{2}+\cdots \cdots P^{n}+Q P^{*} P^{n+1} \\
& =Q\left(Q+P+P^{2}+\cdots \cdots+P^{n}+P^{*} P^{n+1} J\right. \\
& =Q P^{*} \\
R & =Q P^{*}
\end{aligned}
$$

RULES
(i) Let age represent the transition from state qu to gi

(ii) Then calculate q_{i} such that $q_{i}=q_{j}$. $q_{j i}$
of qi is the start state then the equation becomes $q_{i}=q_{j} \quad a_{j i}+\varepsilon$.

QPmilarag, computing final state which ultimately use regular expression R. If two states are final states, then add answer of two states
PROBLEMS
Convert Finite Automata to Regular Expression.
(1)

SI:

$$
\begin{aligned}
& R=Q+R P \\
& \Rightarrow R=Q P^{*}
\end{aligned}
$$

S2 : Eliminate Unreachable state
\Rightarrow Here no unreachable state $s 0$ no need to eliminate
S3: Write the equation of each state,

$$
\begin{align*}
& q_{0}=q_{0.1}+\varepsilon_{0} \tag{1}\\
& q_{1}=q_{0.0} \tag{2}
\end{align*}
$$

From (1),

$$
\begin{array}{ll}
\frac{q_{0}}{R}=\frac{q_{0} \cdot 1}{R \cdot}+\frac{\varepsilon}{Q} & \text { Ans: } \\
q_{0}=\xi_{1} \cdot 1^{*} & R \cdot E=q_{0}+q_{1} \\
q_{0}=1^{A} \rightarrow \text { (3) } & R \cdot E=1^{*}+1^{n 0}
\end{array}
$$

pub eq (3) in eq (2)

$$
q_{1}=1 * 0 \quad R-e=1 * 0 .
$$

(2)

SI:

$$
\begin{aligned}
R & =Q+R P \\
& \Rightarrow R=Q P *
\end{aligned}
$$

sa: Eifminate unreachabe state
DHere no unreachabce stak so no need to eliminate. se: waite the transition equation of each state.

$$
\begin{align*}
& q_{1}=q_{1} \cdot 0+\& \longrightarrow(1) \\
& q_{2}=q_{1} \cdot 1+q_{2}(0+1) \longrightarrow
\end{align*}
$$

From (1),

$$
\begin{aligned}
& \frac{q_{1}}{R}=\frac{q_{1}}{R} \cdot \frac{0}{P}+\frac{\xi}{Q} \\
& q_{1}=\xi \cdot 0^{*} \\
& \quad q_{1}=0^{x} \rightarrow(3)
\end{aligned}
$$

sub eq(3) in eq (2),
Ans :

$$
\begin{aligned}
& \frac{q_{2}}{R}=\frac{O^{*} 1}{Q}+\frac{q_{2}}{R} \frac{(O+1)}{P} \\
& \sqrt{q_{2}=0^{*}\left((0+1)^{*}\right.}
\end{aligned} \quad \begin{array}{r}
R \cdot E=\theta^{*}+ \\
O^{*}(0+1)^{*}
\end{array}
$$

(3)

(Step 1 and Step2 are same as in sum number (10).)
S3:

$$
\begin{aligned}
& q_{0}=q_{0} \cdot 1+\varepsilon_{1} \rightarrow \text { (1) } \\
& q_{1}=q_{0}(0+1) \rightarrow \text { (2) } \\
& q_{2}=q_{1} \cdot 0 \rightarrow \text { (3) }
\end{aligned}
$$

From (1)

$$
\begin{align*}
& \frac{q_{0}}{R}=\frac{q_{0} .1}{R}+\frac{\xi}{Q} \\
& q_{0}=\xi_{1} 1^{*} \\
& q_{0}=1 * \tag{4}
\end{align*}
$$

From (2), qub (\#) in eq (2)

$$
\begin{align*}
q_{1} & =q_{0}(0+1) \\
& =1 *(0+1) \\
q_{1} & =1 *(0+1) \tag{5}
\end{align*}
$$

Ans:

$$
\begin{aligned}
R \cdot E= & q_{1}+q_{2} \\
R \cdot E= & 1 *(0+1)+ \\
& 1 *(D+1) \cdot 0
\end{aligned}
$$

Sub eq (5) in eq(B)

$$
q_{2}=1 *(0+1) \cdot 0
$$

(4)

(step 1 and step 2 are same as in sum number (1)) S3: urite the transition equation of each stak.

$$
\begin{aligned}
& q_{1}=q_{1} \cdot a+\varepsilon \rightarrow \text { (1) } \\
& q_{2}=q_{2} \cdot b+q_{1} \cdot b \rightarrow \text { (2) } \\
& q_{3}=q_{2} \cdot a \rightarrow \text { (3) }
\end{aligned}
$$

From(1),

$$
\begin{aligned}
& \frac{q_{1}}{R}=\frac{q_{1} \cdot a}{R}+\frac{\xi}{Q} \\
& q_{1}=\frac{q \cdot a *}{} \\
& q_{n}=a^{*} \rightarrow \text { (H) }
\end{aligned}
$$

oub (4) in eq (2),
Ans:

$$
\begin{aligned}
& \frac{q_{2}}{R}=\frac{a^{*} b}{Q}+\frac{q_{2}}{R} \cdot \frac{b}{P} \\
& q_{2}=a^{*} b b^{*}
\end{aligned}
$$

(5)

soln:-
(stepl and step2 are same as in sum number (1)?

S3: Find the transition equation of each state

$$
\begin{aligned}
& q_{1}=q_{1} \cdot 0+\varepsilon_{1} \rightarrow(1) \\
& q_{2}=q_{1} \cdot 1+q_{2} \cdot 1 \rightarrow \text { (2) } \\
& q_{3}=q_{2} \cdot 0 \rightarrow \text { (3) }
\end{aligned}
$$

From (1),

$$
\begin{aligned}
& \frac{q_{1}}{R}=\frac{q_{1}}{R} \cdot 0+\frac{\xi}{P} \\
& q_{1}=\xi \cdot 0^{*} \\
& q_{1}=0^{*} \rightarrow \text { (H) }
\end{aligned}
$$

Rub (H) in eq (2),

$$
\begin{aligned}
& \frac{q_{2}}{R}=0^{*} \cdot 1+\frac{q_{2}}{R} \cdot \frac{1}{P} \\
& q_{2}=0^{*} 11^{*} \rightarrow \text { h } \\
& R \cdot E=q_{1}+q_{2} \\
& R \cdot E=0^{*}+0^{*} 11 *_{*}
\end{aligned}
$$

(6)

Cstepl and step 2 are same as in sum number (11)) S_{3} : Find the transition equation of each state.

$$
\begin{aligned}
& q_{1}=q_{2} \cdot 1+q_{3} \cdot 0+\varepsilon \rightarrow(1) \\
& q_{2}=q_{1} \cdot 0 \rightarrow(2) \\
& q_{3}=q_{1} \cdot \rightarrow(3)
\end{aligned}
$$

$$
q_{4}=q_{2} \cdot 0+q_{3} \cdot 1+q_{4} \cdot(0+1)
$$

qub (2) \& (3) in egn (1)

$$
\begin{aligned}
& q_{1}=q_{1} \cdot 01+q_{1} \cdot 10+\varepsilon \\
& \frac{q_{1}}{R}=\frac{q_{1}}{R} \frac{[01+10]}{P}+\frac{\xi}{Q} \\
& q_{1}=(01+10)^{*} \\
& R \cdot F=(01+10)^{*}
\end{aligned}
$$

CStep 1 and step, are same as sum number (1) $?$ S3: vrite the transition equation for each state.

$$
\begin{aligned}
& q_{1}=q_{1} \cdot 0+q_{3} \cdot 0+\varepsilon \rightarrow 0 \\
& q_{2}=q_{1} \cdot 1+q_{2 \cdot 1}+q_{3} \cdot 1 \rightarrow \\
& q_{3}=q_{2} \cdot 0 \rightarrow \text { (3) }
\end{aligned}
$$

Qub eq (3) in eq (2) $\Rightarrow q_{2}=q_{1} .1+q_{2.1}+q_{2.01}$

$$
\begin{aligned}
& \frac{q_{2}}{R}=\frac{q_{1} 1}{Q}+\frac{q_{2}}{R} \frac{\left.C_{1}+01\right]}{P} \\
& q_{2}=q_{1} \cdot 1(0+01)^{*} \rightarrow(4)
\end{aligned}
$$

qub (4) in eq(3) $\Rightarrow q_{3}=q \cdot 1(1+01) * 0$

$$
\begin{align*}
\text { sub (5) in eq(1) } \Rightarrow & q_{1}=q_{1} \cdot 0+q \cdot 1(0+01)^{*} 00+\varepsilon_{e} \tag{5}\\
& q_{1}=q_{1}\left[\frac{\left.0+1(1+01)^{*} 00\right]}{R}\right]+\frac{\varepsilon}{Q} \\
R \cdot E & \left.=(0+1)(1+01)^{*} 00\right)^{*}
\end{align*}
$$

EQUIVALENCE AND MINIMIZATION OF FINITE AUTOMAT

* MINIMIZATION OF FINITE AUTOMATE:-

Frouss of constructing an equivalent DFA with minimum number of states.

It may be possible that for a given DFA, some of the states may be equivalent cor) they are not distinguishable. Equivalent states from a equivalent class (or) root that is every states from an equivalent class as same transition behaviour.

Then state of a DFA can be divided into group of equivalent class.

* EQUIVALENT STATE:-

Taro state q_{i} \& $q_{j} \in Q$ are said to be equivalent of q_{i} is an accepting state and q_{j} is a non-acepting state, Then gi and q_{j} are distinguishable.

If there is $s^{*}\left(q_{i}, x\right) \in F$ and $s^{*}\left(q_{j}, x\right) \notin F$ (or)

$$
8^{*}\left(q_{j}-x\right) \notin F \text { and } s^{*}\left(q_{j, x}\right) \in F
$$

MINIMIZATION METHOD

1) Myhil-Nerode theorem cor Table Filling Algorithm.
$\Rightarrow \pi$-method cor state Equivalence method.

* I-METHOD/STATE EQUIVALENCE METHOD: -

Initially the states are divided intro groups.
(i.e) final state \& non-final state.

For each group repeat the following steps Until no more groups can be spitted.

Transition on the input symbol is checiced for every state.

If the transition state falls into two different groups, then group is splitied.

* AlGORITHM:-

S1: we aril divide states Q into two different set. one set contains all final states and other set contain all non-final states. This partition is called π_{0}.
S2 : Snitialime $k=1$
S3: Find π_{k} by partitioning the different set of π_{k-1}. In each set of $\pi_{k}-1$ wee will tale all possible pair of states. If tho states of a set are distinguishable, are url spilt the set into different set in π_{k}.
S_{4} : stop when $\pi_{k}=\pi_{k-1}$
Sn: All states of 1 set are merged into 1. Number of states in minimized DFA will be equal to number of set in π_{k}.

* MYHIL - NFRODE THEORFM/TABLE FILING METHOD:-
* Procedure: -

S1: construct a fable for all pair of states (P, Q). Initially all are unmariced.

S2: considers every state pair (P, Q) in the $D F A$ where $P \in f i n a l$ \& $Q \notin f i n a l$ and vice versa.
S3: Then mare the pair (P, Q)
sH: Repeat this step Until no more mark can be made. If there is a unmarred pair (P, Q) mark it if the pair $\delta(p, a) \& \delta(Q), a)$ is marked same input alphabet. sh: combine all the unmarred pair and make them as a single state in a minimized DFA.

* ALGORITHM:-
begin
for P in F eq in $Q-F$ do mark (p, q);
for each pair of distinct states (p, q) in $F \times F=10 r$)

$$
(Q-F) \times(Q-F) d O
$$

if for some $9 / p$ symbol $a,(8(p, a), 8(q, a))$ is marked then
begin
mark (p, q)
Recursiuly mark all unmarked pairs on the Dist for (p, q)
and on the list of other pairs that wile
end marked at this step.
else 11 No pair $(8(p, a) \&(q, a))$ is mariced for all i / p symbol a do
put (p, q) on the list for $(8(p, a), \delta(q, q))$ unless end.

PROEJEMS
(1) Miniminge the following DFA

soln :-
(i) TABLF FILING METHOD/MYHILL - NERODE THFOREMA METHOD
sl:

So: check (qo, qri)
$\left.\begin{array}{|c|c|c|}\hline & 0 & 1 \\ \hline \rightarrow q_{0} & q_{1} & q_{3} \\ q_{1} & q_{2} & q_{4}\end{array}\right)$, marked check (qu, qre)

	0	1
q_{0}	q_{1}	q_{3}
q_{2}	q_{1}	q_{4}

$\left.c q_{0}, q_{1}\right) \Rightarrow$ dietingalishable
(q.o. $\left.q_{2}\right) \Rightarrow$ distinguishable
chuck (q.o.ars)
$\left.\begin{array}{|c|c|c|}\hline & 0 & 1 \\ \hline q_{0} & q_{1} & q_{3} \\ \hline q_{3} & q_{2} & q_{4}\end{array}\right) \rightarrow$ marked
$\left(q_{0, q_{3}}\right) \Rightarrow$ distinguishable chuck (q_{1}, q_{2})

	0	1
q_{1}	q_{2}	$\left(\begin{array}{c}4 \\ q_{2}\end{array}\right.$
q_{1}	q_{4}	

check $\left(\mathrm{Or}_{1} \mathrm{r}_{3}\right)$
check $\left(q_{2}, q_{3}\right)$

	0	1
q_{1}	q_{2}	q_{4}
q_{3}	q_{2}	q_{4}

	0	1
q_{2}	q_{1}	$\left(\begin{array}{l}4 \\ q_{3}\end{array}\right.$
q_{2}	q_{4}	

$\left(q_{2}, q_{3}\right)$ are equivalent state
$\left.c_{1}, q_{3}\right)$ are equivalent state
so:

SH: UNMARKED PAIRS,

$$
q_{1} \equiv q_{2}, q_{1} \equiv q_{3}, q_{2} \equiv q_{3}
$$

$$
\therefore q_{1} \equiv q_{2} \equiv q_{3}
$$

	0	1
$\rightarrow q_{10}$	q_{123}	q_{123}
q_{123}	o_{123}	w_{4}
q_{44}	α_{14}	q_{14}

(ii) π-METHOD
sI: Find the ito state equivalence

$$
\begin{aligned}
\pi_{0} & =[F S][N F S] \\
& =\left\{q_{4}\right\}\{\underbrace{q_{0}, q_{1}, q_{2}, q_{3}}_{2}\}
\end{aligned}
$$

3

0	q_{0}	q_{1}	q_{2}	q_{4}
1	q_{1}	q_{2}	q_{1}	q_{2}
	q_{3}	q_{4}	q_{4}	q_{1}

	q_{0}	q_{1}	q_{2}	$q_{3} 26$
0	129	105	125	105
1	112	112	11	110

82

$$
\pi_{1}=\left\{q_{1}\right\}\left\{q_{0}\right\}\{\underbrace{\left.q_{1} q_{2} q_{s}\right\}}_{4}
$$

	q_{1}	q_{1}	q_{3}
0	q_{2}	q_{1}	q_{3}
1	q_{4}	q_{4}	q_{4}

	q_{1}	q_{2}	q_{3}
0	(4)	(4)	(4)
1	(1)	(1)	$11)$

\therefore The aboue rable are of same. So, there is no partition.

$$
q_{1}=q_{3}=q_{3}, q_{1}, q_{0}
$$

TPANOITION TMBLE

	0	1
$\rightarrow q_{0}$	q_{103}	q_{103}
w_{129}	q_{103}	q_{H}
$\rightarrow q_{4}$	q_{4}	q_{4}

(3) Miniminge the following DFA

oosn:-
For conuenience,

2:

	q_{0}	q_{1}	q_{2}	q_{3}
0	q_{1}	q_{2}	q_{1}	q_{2}
1	q_{3}	q_{4}	q_{4}	q_{4}

	q_{0}	q_{1}	q_{2}	q_{3}
0	(2)	(2)	(2)	(2)
1	$12)$	(1)	(1)	$11)$

Ω_{2} :

$$
\begin{aligned}
& \pi_{1}=\left\{q_{4}\right\}\left\{q_{0}\right\}\{\underbrace{\left\{q_{1} q_{2}, q_{3}\right\}}_{4} \\
& \begin{array}{l|l|l|l|l|l|l}
1 & q_{3} & & q_{1} & q_{2} & q_{3} \\
\hline & q_{1} & q_{2} & q_{3} & 0 & (4) & (4) \\
\hline 0 & q_{2} & q_{1} & q_{2} & (4) \\
1 & q_{4} & q_{4} & q_{4} & 1 & (1) & \text { (1) }
\end{array} \\
&
\end{aligned}
$$

4:
\therefore The aboue table are of same. \&o, there is no partition.

$$
q_{1} \equiv q_{2} \equiv q_{3}, q_{4}, q_{0}
$$

trantition diautram

tpanition table

	0	1
$q_{q_{0}}$	q_{123}	q_{123}
q_{123}	q_{123}	q_{4}
q_{4}	q_{4}	q_{4}

(2) Minimime the following DFA

Sosn:-
For conuenience,

8	0	1
$q_{q_{0}}$	q_{3}	q_{1}
q_{1}	q_{2}	q_{5}
w_{2}	q_{2}	q_{5}
q_{3}	q_{0}	q_{4}
q_{4}	q_{2}	q_{5}
q_{5}	q_{5}	q_{5}

SI: Find the π_{0} state equivalent

$$
\left.\begin{array}{rl}
\pi_{0} & =\underbrace{\left\{q_{1}\right\}\{N F S\}}_{(1)} \\
& \left.=q_{1}, q_{4}\right\}
\end{array}\right\} \underbrace{\left.q_{0}, q_{3}, q_{r}\right\}}_{(2)}\}
$$

chuk (1):

	q_{1}	q_{2}	q_{4}
0	q_{2}	q_{2}	q_{2}
1	q_{5}	q_{n}	q_{5}

	q_{1}	q_{2}	q_{4}
0	(1)	(1)	(1)
1	(2)	(2)	(2)

No need to splift $q_{1} \equiv q_{2} \approx q_{H}$. All are equivalent cheuk (2):

$$
\text { s2: } \quad \pi_{1}=\left\{q_{11} q_{2}, q_{4}\right\}\left\{\begin{array}{c}
\text { (1) }
\end{array} \quad\left\{q_{0}, q_{3}\right\} \quad\left\{q_{k}\right\}\right.
$$

chack e 3):

	q_{0}	q_{3}
0	3	3
1	1	1

\{oo. q,$\} are equivalent states:$

$$
J_{k}=\pi_{k-1}
$$

transition diagram

transition table

8	0	1
$\rightarrow q_{03}$	q_{03}	q_{124}
$* q_{124}$	q_{124}	q_{5}
q_{5}	q_{5}	q_{5}

(3) MINIMIEE THE FOLLOWING DFA

Coin:-
(using table killing method).
31:

s2: check (qo, q,)
checte (qo, q_{2})

$\left(q_{0}, q_{1}\right)=d l_{s}$ tinguishable
check (q_{0}, q_{3})

	0	1
q_{0}	q_{1}	$\left(q_{2}\right.$
q_{3}	q_{2}	q_{4}

(qo, q_{3}) $=$ distingupshable cheek $\left(q_{1}, q_{3}\right)$

	0	1
q_{1}	q_{2}	q_{4}
q_{3}	q_{2}	q_{4}

$\left(q_{1}, q_{3}\right)$ is equivalunf a take

S3: UNMARKED STATE: $q_{0} \equiv q_{2}, q_{1} \equiv q_{3}, q_{4}$.

(4)

Soth:-
For conuenfence,

8	O	1
$\rightarrow A$	B	F
B	G	C
$H C$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

B4 π-metnod.
si: $\pi_{0}=\{\notin\}\{N F S\}$

$$
\pi_{0}=\{\cap\} \quad \underbrace{A, B, D, E, F, O 1, H\}}_{2}
$$

chetk (: ?

A	A	B	D	E	F	G	H
O	B	G	C	H	C	G	G
1	F	C	O	F	G	F	C

	A	B	C	D	E	F	G	H
0	(2)	(2)	(1)	(1)	(2)	(1)	$12)$	(2)
1	(2)	(1)	$/$	(2)	(2)	(1)	(2)	(1)

$$
\text { iz: } \pi_{1}=\underbrace{\{T\}}_{1} \underbrace{\{A, E, H\}}_{3}\{B, H\} \quad\{D, F\}
$$

Cheuk (3)

	A	E	G
0	B	H	G
1	F	F	E

	A	E	G
0	(4)	(4)	(9)
1	(5)	(5)	(3)

check (4)

B	H	
0	G	G
1	C	C

	B	H
0	(3)	(3)
1	(1)	$11)$

chect (5)

	D	F
0	C	C
1	π	G

	F	F
0	(1)	(1)
1	(3)	(3)

$$
\pi_{2}=\{C\}\left[\begin{array}{ccc}
\{B, H\} & \{D, F\} & \{A, F\} \\
6 & \{G\}
\end{array}\right.
$$

cheek (0)

$$
\begin{array}{r|r|r}
\hline-H \\
\hline 0 & G & G \\
\hline 1 & C & C
\end{array}
$$

$$
\begin{array}{c|c|c}
8 & 8 & 1+ \\
\hline 0 & 19) & (9) \\
\hline 1 & 119 & (19
\end{array}
$$

cheer (T) :

$$
\begin{array}{l|l|l}
& A & F \\
\hline 0 & B & H \\
\hline 1 & F & F
\end{array}
$$

$$
\begin{array}{c|c|c}
& A & E \\
\hline 0 & (6) & (6) \\
\hline 1 & (7) & (75
\end{array}
$$

Trandition table

δ	O	1
$* C$	$A E$	C
$D H$	C	$G 1$
G	O	$A F$
$B H$	G	C
$A H$	$B H$	$D F$

TEAMSITIDN DIAGRAM

REGULAR EXPRESSION INTO MINIMIZED DFA: $3 Z$
Si: Conuett Regular Expression into \& NFA using Thomson's Rule.
62. Convert \&-NFA to DFA directly
s3: compute miniminged DFA.
(1) Convert the Regular Expression into miniminged DF $A(a+b)^{*} a b b$.
Si: convert R,E to ε E-NFA.

S2: \&-NFA to DFA
32.1 : compute $\&$-closure of each state.
ξ - hosure (1) $=\{1,2,3,5,8\}$
$\varepsilon-\cos$ whe $(2)=\{2,3,5\}$
E-chosure (3) $\sim\{3\}$
$\xi-\cos w r e(4)=\{2,3,4,5,7,8\}$
ε-claswure (5) $=\{\pi\}$
$\{$-closwre (0)- $\{2,3,5,6,7,8\}\}$
ξ-closure (t) $=\{2,3,5,7,2\}$
ξ - $\cos \omega \operatorname{ter}(2)=\{1\}$
$\xi-\operatorname{doswre}(9)=\{9\}$
4 - closure (10) $=\{10\}$
ε-closure $415=\{11\}$
S2.2: Jake the \&-closure of initifal state

$$
\varepsilon \text {-chosure }(1)=\{1,2,3,5,8\}
$$

S2.3: Write the tramsition of input alphabet a, b

$$
\begin{array}{ll}
a & b \\
3 \rightarrow 4 & 5 \rightarrow 6 \\
s \rightarrow 9 & a \rightarrow 10 \\
10 \rightarrow 11
\end{array}
$$

So.4 : Find the extended transition.

$$
\begin{align*}
& \hat{\delta}(A, a)=\xi-\operatorname{closure}(\&(\hat{B}(A, \varepsilon), a)) \\
& =\varepsilon \text { - } \cos \text { ure }(s(\{b, a, 3,5,8\}, a)) \\
& =\varepsilon \text {-cosure (}\{4,9\} \text {) } \\
& =\xi \text {-closure (} A \text {) } \cup \mathrm{s} e \text {-closure (} a) \\
& \text { - }\{2,3,4,5,7,8,9\} \tag{B}
\end{align*}
$$

$$
\begin{aligned}
& \hat{\delta}(A, b)=\xi \text {-clos wee }(\delta(\hat{8}(A, S l), b)) \\
& =s \text {-clorure }(\&(\{1,2,3,5,8\}, b)) \\
& =\xi \text { - closwes }(\{6\} \text {) } \\
& =\{3,3,5,6,7,8\} \rightarrow \text { (C) } \\
& \hat{\delta}(B, a)=s \cdot \text { closwata }(\&(\hat{b}(B, S), a)) \\
& =\{\text {-cosute }(4(\{2,3,4,4,8,9\}, a)) \\
& =8 \text {-closwu }(\{4,9\}) \\
& =s e \text {-closwer (4) } \because \varepsilon \text {-closure (a) } \\
& =\{2,3,4,5,4,8,9\} \rightarrow(B) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\delta}(B, b)=s \text { - dosure }(s(\hat{s}(B, s e), b)) \\
& =S \text {-closwure } C \&(\{2,3,4,5,7,8,9\}, b)) \\
& \text { - se-closure (}\{6,10\} \text {) } \\
& \text { = Se-Closute (6) U Se-closwte (10) } \\
& =\{2,3,5,6,7,8,10\} \rightarrow \text { (D) } \\
& \hat{\delta}(c, a)=\{\text {-closure }(\delta(\hat{b}(c, u), a)) \\
& \text { - s-closure }(8((2,3,5,6,4,43,9)) \\
& =4-\text { elosure }((4,93)
\end{aligned}
$$

$=\&-\cos w r e$ (4) प \& - $\cos w n$ (a)

$$
\begin{aligned}
& =\{2,3,4,5,7,8,9\} \\
& \hat{8}(c, b)=\{\text {-closure }(\&(\hat{\&}(c, \xi), b)) \\
& =\varepsilon \text {-closwes }(8(\{2,3,5,6,+, 8\}, b)) \\
& =a \text {-closure }(\{6\}) \\
& =\{2,3,5,6,7,8\} \\
& \hat{s}(D, a)=\hat{q}-\operatorname{cosure}(\delta(\hat{s}(D, 4), a)) \\
& =\xi-\operatorname{cosur}(s(\{2,3,5,6,7,8,10\}, a)) \\
& =\varepsilon \text {-dosure (}\{4,9\} \text {) } \\
& =s \text {-closure (4) ט Se-closuse (9) } \\
& =\{2,3,4,5,7, k, 9\} \\
& \hat{B}(D, b)=q-\cos u x(\varepsilon(\hat{\delta}(D, G), b)) \\
& =\varepsilon \text {-closure }(8(\{2,3,5,6, T, 8,10\}, b)) \\
& =\xi \text {-closuse (}\{6,11\} \text {) } \\
& =\sec \text {-cosux (} 6 \text {) ט\&-closuse (11) } \\
& =\{2,3,5,6,7,4,11\} \\
& \hat{B}(E, a)=S \varphi \text {-cosux }(\delta(\hat{s}(E, \xi), a)) \\
& =\xi-\cos u x(\&(\{2,3,5,6,1,8,11\}, a)) \\
& \because=\sec -\cos u x(\{4,9\}) \\
& =\{2,3,4,5,4,6,9\} \\
& \dot{\delta}(E, b)=\xi-\cosh x(\&(\hat{\delta}(E, c), b)) \\
& =s i \text {-cosux }(8(\{2,3,5,6,7,8,11\}, b)) \\
& =\varepsilon-\operatorname{cosur}(\{6\}) \\
& =\{2,3,5,6, T,:\} \rightarrow \text { (c) }
\end{aligned}
$$

S2.5: Transition Table

B	a	b
$\rightarrow A$	B	C
B	B	D
$C C_{i}$	B	C
D	B	E
$H E$	B	C

S3: compute miniminged DFA (MyHPll)

1) check (A, B)
iii) check (A, D)

	O	1
A	B	C
D	B	E

(A, D) ax distinguishable vi) check (C, D)

$(1, D) a x$ distinguishabl
ii) check (A,C)
v) check (B, D)
(B, D) are distinguishable

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline & 0 & 1 \\
\hline A & B & C \\
\hline C & B & C \\
\hline(A, C) \text { ax } \\
\text { equivalent }
\end{array} \\
& \text { (}
\end{aligned}
$$

iv) check ($B, 1$)

	B	C
0	B	D
1	B	C

$C B, 1$ ar
distinguishable

	0	1
B	B	C
B	B	D

(A, B) are
distinguishable

UNMARKED PAIR:-

$$
A \equiv C
$$

TRANSITION TABLE:-

	a	b
$\rightarrow A C$	B	$A C$
B	B	D
D	B	E
$A E$	B	$A C$

transition diagram.
(2) convert Regular Expression into Miniminge DFA

$$
(x+y) x(x+y)
$$

son :-
SI: convert R.E to a-NFA

s3: f-NFA to DNA
ss.1: compute is-closure of each stake
ξ - cleswer 115 : $\{1,2,4\}$

$$
s-\cos u x(x)=[2]
$$

$$
\text { 4-iloswu }(9)=\{3,6\}
$$

sq-doserar (H) $=\{4\}$
$\&$ - dosure (n $\}$. $\{5,6\}$
4 -closwer 10$\}$ - \{1\}
se-closwer (7 T $)=\{7,8,4,11,14\}$
S2.2 : Take the \&-closure of onftial spate

$$
A \text {-closure } H 1=\{1,2,43 \rightarrow(A)
$$

S2.3: write the transition of input alphabets x, y.

x	y
$y \rightarrow 3$	$y \rightarrow 5$
6	$\rightarrow 7$
$9 \rightarrow 10$	$H 12$

Q2. 4 : Find the extended fransition

$$
\begin{aligned}
\hat{\delta}(A, x) & =\xi-\cos \operatorname{are}(\delta(\hat{\delta}(A, \xi), x)) \\
& =4-\operatorname{closures}(t(\{1,2,43, x)) \\
& =\{\text {-chosure }(\{3\}) \\
& =\{3,6\} \rightarrow(B)
\end{aligned}
$$

$$
\begin{aligned}
\hat{\delta}(A, y) & =s_{y} \text {-chosuse }(s(\hat{\delta}(A, 4), y)) \\
& =\{\text {-chosur }(A(\{1,2,4,\}, y)) \\
& =x \text {-choswu }(15 y) \\
& =\{5,6 y \rightarrow(C)
\end{aligned}
$$

$$
\begin{aligned}
& \xi-\operatorname{cosman}(A)=\{8,9,11\}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=\cos \text { cure }(10)=\{10,13,8,9,11,14\} \\
& \{\text {-ctosure }(11)=\{11\} \\
& S-\operatorname{descoth}(12)=\{12,13,8,14,9,11\} \\
& \xi-\cos \text { wie }(13)=\{13,44,4, a, 11\} \\
& \text { Se-closwer (14) }=\{1+\} \\
& \text { Se - closwer (14)= }\{1+\}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\delta}(B, x)=\xi \text { - } \cos \text { ure }(\delta(\hat{8}(B, G), x)) \\
& \text { - } \varepsilon \text {-closure }(8(\{3,0\}, x)) \\
& \text { - } \varepsilon \text {-closure }(\{7\}) \\
& =\{7,8,9,11,14\} \\
& \hat{B}(B, Y)=\varepsilon \text {-choswee }(B(\hat{s}(B, z), Y)) \\
& =\text { se-closure }(8(\{3,6\}, y)) \\
& =\varnothing \\
& \hat{\delta}(c, x)=\xi-\operatorname{closwte}(\delta(\hat{B}(c, \xi), x)) \\
& =s e-\cos \omega \cos (\&(\{5,6\}, x)) \\
& =s \text { - - losure }(\{7\}) \\
& =\{7,8,9,11,14\} \\
& \hat{\delta}(c, y)=\xi \text { - closure }(\varepsilon(\hat{\delta}(c, \varepsilon), y)) \\
& =\text { se-closure }(\delta(\{5,6\}, y)) \\
& =\text { se - clogure }(\{7\}) \\
& =\{r, 8, \alpha, 11,14\} \rightarrow \\
& \text { - } \varnothing \\
& \hat{S}(D, x)=S \text {-closute }(8(\hat{8}(b, u), x)) \\
& =3 e \text {-closure }(8(\{7,8,9,11,14\}, x)) \\
& =\{e-\text { closure (}\{10\} \text {) } \\
& =\{8,9,10,11,13,14\} \rightarrow(E)
\end{aligned}
$$

$$
\begin{align*}
\hat{8}(D, y) & =\xi \text {-chesures }(\delta(\hat{\delta}(D, \xi), y)) \\
& =\varepsilon \text {-closure }(8(\{T, 4,9,11,14\}, y)) \\
& =4 \text {-closure (12) } \\
& =\{8,9,11,12,13,14\} \rightarrow(F)
\end{align*}
$$

$$
\begin{align*}
\hat{8}(E, x) & =\{\text {-chosure }(8(\hat{8}(E, 4), x)) \\
& =\{\text {-chesure }(8(\{8,9,10,11,13,14\}, x)) \\
& =\{\text {-closure }(\{10\}) \\
& =\{8,9,10,11,13,14\} \rightarrow E)
\end{align*}
$$

$$
\begin{align*}
\hat{\delta}(E, y) & =\varepsilon \text {-closwee }(8(\hat{s}(\varepsilon, 4), y)) \\
& =\varepsilon \text {-closwer } 18(18,9,10,11,13,14\}, y)) \\
& =\varepsilon \text {-closuce }\{12\} \\
& =\{8,9,11,12,13,14\} \rightarrow-(F) \tag{F}
\end{align*}
$$

$$
\hat{\delta}(F, x)=\xi-\cos \omega \operatorname{c}(\delta(\hat{\delta}(F, \xi), x))
$$

$$
=\xi \text {-closure }(8(\{8,9,11,12,13,14\}, \infty))
$$

$$
=\xi-\text { closure }(\{10\})
$$

$$
=\{8,9,10,11,13,14\}
$$

$$
\begin{aligned}
\hat{8}(F, y) & =\xi-\text { closure }(\delta(\hat{8}(F, 4), y)) \\
& =\xi-\text { chorwies }(8(\{8,9,11,12,13,14\}, y)) \\
& =\xi \text {-closure }(\{12\}) \\
& =\{8,9,11,12,13,14\} \rightarrow E)
\end{aligned}
$$

825: Transition Tabte

q	x	y
$\rightarrow A$	B	c
B	D	ϕ
C	D	ϕ
$* D$	E	F
$*$	E	$\&$
$*$	F	E

2 3: compute minimemged DFAC T-method)

$$
\begin{aligned}
\pi_{0} & =[F S][N F S] \\
& =\{\underbrace{D, F, F}_{1}\{\underbrace{\triangle, B, C\}}_{2}
\end{aligned}
$$

cheek $\{D, E, F\}$

	D	E	F		D	E	F
x	E	E	F	IV	$11)$	$11)$	
y	F	F	F	y	11	(1)	(1)

cheek $\{A, B, C\}$

	A	B	C
x	B	D	D
y	C	\varnothing	\varnothing

A	B	C	
y	(0)	(1)	(1)

$$
\pi_{1}=\begin{array}{ccc}
\{D E F\} & \{A\} & \{B C\} \\
1 & 3 & 4
\end{array}
$$

x	0	c
y	0	y
0	0	

8	c	
x	11	
y	110	

$$
\pi_{3}=\{D F F]\{A\}\{B C\}
$$

TRANSITION TABCE :-

	x	y
$\rightarrow A$	$B C$	$B C$
$B C$	$D E F$	\varnothing
$B D F$	$D F F$	DEF

TEANSIFION DIA GTEAMA:-

PROVING LANGUAGE NOT TO BE REGULAR
PUMPING +EMMA
Pumping stemma is used to check whether the given string is accepted by regular sit cor not.

APPLILATION: It is used to check whether the language is regular (or) not.
THEOREM:-
Let α be a regular Language (or) set then there is a constant ' n ' such that if ' z ' is any word (or) any string in α and $|z| \geq n$, then we can write $z=u v w$ such that
(i) $|u v| \leq n$
(ii) $|v| \geq 1$
(iii) for alt $i \geq 0$, uni $\in \perp$

PROBLEMS
Show that the given language is regular cor not spry- (1) $L=\left\{a^{n} b^{n} / n \geq 1\right\}$
SI: Assume + is regular language /set
s_{2} : Identify the language.

$$
\left.\alpha=\left\{a b, a^{2} b^{2}, a^{5} b^{3}, \ldots\right\}\right\}
$$

S3: Jake any one above string as z

$$
z=a^{2} b^{2}
$$

84: Write Fumping summa Theorem,

$$
\text { if }|z| \geq n \text { then } z=u \times w \text {, }
$$

To prove (i) $|u v| \leq n$
(ii) $|v| \geq 1$
(iii) for all $i \geq 0$, then $z=u v^{\top} \omega \in L$

Sn: $\quad|z| \geq n$

$$
\begin{aligned}
|a a b b| & \geq 2 \\
4 & \geq 2 \text { (true) } \\
z= & a|a| b b \\
& u v w
\end{aligned}
$$

$$
\text { (i) }|u x|=|a a|=2 \leq 2 \text { (True) }
$$

(ii) $|v|=|a|=1 \geq 1$ (true)
(iii) for all $i=0, u v^{i} \omega \in 1$ $a(a)^{\circ} b b$

$$
a b b \notin+(f a b e)
$$

for all $i=1, u v^{i} w \in L$

$$
a(a)^{\prime} b b \in \perp \text { (True) }
$$

for all $i=2, u v^{i} \omega \in \alpha$

$$
a(a)^{2} b b \nmid
$$

$a a a b b \notin L$ (fam)
\therefore The given Language is not regular.
(2) $L=\left\{\omega \omega / \omega \in(0,1)^{*}\right\}$
son:-
SI: Assume 1 is regular language (or)set
S2: Identify the language

$$
1=\{00,11,1010,10011001 \ldots \ldots\}
$$

S3: Jake $z=1010$.
st If $121 \geq n$, then $z=$ aver
To proust (i) $|a v| \leq 0$
(ii) $|v| \geq 1$
(iii) for all $8,0,2=u v^{q} w \in b$
$36:|2| \geq n$
$|1018| \geq=$
$H \geq 2$ (True)

$$
==1 \left\lvert\, \begin{array}{l|l}
a & 0 \\
v & 0
\end{array}\right.
$$

(i) $|u r|=|10|=2 \leq 2$ (true)
(ii) $|\mathrm{y}|=101=1 \geq 1$ (Trot)
(iii) for all $t=0, \quad u r^{P} w t+$ $1(0)^{\circ} 10 \mathrm{c} / \alpha$ $110 t+$ posse?
for all $i=2, \quad u v^{i} w+\lambda$

$$
1(0)^{2} 10<4
$$

$10010 e^{\prime}+$ false?
(3) $L=\left\{a^{i^{3}} / p \geq 1\right\}$ the given language is not regular. soon:-
S1: Assume + is a regular language cor set
S2: solentify the language

$$
t=\left\{a^{1}, a^{4}, a^{9}, \cdots,\right\}
$$

S3: Jake $z=a^{H}$
sh: Write pumping Lemma Theorem,

$$
\text { If }|z| \geq n \text { then } z=\text { uvea }
$$

To prove (i) $|u v| \leq n$
(ii) $|v| \geq 1$
(iii) for all iso, then $z=u y^{i} w \in L$
$85: \mid 21 \geq n$
|aa9a|?2
H 22 (True)

$$
z=\left.\left.a\right|_{u}\right|_{v} a_{w}^{a}
$$

(i) $|u x|=|a|=2 \leq 2$ (Truce)
(ii) $|v|=|a|=1 \geq 1$ (True)
iii) for all $i=0, u r^{i} w \in L$

$$
a\left(a^{0}\right) a a \notin+
$$

aaa $\& \&$ (False)
for all $i=1$, up $w+1$

$$
a\left(a^{\prime}\right) a a \in 1
$$

aaaa $\in+$ (True)
for all $i=2, u v^{i} w \in L$

$$
\begin{aligned}
& a\left(a^{2}\right) a a t^{\prime}+ \\
& \text { aaaaa } \ell+\text { (False) }
\end{aligned}
$$

\therefore The given language is not regular.
(H) $L=\left\{a^{p} / p\right.$ is a prime $\}$
sold:-
SI: Assume f is a regular language/set
Ss: Identify the language.

$$
\alpha=\left\{a^{2}, a^{3}, a^{5}, a^{7} \ldots \ldots\right\}^{3}
$$

S3: Jake $==a^{3}$
S4: Write the pumping Lima Theorem
If $|z| \geq n$ then $z=u \gamma \omega$
to prove (i) $|u v| \leq n$
(ii) $|x| \geq 1$
(iii) for all $\$ 20,=4 Y^{P} \omega \in L$
$35:|z| \geq n$

$$
|a a a| \geq 3
$$

$3 \geq 3$ (True)

$$
z=a|a| \frac{a}{u}{ }_{v}^{a}
$$

(i) $|u v|=|a a|=2 \leq 3$ (True)
(ii) $|v|=|a|=1 \geq 1$ (Trace)
(iii) for all $P=0, u r^{i} \omega \in 1$

$$
a(a)^{0} a \in \alpha
$$

$a \alpha \in 1$ (True)
for all $P=1, \quad u v^{p} w+1$

$$
a(a)^{\prime} a+2
$$

$$
\text { add } t+\text { etrue) }
$$

for all $i=2, \quad u v^{i} \omega+1$

$$
\begin{aligned}
& a(a)^{2} a \in \perp \\
& \text { aaa } a t+\text { (False) }
\end{aligned}
$$

\therefore The given language is not regular
(5) $\alpha=\left\{\omega \omega^{R} / \omega \in(0,1)^{*}\right\}$
sols:-
SI: Assume + is a regular Sanguage/set.
S2: Identify the Janguage

$$
\alpha=\{0110,1001, \ldots \ldots\}
$$

S3: Jake $z=1001$
S4: Write the pumping Lemma Theorem, If $|z| \geq n$, then $z=u v^{P} \omega$
to prove: ip) $(u v) \leq n$
(ii) $|r| \geq 1$
(iii) for all $i \geq 0, z=4 v^{9} w \in 1$

SK:

$$
\begin{aligned}
& 121>n \\
& 11001 \mid \geq 2(\text { True } \\
& \quad 4 \geq 2(\text { true } \\
& \geq=1\left|\begin{array}{c}
0 \\
y
\end{array}\right| w
\end{aligned}
$$

$$
\text { (i) }|u v|=(10 \mid=2 \leq 2 \text { (True) }
$$

(ii) $|v|=|0|=1 \geq 1$ (trace)
(iii) for all $i=0, u v^{p} \omega \in 1$

$$
\begin{aligned}
& 110)^{\circ} 01 t 1 \\
& 101 \notin 1 \text { (Fave) }
\end{aligned}
$$

for all $P=1, \quad u \times p \omega \in L$

$$
(10)^{\prime} 01 \in L
$$

1001 el Grues
for all $9=2$, uv $W \in L$

$$
\begin{aligned}
& 1(0)^{2} 01 \in+ \\
& 10001 \text { of (false) }
\end{aligned}
$$

\therefore The given language is not regular

CLOSURE PROPERTIES OF REGULAR LANGUAGE:
If certain languages are Regular and a Language ' L ' is formed from them by the certain operations. (Eg: L is the Union of two Regular Language) then L is also Regular) These theorems are often called Closure Property of Regular Language.

Let L and M be a Regular Language then the following languages are all regular.

1) The Union of two Regular Language is Regular: LUM
2) The Intersection of two Regular Language is Regular: L $\cap M$
3) The Complement of a Regular Language is Regular: \bar{N}
4) The Difference of two Regular Language is Regular: $L-N$
5) The Reversal of Regular Language is Regular: $L^{R}=w^{R}$;

$$
w \in L
$$

6) The Closure star of Regular Language is Regular: L^{*}
T) The Concatenation of Regular Language is Regular: LM
7) The Homomorphism [Substitution of a String for symbols] of a Regular Language is Regular.

$$
h(L)=\{h(w) / w \in L, h \text { is homomiuphism }\}
$$

a) The Inverse Homomorphism of a Regular Language is Regular.

$$
h^{-1}(L)=\{\omega \in \Sigma / h(\omega) L, \quad h: \Sigma \rightarrow \Delta \text { is a } \quad \text { homomorphism }\}
$$

I. CLOSURE UNDER UNION:

THEOREM -1
If L and M be Regular Language then LUM is also a Regular.

Proof:
Let $N_{1}=\left(Q_{1}, \Sigma, S_{1}, q_{1}, F_{1}\right)$ be an NFA such that $L=L\left(N_{1}\right)$
$\|^{\text {dy }} N_{2}=\left(Q_{2}, \sum, \delta_{2}, q_{2}, F_{2}\right)$ be an NFA such that:

$$
M=L\left(N_{2}\right)
$$

We may assume that, $Q_{1} \cap Q_{2}=\phi$
From these two NFA's, we will construct an

$$
\text { NFA } \quad N=\left(Q, \Sigma, 8, q_{0}, F\right)
$$

such that: $L(N)=L \cup M$.
Then NFA N is defined as follows:

1) $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$
2) Start State $=q_{0}$
3) $F=F_{1} \cup F_{2}$
4) $\delta: Q \times \sum U\left\{\varepsilon_{\}}\right\} \rightarrow 2^{Q}$ is defined as follows:

For any $r \in Q$ and for any $a \in \sum \cup\{\varepsilon\}$

$$
\delta(r, a)= \begin{cases}\delta_{1}(r, a), & \text { if } r \in Q_{1} \\ \delta_{2}(r, a), & \text { if } r \in Q_{2} \\ \left\{q_{1}, q_{2}\right\}, & \text { if } r=q_{0} \text { and } a=\xi_{1} \\ \phi & \text { if } r=q_{0} \text { and } a \neq \varepsilon_{1}\end{cases}
$$

\therefore NFA N accepts $L\left(N_{1}\right) \cup L\left(N_{2}\right)$
II. CLOSURE UNDER CONCATENATION:

THEOREM - 2 :
If L and M are Regular Language over the
Some alphabet Σ, then LM is also a Regular Language.

Proof :
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, Q_{1}, F_{1}\right)$ be an NFA
such that $L=L\left(N_{1}\right)$
Ils. $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be an NFA
such that $M=L\left(N_{2}\right)$
We assume that, $Q_{1} \cap Q_{2}=\phi$
We will construct a new NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$
such that $L(N)=L M$
NFA N is defined as follows:

1) $Q=Q_{1} \cup Q_{2}$
2) $q_{0}=q_{1}$
3) $F=F_{2}$
4) $\delta: Q \times \sum U\left\{\varepsilon_{e}\right\} \rightarrow 2^{Q}$ is defined as follows.

For any $r \in Q$ and for any $a \in \sum U\{\varepsilon\}$

$$
\begin{gathered}
\delta(r, a)= \begin{cases}\delta_{1}(r, a) & \text { if } r \in Q_{1} \text { and } r \notin F_{1} \\
\delta_{1}(r, a) & , \text { if } r \in F_{1} \text { and } a \neq \varepsilon_{1} \\
\delta_{1}(r, a) \cup\left\{q_{2}\right\} & , \text { if } r \in F_{1} \text { and } a=\varepsilon_{1} \\
\delta_{2}(r, a) & \text { if } r \in Q_{2} \\
- \text { (9) } & \begin{array}{lll}
\text { (O) } & \text { (9) } & \text { (O) }
\end{array}\end{cases}
\end{gathered}
$$

\therefore The NFA N accepts $L\left(N_{1}\right) \cdot L\left(N_{2}\right)$
III. CLOSURE UNDER COMPLEMENTATION:

THEOREM -3:
If L is a Regular Language over alphabet Σ then $L=\Sigma^{*}-L$ is also Regular.

Proof:
Let L be recognized by a $D F A$

$$
A=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

then $\bar{L}=L(B)$ where B is the DFA.

$$
B=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)
$$

(ie) B is exactly like A but the accepting states of A have become the non-accepting states of B and viceversa.

Then w is in $L(B)$ iff Ged $\hat{\delta}\left(q_{0}, w\right)$ is in Q-F, which occurs iff w is not in $L(A)$.

IV CLOSURE UNDER INTERSECTION:
THEOREM:
If L and M are Regular Language then so is $L \cap M$.

Proof:
Let L be recognized by the DFA

$$
A_{L}=\left(Q_{L}, \Sigma, \delta_{L}, q_{L}, F_{L}\right) \quad \text { and }
$$

M by the $D F A, A_{M}=\left(Q_{M}, \sum, \delta_{M}, q_{M}, F_{M}\right)$.
Ne assume that the alphabets of both automata are the same, \sum is the union of alphabet of L and M if they are different.

We also assume w.1.0.9 that both Automata are Deterministics.

We shall Construct an automaton A that simulates both A_{L} and A_{M}.

States of A are pairs of staten, the $1^{\text {st }}$ from A_{L} and $2^{\text {nd }}$ from A_{m}.

If A_{L} goes from state p to state s on the reading " a " and A_{M} ques from state q to state t on reading a then $A_{\text {Lir }}$ will 90 from state (p,q) to state (s, t) on reading ' a '.

Start State of A is the pair of start states of A_{L} and A_{M}.

Since we want to accept iff both automata accept we select as Accepty states of A all pairs (p, q) such that p is an Accepty states of A_{L} and q is Accepty States of A_{M}

MI

MI $\cap M 2$

$\stackrel{\rightharpoonup}{V}$ CLOSURE UNDER DIFFERENCE:
$L-M$ the difference of L and M is the set of strings that are in language L but not in Language M.

THEOREM:
If L and M are regular language then so is $L-M$.

PROOF:
Observe that $L-M=L \cap \bar{M}$
By the theorem-3: If M is Regular Language then \bar{M} is also Regular Language then we can say that \bar{M} is Regular.

By the Theorem -4: If L and M are Regular Language then LกM is also Regular.
$\therefore L \cap \bar{M}$ is also Regular.
$\therefore L-M$ is Regular.

II CLOSURE UNDER REVERSAL:
The reversal of a string $a_{1} a_{2} \ldots a_{n}$ is the String written backwards.
(ie) $a_{n} a_{n-1} a_{n-2} \ldots a_{1}$
$w=w^{R}$
$0100=0010^{2}$

$$
\xi^{2}=\xi
$$

$L=L^{2}$ (Consist of Reversals of all its strings)

For eg: if $L=\{001,10,10111\}$

$$
L^{2}=\{100,01,11101\}
$$

Theorem - 6 :
If L is Regular Language then L^{R} is also Regular.
Proof- I (Using Finite Automate)

$$
L=L(4)
$$

(i) Reverse a / l the arcs in Transition Diagram for A.
(ii) Make the start state of A be the only Accepty state for the new automaton.
(iii) Create a new start state P_{0} with Transition ε to all the accepting state of A.
(ie) "A in reverse"
\therefore Accept a string w iff A accept ω^{R}

Proof - II Using Regular Expression):
Assume L is defined by Regular Expression E
Structural Induction on size of E, we show that there is another Regular Expression E^{R} such that $L\left(E^{\beta}\right)=(L(E))^{\varepsilon}$
(ie) Language of E^{R} is the reversal of the Language of E.

* Basics:

If Regular Expression E in ξ_{0}, ϕ, a. then E^{R} is the same as E.

$$
\text { (ie) }\{\varepsilon\}^{2}=\{\varepsilon\}, \phi=\phi-\{a\}^{k}=\{a\}
$$

* Induction: 3-cases

Case 1: $E=E_{1}+E_{2}$

$$
E^{R}=E_{1}^{R}+E_{2}^{R}
$$

Reversal of the union of two language is obtained by computing the reversals of the two languages and taking the union of those Language.

Case 2: $E=E_{1} E_{2}$ then $E^{R}=E_{1}^{R} E_{2}^{R}$
We reverse the order of the two language as well as a reversing the language themselves.

For eg: if $L\left(E_{1}\right)=\{01,110\}$

$$
L\left(E_{2}\right)=\{00,10\}
$$

then $L\left(E_{1}, E_{2}\right)=\{0100,0110,11000,11010\}$

$$
L\left(E_{1}, E_{2}\right)^{R}=\{0010,0110,00011,01011\}
$$

If we concatenate the reversal of $L\left(E_{2}\right)$ \& $L\left(E_{1}\right)$

$$
\therefore\{00,01\},\{10,011\}=\{0010,00011,0110,01011\}
$$

Same as $L\left(E_{1} E_{2}\right)^{2}$.
In general, If a word w in $L(E)$ is the concatenate of ω_{1} from $L\left(E_{1}\right)$ and ω_{2} from $L\left(E_{2}\right)$ then,

$$
w^{R}=w_{2}^{R} w_{1}^{R}
$$

Case 3: $E=E_{1}^{*}$ then $E^{R}=\left(E_{1}^{R}\right)^{*}$
(i.e) any string ω in $L(E)$ can be written as $\omega_{1} \omega_{2} \ldots \omega_{n}$ where each ω_{i} is in $L(E)$

But $\omega^{R}=\omega_{n}^{R} \cdot \omega_{n-1}^{R} \ldots \omega_{1}^{R}$
Each ω_{i}^{R} is in $L\left(E^{R}\right)$, so w^{R} is in $\left(E_{1}^{R}\right)^{*}$

Conversely, any string in $L\left(E_{1}^{R}\right)^{k}$ is the form of $\omega_{1} w_{2}, \ldots \omega_{n}$, where each ω_{i} is the reversal of a string in $L\left(E_{1}\right)$.

The reversal of this String $\omega_{n}^{R} \omega_{n-1}^{R} \ldots \omega_{1}^{R}$ is
\therefore A String in $L\left(E_{1}^{*}\right)$, which is $L(E)$.
We have thus shown that a String is in $L(E)$ if and only if its reversal is in $L\left(E_{1}^{R}\right)^{*}$.

Vilclusure Under Kleene closure
Theorem:
If L is a Regular Language then L^{*} is also a Regular.

PROOF:
Let L be a Regular Language and
Let $N_{1}=\left(Q_{1},=, S_{1}, q_{1}, F_{1}\right)$ be a NFA that accepts L..
To show that L^{*} is also a Regular.
\therefore New NFA, $L^{*}=\left(Q \cup\left\{q_{s}\right\}, \Sigma, \delta_{s}, q_{s}, F \cup\left\{q_{s}\right\}\right)$
where,

$$
\delta_{s}(q, c)= \begin{cases}\delta(q, c) \cup\left\{q_{0}\right\}, & \text { if } q \in F, c=\xi \\ \delta(q, c) & , \text { if } q \in F, c \neq \xi \\ \delta(q, c) & \text { if } q \in Q-F \\ \left\{q_{0}\right\}, & \text { if } q=q_{s}, c=\xi_{1} \\ \phi, & \text { if } q=q_{s}, c \neq \xi\end{cases}
$$

CLOSURE UNDER HOMOMORPHISM:
A homomorphism is just substitution of strings for letters.

Formally a Homomorphism is a function $h: \Sigma \rightarrow r^{*}$

Homomorphism can be extended from letters to strings $h: \Sigma^{*} \rightarrow \Gamma^{*}$ in a straight forward manner:

$$
\hat{h}(w)= \begin{cases}\varepsilon & \text { if } w=\xi \\ \hat{h}(w) \cdot h(a) & \text { if } w=x a\end{cases}
$$

We can apply homomorphism to languages as well, for a homomorphism h and a language $L \leq \Sigma^{*}$ we define $h(L) \subseteq \Gamma^{*}$ as

$$
h(L)=\left\{h(w) \in r^{*}: w \in L \subseteq \Sigma^{*}\right\}
$$

We define inverse-homomorphism of a language $L \in T^{*}$ as,

$$
h^{-1}(L)=\left\{w \in \Sigma^{*}: h(w) \in L \subseteq r^{+}\right\}
$$

LEMMA:
The class of regular language is closed under homomorphism.

Proof:
Prove for arbitany regular Language L and homomorphism h that $h(L)$ is a Regular Languages. Let E be REGEX accepting L.

REGEX Construction: We claim the REGEX E_{n} defined inductively as

$$
\begin{array}{ll}
E_{h}=\varepsilon_{h}, & \text { if } E=\xi_{1} \\
E_{h}=\phi, & \text { if } E=\phi \\
E_{h}=h(a), & \text { if } E=a \\
E_{h}=F_{h}+G_{h}, & \text { if } E=F+G \\
E_{h}=F_{h} \cdot G_{h}, & \text { if } E=F \cdot G \\
E_{h}=\left(F_{h}\right)^{*}, & \text { if } E=F^{*}
\end{array}
$$

Accepts $h(L)$. (iE) $L\left(E_{h}\right)=h(L(E))$.

Proof of Correctness: Prove that $L\left(E_{h}\right)=h(L(E)) \quad 103$ if $E=\xi$ then

$$
\begin{aligned}
& L H S=L\left(E_{h}\right)=L\left(h\left(\xi_{1}\right)\right)=L\left(\xi_{l}\right)=\left\{\varepsilon_{c}\right\} \\
& \text { RUS }=h(L(E))=h(L(\xi))=h\left(\left\{\xi_{\}}\right\}\right)=\{\xi\}
\end{aligned}
$$

Similarly for $E=\phi$.
if $E=a$, then

$$
\begin{aligned}
& L H S=L\left(E_{h}\right)=L(h(a))=\{h(a)\} \\
& \text { RUS }=h(L(E))=h(L(a))=h(\{a\})=\{h\{a\}\}
\end{aligned}
$$

if $E=F+G$, then

$$
\begin{aligned}
L(h(E))=L(h(F+G)) & =L(h(F)+h(G)) \\
& =L(h(F)) \cup L(h(G)) \\
L(L(E))=h(L(F+G)) & =h(L(F)) \cup h(L(G))
\end{aligned}
$$

From induction hypothesis, both of these expression are equal. Other inductive cases are similar, and hence omitted.
IX. ClOSURE UNDER INVERSE - HOMUMORPHISM:

LEMMA :
The class of Regular Languages is closed under homomorphism.

Proof :
Let $A=\left(S, \Gamma, \delta, S_{0}, F\right)$ be a DFA accepting L and $h: \Sigma \rightarrow \Gamma^{*}$ be an arbitrary homomorphism. We show that the DFA $h^{-1}(A)=\left(S^{\prime}, \Sigma, \delta^{\prime}, \mathcal{S}_{0}^{\prime}, F^{\prime}\right)$ defined below accepts $h^{-1}(L)$.

$$
\begin{aligned}
& S^{\prime}=S, S_{0}^{\prime}=s_{0}, F^{\prime}=F \\
& \delta^{\prime}(s, a)=\hat{\delta}(s, h(a))
\end{aligned}
$$

It is an easy induction over w that $\delta^{\prime}(s, \omega)=\hat{\delta}(s, h(\omega))$. Now since accepting states of A and $h^{-1}(A)$ are the same, $h^{-1}(A)$ accepts ω iff A accepts $h(\omega)$.

UNIT-3
CONTEXT FREE GRAMMAR AND LANGUAGE
CFG-Parse trees - Ambiguity in Grammar \&
Languages - Definition of Dushdoun stomata Languages of $D D A$ - Equivalence of $D D A \& C F G$, Deterministic Pushdown Automata.
CONTEXT FREE GRAMMAR:-
Grammar describes the programming language constructs. If consist of set of terminals, set of Non-terminals, set of production Rules and a start symbol.
where
It is denoted by $G=(V, T, P, S)$
$V \rightarrow$ Variables/Non Terminals
a finite non empty set of non terminal/variables that represent a language (i.es a set of strings These are generally represent by capital letters $A, B, C, D \cdots x, y, z$.
$T \rightarrow$ Terminals
The finite set of symbols from which the sting for the language are formed. These are generally represented by lowercase letters, digits, operators, special characters etc.
$p \rightarrow$ Production Rule
Set of rules that describe the recursive definition of a language. All productions are
of the form $\alpha-\beta$
where $\alpha: A$ ron Terminals (i.e) $\alpha \in V$
β : A combination. of T and V (PIe) $\beta \in(V U T)$
S \rightarrow Start Symbol
Initial non-terminal symbol in the grammar. It represent the language bling defined by the grammar. It is denoted by S.
USE OF CF:-

1) Defining the syntare of programming language
2) Used to help generating parse trees
3) Used for defining the syntactic structure of natural Language.
4) Used in designing and implementation of compilers
5) Used as spuification and implementation of programming language.
Eg: 1
Find CFO for the given proudule $s \rightarrow A B, B \rightarrow b$, $A \rightarrow a B$
son:-

$$
G=(Y, T, P, S)
$$

$$
\begin{aligned}
& V=\{S, A, B\} \quad P=\{S \rightarrow A B, A \rightarrow a B, B \rightarrow b\} \\
& T=\{a, b\} \quad S=S
\end{aligned}
$$

$\mathrm{Fg}: 2$
Find CFG for the given production $E \rightarrow E+E / E A E /$ (E)/Pd.
son

$$
\begin{aligned}
& G=(V, T, P, S) \\
& V=\{E\} \quad P=\{E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E), \\
& T=\{+, *, C,\rangle, i d\} \quad S=\{E\} \quad
\end{aligned}
$$

DERIVATION AND SENTENTIAL FORM
DERIVATION:-
Derivation is a method of replacing the NI present on RHS of a production rulewith a terminal symbol. This is the proves of deriving an input stirring from a set of production rule starts urfa start symbol.

$$
S \underset{G}{*} w / w \in T^{*}
$$

SENTENTIAL FORM:-
If $A \stackrel{*}{\Longrightarrow} \beta$, then β is said to be in sentential form if β contain terminal or Non -terminal.
REPRESENTATION OF DERIVATION:-

1) Derivation form/ Sentential form \longrightarrow WMD
2) Parse Tree \longmapsto LMPT \longleftrightarrow RMPT haring only one parse tree.

LEFT MOST DERIVATION (AMD):-
If at each step in a derivation a production rule is applied to the left most variable it is called as left most derivation.

$$
s \stackrel{\text { lm }}{\Rightarrow} w / \omega \in T^{*}
$$

RIGHT MOST DERIVATION (RID):-
If at each step in a derivation a production rule is applied to the right most variable it is called as right most derivation.

$$
s \stackrel{*}{\Rightarrow} \omega / w \in T^{*}
$$

PROBLEMS
DFind $A M D \& R M D$ of string " 00101 " for the given grammar $G=(Y, T, P, S)$ where

$$
\begin{aligned}
G & =(\{S, A, B\},\{0,1\}, P, S) \\
P: S & \rightarrow A \mid B \\
A & \rightarrow O A / S \mid \\
B & \rightarrow O B / \mid B / S
\end{aligned}
$$

AMD

$$
\begin{aligned}
& s \Rightarrow A^{\prime \mid}[s \rightarrow A \mid B] \\
& \Rightarrow O A \mid B \quad[A \Rightarrow O A] \\
& \Rightarrow \text { OOAIB }[A \rightarrow O A D \\
& \xrightarrow[\mathrm{Im}]{\mathrm{lm}} 001 \mathrm{~B} \quad[A \rightarrow 4] \\
& \Rightarrow 0010 B[B \rightarrow O B] \\
& \underset{\mathrm{Im}}{7} 00101 \mathrm{~B}[B \rightarrow 1 B] \\
& \Rightarrow 00101[B \rightarrow \text { se] } \\
& s \stackrel{*}{\stackrel{*}{m}} 00101
\end{aligned}
$$

$\angle M D$

$$
\begin{aligned}
& S \underset{m}{\Rightarrow} A \mid B[S \rightarrow A \mid B] \\
& \Rightarrow A 1 O B[B \rightarrow O B] \\
& \Rightarrow A 10 \mid B[B \rightarrow 1 B] \\
& \Rightarrow A 101[B \rightarrow 5] \\
& \overrightarrow{\mathrm{m}} \mathrm{\Longrightarrow} O A 101[A \rightarrow O A] \\
& \vec{m} O O A 1 O 1[A \rightarrow O A] \\
& \Rightarrow 00101[A \rightarrow \text { se] } \\
& s \underset{\mathrm{~mm}}{\stackrel{H}{\Longrightarrow}} 00101
\end{aligned}
$$

2) Find $L M D$ \& RMD of $s \rightarrow a S x / b, x \rightarrow x b / a$ for string "aababa".
soln
LMD

$$
\begin{aligned}
& s \Rightarrow a \leq x[s \rightarrow a s \times] \\
& \overrightarrow{\mathrm{Im}} \text { aa } \underline{\Omega} \times \times[s \rightarrow a s \times] \\
& \Longrightarrow a a b \times \times[s \rightarrow b] \\
& \underset{1 m}{\Longrightarrow} a a b \times b \times c \times \rightarrow \times b] \\
& \Rightarrow \overrightarrow{1 m} a a b a b x[x \rightarrow a] \\
& \Rightarrow a a b a b a[x \rightarrow a] \\
& S \xrightarrow[\mid m]{*} a a b a b a
\end{aligned}
$$

RMD

$$
\begin{aligned}
& s \nRightarrow \text { as } x[s \rightarrow a s \times] \\
& \Rightarrow \text { asa }[x \rightarrow a] \\
& \Rightarrow \text { aas } x a[s \rightarrow a s x] \\
& \Rightarrow \text { as } \\
& \Rightarrow \text { aas } \times b a[x \rightarrow x b]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { } a \operatorname{lm} a b a \quad[x \rightarrow a] \\
& \Rightarrow a a b a b a \quad[s \rightarrow b] \\
& s \xrightarrow[m]{\Rightarrow} \text { a } a b a b a
\end{aligned}
$$

3) Find IMD \& RMD of $S \rightarrow b s / a+/ s e, T \rightarrow a T / b u / s e$ and $u \rightarrow a T / \varepsilon$. For the string "bbaa" and also soln draw parse tree
LMD

$$
\begin{aligned}
& s \Rightarrow \text { bs }[s \rightarrow b s] \\
& \Rightarrow \text { bbs [} s \rightarrow b s] \\
& \Rightarrow \text { bbaI[ss } \rightarrow a+] \\
& \Rightarrow \text { bbaaI }[T \rightarrow a+] \\
& \Rightarrow \text { bbaa } c \rightarrow s] \\
& s \underset{\mathrm{Im}^{*}}{\stackrel{*}{7}} \text { bbaa }
\end{aligned}
$$

RMD

$$
\begin{aligned}
& s \Rightarrow \text { bs }[s \rightarrow b s] \\
& \Rightarrow \text { fm bbs }[s \rightarrow b s] \\
& \Rightarrow \text { bbaI }[s \rightarrow a T] \\
& \Rightarrow \text { bbaat }[T \rightarrow a+] \\
& \Rightarrow \text { bbaa }[T \rightarrow \&] \\
& s \stackrel{{ }_{m}}{\stackrel{7}{\Rightarrow}} b b a a
\end{aligned}
$$

parse tree

PARSE TREE/DERIVATION TREE:-
of tree representation for the derivation of the given production rules for a $C F G G=\langle V, T, P, S\rangle$ is called Derivation tree/parse tree.
PROPERTIES TO CONSTRUCT PARSE TREE:-
(i) The root node is alurays a start symbof of ore ie) S
(ii) The leaf nodes are always terminal ' a ' $(P-e)$ $a \in(T \cup\{\&\})$
(iii) The interior nodes are always non-terminals A (i.e) $A p \in V$
(ii) of the children of a node $A, A \in X$ are $x_{1}, x_{2}, x_{3} \ldots x_{n}$ then the production $A \rightarrow x_{1}, x_{2} \ldots x_{n}$ Ps in P.
(Y) when mowed from left to right form a string that is derived from root node?
Fxample-1
Construct the derivation tree for a give string a^{5} for the given grammar $C F G \quad G=(V, T, P, S)$. $s \rightarrow a s a / a$
sols:-
$\stackrel{M D}{\rightleftarrows}$

$$
\begin{aligned}
s & \underset{\mathrm{Im}}{\Rightarrow} \text { asa }[s \rightarrow a s a] \\
& \Rightarrow \text { asa }[s \rightarrow a s a] \\
& \Rightarrow \text { aaaaa }[s \rightarrow a] \\
s & \xrightarrow[\mathrm{Im}]{\Rightarrow} \text { aaaaa } .
\end{aligned}
$$

AMD

$$
\begin{aligned}
& s \rightarrow \text { asa }[s \rightarrow a s a] \\
& \Rightarrow \text { asa }[s \rightarrow a s a] \\
& \Rightarrow \text { aaaaa }[s \rightarrow a] \\
& \Rightarrow \overrightarrow{r m} \\
& s \underset{r m}{\Rightarrow} \text { aaaaa. }
\end{aligned}
$$

Parse tree

Example 2
Generate the parse free for the string $w=-(c d+p d)$ of the grammar $E \rightarrow F+E / E * F /$ (E)/- E/Pd.
son:-
$\stackrel{I M D}{ }$

$$
\begin{aligned}
F & \Rightarrow \text { } \\
& \Rightarrow[E[-E] \\
& \Rightarrow-(E)[E \rightarrow(E)] \\
& \Rightarrow-(E+E)[E \rightarrow E+E] \\
& \Rightarrow-(P d+E)[E \rightarrow P d] \\
& \Rightarrow \operatorname{lm}-(P d+P d)[E \rightarrow P d] \\
& =\underset{\mid m}{\Rightarrow}-(i d+P d)
\end{aligned}
$$

RMD

$$
\begin{aligned}
& E \Rightarrow \overrightarrow{\gamma M}-F[E \rightarrow-F] \\
& \overrightarrow{\gamma M} \text { - (E) [E } \rightarrow(E)] \\
& \Rightarrow-(E+E)[E \rightarrow E+E] \\
& \Rightarrow-(E+P d)[F \rightarrow P d] \\
& \Rightarrow \vec{m}-(P d+P d) \text { [E } \rightarrow P d] \\
& F \underset{m}{\text { * }}-(P d+i d)
\end{aligned}
$$

PARSE TREE

EXAMPLE-3
Find $\angle M D, R M D$ and parse tree of $S \rightarrow a B / b A$, $A \rightarrow a / a s / b A A, B \rightarrow b / b s / a B B$ for the shing aaabbabbba.
LMD.

$$
\begin{aligned}
& s \underset{1 m}{\Longrightarrow} a B \quad[s \rightarrow A B] \\
& \Rightarrow a a \underline{B} B[B \rightarrow a B B] \\
& \Rightarrow \text { aad } B B B[B \rightarrow a B B] \\
& \underset{\operatorname{lm}}{ } a a a b \in B \quad[B \rightarrow b] \\
& \Longrightarrow a a a b b B \subset B \rightarrow b] \\
& \Rightarrow a a a b b a B B[B \rightarrow a B B]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { } \\
& \Rightarrow a a a b b a b B[B \rightarrow b] \\
& \Rightarrow a a a b b a b b S[B \rightarrow b S] \\
& \Rightarrow a a a b b a b b b A[S \rightarrow b A]
\end{aligned}
$$

PARSE TREE

$$
s \xrightarrow{\stackrel{x}{l}} \text { aaabbabba }
$$

RMD

$$
\begin{aligned}
& s \underset{\mathrm{rm}}{\Rightarrow} a B[s \rightarrow a B] \\
& \overrightarrow{r m} a \operatorname{lob}[S \rightarrow a B B] \\
& \overrightarrow{F m} \text { aa } B a B B[S \rightarrow a B B] \\
& \underset{\sigma m}{\Rightarrow} a a B a B b s[B \rightarrow b 1] \\
& \overrightarrow{\gamma m} a a B a B b b A[S \rightarrow b A] \\
& \xrightarrow[\gamma m]{\gamma m} a a B a B b b a[A \rightarrow a] \\
& \underset{\gamma m}{\Rightarrow} a a a B B \text { aBbba }[B \rightarrow a B B] \\
& \Rightarrow \text { rm } a a \alpha b b a b b b a[B \rightarrow b] \\
& s \stackrel{\Rightarrow}{\Rightarrow} \text { } a a a b b a b b b a \text {. }
\end{aligned}
$$

EXAMPLE-H.
Find $\angle M D, R M D$ \& parse trie of $B \rightarrow A / B, A \rightarrow O A / s$

$$
B \rightarrow O B / \mid B / A S
$$

(i) 1001 .
$\xrightarrow{\text { PMD }}$

$$
\begin{aligned}
& s \Rightarrow B \text { [S } \rightarrow B] \\
& \underset{\mathrm{im}}{\Rightarrow} \mid B[B \rightarrow[B] \\
& \underset{\mathrm{m}}{\longrightarrow} 10 B[B \rightarrow O B] \\
& \underset{\mathrm{Im}}{\Rightarrow} 100 \mathrm{~B}[\mathrm{~B} \rightarrow 0 \mathrm{~B}] \\
& \Rightarrow 1001 B \in B \rightarrow 1 B] \\
& s \frac{A}{1 m} 1001[B \rightarrow s i]
\end{aligned}
$$

$$
8 \underset{1 \mathrm{~m}}{\stackrel{n}{\Rightarrow}} 1001
$$

RMD

$$
\begin{aligned}
& s \Rightarrow B[s \rightarrow B] \\
& \Rightarrow m[1 B[s \rightarrow 1 B] \\
& \Rightarrow 10 B[s \rightarrow O B] \\
& \Rightarrow 10 B \\
& \Rightarrow 100 B[B \rightarrow O B] \\
& \Rightarrow 1001 B[B \rightarrow 1 B] \\
& \Rightarrow 10] \\
& \Rightarrow 1001[B \rightarrow 4] \\
& \Rightarrow m \\
& s \neq \Rightarrow 1001 .
\end{aligned}
$$

ii) 00011

LMD

$$
\begin{aligned}
& \begin{array}{l}
s \underset{\operatorname{lm}}{\Rightarrow} B[S \rightarrow B] \\
\overrightarrow{1 m} O B[B \rightarrow O B]
\end{array} \\
& \overrightarrow{1 m} O B B[B \rightarrow O B] \\
& \overrightarrow{\mathrm{m}} 000 \mathrm{~B}(B \rightarrow O B) \\
& \Rightarrow 0001 B[B \rightarrow 1 B] \\
& \Rightarrow 00011 B[B \rightarrow 1 B] \\
& \underset{\mathrm{m}}{\Rightarrow} 000011 \mathrm{CB} \rightarrow \mathrm{re}] \\
& S \stackrel{H}{m} 00011
\end{aligned}
$$

RMD

$$
\begin{aligned}
& S[B[S \rightarrow B] \\
& \Rightarrow O B[B \rightarrow O B] \\
& \Rightarrow O O B[B \rightarrow O B] \\
& \Rightarrow O O D B[B \rightarrow O B] \\
& \Rightarrow \operatorname{lm} 001 B[B \rightarrow \mid B] \\
& \Rightarrow 0001 B[B] \\
& \Rightarrow 00011 B[B \rightarrow \mid B]
\end{aligned}
$$

$s \stackrel{\Delta}{\Rightarrow} 00011$

AMBIGUITY IN GENERATING LANGUAGE:-
At Grammar is said to be ambiguous of it produce more than one derivation tree for some P/P string generated by PF. (OR)

If there are two distinct derivation (i.e) more than one left most derivation (or) more than one Right most derivation for the given string then such a grammar is said to be ambiguous. PROBLEM

1) Show that the following grammar is ambiguous $s \rightarrow s b s / a$. sols:-

LMD-1

$$
\begin{aligned}
& s \nRightarrow \text { lbs }[s \rightarrow s b s] \\
& \overrightarrow{\mathrm{Im}} \text { abs }[s \rightarrow a] \\
& \overrightarrow{\mathrm{Im}} a b s b s[s \rightarrow s b s] \\
& \Rightarrow a b a b s[s \rightarrow a] \\
& \Rightarrow \operatorname{lm} a b a b a[s \rightarrow a]
\end{aligned}
$$

PARSE TREF
LMD -1

$$
0
$$

LMD-2

$$
\begin{aligned}
& s \neq 8 b s[s \rightarrow s b s] \\
& \Rightarrow \text { sbsbs }[s \rightarrow s b s] \\
& \Rightarrow \text { abs bs }[s \rightarrow a] \\
& \Rightarrow \mathrm{lm} \\
& \Rightarrow \text { lm }
\end{aligned}
$$

LMD-2

Thus the grammar is ambiguous.
$\Rightarrow S \rightarrow A A, A \rightarrow A A A / A b / a / b A$ check whet there 1 it is ambiguous consider string $a b a b$
LMD-1
LMD-2

$$
S \Longrightarrow A A[S \rightarrow A A]
$$

$$
\stackrel{\mathrm{m}}{\Rightarrow} \alpha A[A \rightarrow a]
$$

$$
\underset{\operatorname{lm}}{ } a b A[A \rightarrow b A]
$$

$$
\Rightarrow a b A b[A \rightarrow A b] \text {. }
$$

$$
\Rightarrow a b a b[A \rightarrow a]
$$

$$
s \underset{1 m}{\#} a b a b
$$

PARSE TREE
LM DP

LMD-2

\therefore The grammar is ambiguous.
3) $s \rightarrow a / a b s b / a A b, \Delta \rightarrow b s / a A A b$. check whether it is ambiguous.
LMD-1 consider string $a b a b$

PARSE TREE

$$
s \underset{\operatorname{lm}}{\Rightarrow} a b s b \subset s \rightarrow a b s b]
$$

$$
\Rightarrow a b a b[s \rightarrow a]
$$

$s \xrightarrow[\text { lm }]{\stackrel{*}{\longrightarrow}} a b a b$.

LMD-2

$$
\begin{aligned}
s & \Rightarrow a A b[S \rightarrow a A b] \\
& \Rightarrow a b s b[A \rightarrow b s] \\
\lim & \Rightarrow a b a b[S \rightarrow a] \\
& \operatorname{lm} a
\end{aligned}
$$

$\stackrel{\text { im }}{\stackrel{\text { im }}{\Rightarrow}} a b a b$

\therefore The grammar is ambiguous.
4) $s \rightarrow a / s a / b s s / s s b /$ sbs. check whether it is ambiguous. consider a baaabaa.
$1 M D-1$

$$
\begin{aligned}
& S \Rightarrow \operatorname{lm}^{\Rightarrow} b S S[s \rightarrow b s s] \\
& \Rightarrow \text { lm sbss [s } \rightarrow s b s] \\
& \Rightarrow \text { } \Rightarrow \text { bsabss }(s \rightarrow s a) \\
& \underset{1 m}{ }{ }_{10} b s a a b s s[s \rightarrow s a] \\
& \underset{\mathrm{im}}{\mathrm{~lm}} \text { baaabss }[s \rightarrow a] \\
& \stackrel{1 m}{\Rightarrow} \text { baaa bas }[s \rightarrow a]
\end{aligned}
$$

$1 M P-2$

$$
\begin{aligned}
& s \Rightarrow b s s[s \rightarrow b s s] \\
& \Rightarrow b s a s[s \rightarrow s a] \\
& \Rightarrow b \text { saas }[s \rightarrow s a] \\
& \Rightarrow \text { im } \\
& \Rightarrow \text { baaas }[s \rightarrow s a] \\
& \Rightarrow \text { baaabss }[s \rightarrow b s 1] \\
& \mid \mathrm{lm}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { baaabas }[s \rightarrow a] \\
& \Rightarrow \text { baaabaa }[s \rightarrow a] \\
& \lim _{s \rightarrow} \underset{\mid m}{ } \text { baaabaa }[s \rightarrow a]
\end{aligned}
$$

\therefore The grammar is ambiguous.
5) $E \rightarrow E+T / T, T \rightarrow T * F / F, F \rightarrow(E) / F d$ for string $w=P d *(i d+p d) *$ id. Find $R M P, L M P$, Parse free and check whether it is ambiguous or not.
LI MD.

$$
\begin{aligned}
& E \underset{1 m}{\vec{m}} I[E \rightarrow T] \\
& \Rightarrow \text { wm } \# F[T \rightarrow T * F] \\
& \Rightarrow \text { THFAF } \dot{C}+\rightarrow \text { T*F } 3 \\
& \Rightarrow \text { F*F*F } 1 T \rightarrow F] \\
& \Rightarrow \text { id *E*F }[F \rightarrow P d] \\
& \underset{1 m}{\operatorname{lm}} i d *(E) * F[F \rightarrow(E)] \\
& \operatorname{lm}_{\mathrm{m}}^{\Rightarrow} P d *(E+T) * F[E \rightarrow E+T] \\
& \underset{\text { in }}{\Rightarrow} \mathrm{Pd} *(T+T) * F \quad[E \rightarrow T] \\
& \underset{\mathrm{lm}}{\Rightarrow} \text { ido* }(F+T) * F[T \rightarrow F] \\
& \operatorname{lm}_{\mathrm{im}}^{\Rightarrow} i d *(P d+T) * F[F \rightarrow P d] \\
& \Rightarrow i d *(P d+F) H K[T \rightarrow F] \\
& \stackrel{i m}{\Rightarrow} \mathrm{Pd} *(P d+i d) * F[F \rightarrow P d] \\
& \Rightarrow P d *(P d+i d) * P d C F \rightarrow P d D \\
& s \stackrel{\lim }{\operatorname{lm}} \mathrm{id} * \text { (id }+i d \text {) *id. }
\end{aligned}
$$

RMD

$$
\begin{aligned}
& \text { F } \overrightarrow{\operatorname{rm}} \text { I [} \\
& \overrightarrow{{ }_{H M}} \text { THE }[T \rightarrow T A E] \\
& \Rightarrow \text { INPd [F } \rightarrow P d] \\
& \Rightarrow T * F \in i d[T \rightarrow T * F] \\
& \Rightarrow+*(E) A i d(F \rightarrow(E)] \\
& \Rightarrow T *(E+I) * P d[E \rightarrow E+T] \\
& \Rightarrow T *(E+k) * i d[T \rightarrow F] \\
& \Rightarrow \operatorname{rm}^{T H}(E+P d) * P d[F \rightarrow P d] \\
& \underset{r m}{\Rightarrow} T *(T+i d) * i d[E \rightarrow T] \\
& \stackrel{\stackrel{\rightharpoonup}{m}}{\vec{m}} T *(E+P d) * i d[T \rightarrow F] \\
& \Rightarrow T *(P d+p d) * P d[F \rightarrow P d] \\
& \Rightarrow F *(P d+P d) * P d[F \rightarrow F] \\
& E \underset{r n}{\Rightarrow} P d *(i d+i d]+i d[F \rightarrow i d] \\
& E \underset{\mathrm{rm}}{\Rightarrow} R d *(p d+i d)+i d
\end{aligned}
$$

AMBIGUOOS TREE
conspder: $T d+P d$
LMD 1:

$$
\begin{aligned}
& \text { F } \underset{\text { |m }}{\Rightarrow} E+T[E \rightarrow E+T] \\
& \Rightarrow I+T[E \rightarrow T] \\
& \lim _{\Rightarrow+T} \mathrm{~F}+[T \rightarrow F] \\
& \Rightarrow p d+I[F \rightarrow P d] \\
& \operatorname{lm}_{\mathrm{lm}}^{\Rightarrow} P d+\mathrm{F}[T \rightarrow F] \\
& \underset{\mid m}{\Rightarrow} P d+\overline{P d} \quad \text { LMDI } \neq C M \Delta 2 \\
& \text { LMP 2: } E \underset{\mathrm{~lm}}{\Rightarrow} \text { I }[E \rightarrow T) \\
& \Rightarrow F C T \rightarrow F \\
& \begin{array}{l}
\Rightarrow \mathrm{Im} \\
\mathrm{~lm}[F \rightarrow P \mathrm{C} \\
\hline
\end{array}
\end{aligned}
$$

\therefore The grammar is not ambiguous
(i) CFI PDTOCFG
(ii) CFG into CFL

CONTEXT FREE LANGUAGE (C FA):-
The language generated by CFG is called as context free language
$f(G)=\left\{\omega / \omega t T^{*}\right.$ and it can be derfued from $\}$ start symbols
CFG into CFA: -

1) Find eft for the given grammar $s \rightarrow$ ss $b / a b$ soln:-

Grammar $G: S \rightarrow a s b / a b$
i) $s \Rightarrow a b$ lm [s $\rightarrow a b]$
ii) $s \underset{i m}{\Rightarrow} a \underline{s} b[s \rightarrow a s b]$

$$
\Rightarrow a a b b[s \rightarrow a b]
$$

iii) $s \Rightarrow{ }_{1 m} a s b$ [s $\left.\rightarrow a s b\right]$

$$
\begin{aligned}
& \Rightarrow a a s b b[s \rightarrow a s b] \\
& \Rightarrow a a a b b b[s \rightarrow a b]
\end{aligned}
$$

$$
\therefore L=\{a b, a a b b, a a a b b b \ldots\}
$$

$$
f(G)=\left\{a^{n} b^{n} \quad / n \geq 1\right\}
$$

2) Find CFL for grammar $S \rightarrow a B / b A, A \rightarrow a / a s / b A A$ $B \rightarrow b / b s / a B B$
soon:-
i) $S \underset{1 m}{\Rightarrow} a \underline{B}[s \rightarrow a B]$

$$
\Rightarrow a b \quad[B \rightarrow b]
$$

iii) $s \Rightarrow b A[s \rightarrow b A]$

$$
\underset{\mathrm{im}}{\mathrm{im}} b a \subset A \rightarrow a]
$$

iii) $s \Rightarrow a B$ [s $\rightarrow a B]$
\Rightarrow abs $[B \rightarrow b s]$
$\underset{1 m}{ } a b a B[s \rightarrow a B]$
$\Rightarrow a b a b \quad[B \rightarrow b]$
ii) $S \underset{1 m}{\Rightarrow} b \in[s \rightarrow b A]$
\Rightarrow ias [$A \rightarrow$ as $]$
$\stackrel{1 m}{\longrightarrow} b a b A[S \rightarrow b A]$
$\Rightarrow b a b b A A[A \rightarrow B A A]$
$\Rightarrow b a b b a A[4 \rightarrow a]$
\Rightarrow bubba $[4 \rightarrow a]$
$\therefore 1=\{a b, b a, a b a b, b a b b a a \ldots\}$
$L(G)=\left\{\omega / w \in(a, b)^{*}\right.$, where or is equal trumber of a 's and equal number of b's $\}$.
3) Find CFL for grammar for $s \rightarrow a s a / b s b / \varepsilon$. son:-

G: $s \rightarrow a s a / b s b /$ \&
i) $s \Rightarrow$ qm $[s \rightarrow s l]$
ii) $s \Rightarrow a \leq a[s \rightarrow a s a]$

$$
\Rightarrow \text { aa }\left[s \rightarrow s_{1}\right]
$$

iii) $s \underset{1 m}{\Rightarrow} b \underline{s} b[s \rightarrow b s b]$

$$
\Rightarrow b b[s \rightarrow 4]
$$

iv) $s \Rightarrow a \leq a$ [s $[s \rightarrow a s a]$

$$
\Rightarrow a b s b a[s \rightarrow b s b]
$$

$$
\Rightarrow \overrightarrow{1 m} a b b a<s \rightarrow s c
$$

v)

$$
\begin{aligned}
s & \Rightarrow b s b[s \rightarrow b s b] \\
& \Rightarrow b a s a b[s \rightarrow a s a] \\
& \Rightarrow b a a b[s \rightarrow s 1]
\end{aligned}
$$

$\alpha=\{\varrho, a a, b b, a b b a, b a a b, a b b b b a \ldots\}$

$$
\therefore L(G)=\left\{w w^{R} / \omega \in(a, b) *\right\}
$$

4) Find CFL for the given grammar $s \rightarrow a_{s} / \mathrm{he}$ solon:-
$G: s \rightarrow a s / b s / a$
i) $s \underset{i m}{\Rightarrow} a[s \rightarrow a]$
ii) $3 \underset{i m}{\Rightarrow} a \leq[s \rightarrow a s]$

$$
\Rightarrow \text { aa }[s \rightarrow a]
$$

iii) $s \underset{\mathrm{im}}{\Rightarrow}$ bs [s $\rightarrow b s]$

$$
\Rightarrow b a[s \rightarrow a]
$$

iv) $s \underset{\mathrm{im}}{\Rightarrow}$ as [s $\rightarrow a s]$

$$
\Rightarrow a b \leqq[s \rightarrow b s]
$$

$$
\underset{\operatorname{lm}}{\Rightarrow} a b a[s \rightarrow a]
$$

v) $s \underset{\text { lm }}{\Rightarrow}$ bs $[s \rightarrow b s]$

$$
\Rightarrow b a s \text { [s } \rightarrow a s]
$$

$$
\Rightarrow b a a[s \rightarrow a]
$$

$1=\{a, a a, b a, a a b a, b a a \ldots\}$
$\therefore 1(G)=\{w / w \in(a, b) *$ where w ends $\}$

CONTEXT FREE LANGUAGE TO CONTEXT FREE GRAMMAR

1) Generate CFC for the language $t=\left\{a^{n} b^{n} / n \geq 0\right\}$
son:-
$1=\{s e, a b, a a b b, a a a b b b, \ldots\}$

$$
\begin{aligned}
& P: s \rightarrow a s b / s e \\
& G=(V, T, P, s) \\
& V=\{s\} \quad T=\{a, b\} \\
& P=\{s \rightarrow a s b, s \rightarrow s e\} \\
& s=s
\end{aligned}
$$

$$
\begin{aligned}
& S \Longrightarrow a \delta b \quad[\delta \rightarrow a \delta b] \\
& \underset{\lim _{m}}{\Rightarrow} a a s b b \quad[S \rightarrow a \delta b] \\
& \Rightarrow a a b b \quad[\delta \rightarrow \varepsilon]
\end{aligned}
$$

$$
\rho \stackrel{\text { lm }}{\Rightarrow} a a b b \in L \text {. }
$$

2) $1=\left\{a^{n} b^{n} / n \geq 1\right\}$
sold:-
$L=\{a b, a a b b, a a a b b b \ldots\}$
$P: s \rightarrow a s b / a b$

$$
\begin{array}{ll}
& G=(V, T, P, s) \\
V=\{s\} & P=\{s \rightarrow a s b, s \rightarrow a b\} \\
T=\{a, b\} & s=s
\end{array}
$$

$$
8 \stackrel{*}{\ln } a a b b \in L
$$

3) $L=\left\{a^{n} b a^{n} / n \geq 1\right\}$
sols:-
$I=\{a b a, a a b a a, a a a b a a a, \ldots\}$ $p: s \rightarrow a s a / a b a$

$$
\begin{aligned}
P: s \rightarrow a s a / a b a & \ln \\
& G=(V, T, P, s) \\
V= & \{s\} \\
T= & \{a, b\} \quad[s+a b a\}
\end{aligned}
$$

$$
\delta \underset{\substack{ }}{\delta>} a s a[8+95]
$$

4) Construct eFF representing the set of palindrome over $(0+1)^{*}$
sols:-

$$
L=\{4,0,1,00,11,101,1001, \ldots .\}
$$

$$
\begin{aligned}
& p: s \rightarrow 0 s 0 / 181 \\
& s \rightarrow s e / 0 / 1 \\
& G=(V, T, P, B) \\
& S \rightarrow 0810 \\
& \text { O } 510 \\
& v=\{s\} \quad P=\{s \rightarrow s e, s \rightarrow 0, s \rightarrow 1, s \rightarrow 0 \leq 0 \text {, } \\
& T=\{0,1\} \\
& s \rightarrow|s| 3 \\
& s=\{1\}
\end{aligned}
$$

5) Construct a CFO for a set of string that contain equal no of a 's and b 's sold:-
$\alpha=\{\varepsilon, a b, b a, a a b b, a a a b b b, \ldots\}$

$$
\begin{aligned}
& P: s \rightarrow r / a b / b a / a s b / b s a \\
& G=(V, T, p, s) \\
& V=\{s\} \quad T=\{a, b\} \\
& P=\{s \rightarrow s, s \rightarrow a b, s \rightarrow b a, s \rightarrow a s b, s \rightarrow b s a\} \\
& S=\{1\}
\end{aligned}
$$

6) construct a CFO for a regular expression

$$
1011+1) \operatorname{CO1})
$$

sols:-

$$
\begin{aligned}
& \text { In:- } \quad S \rightarrow A B \\
& A \rightarrow 011 / 1 \\
& B \rightarrow 01 \\
& G=(Y, T, P, S) \\
& Y=\{S, A, B\} \quad T=\{0,1\} \\
& P=\{S \rightarrow A B, A \rightarrow 011, A \rightarrow 1, B \rightarrow 01\} \\
& S=\{S\}
\end{aligned}
$$

PUSH-DOWN AUTOMATA:

- The context free language is defined by the special type of automate namely Push Down Auto mate.
\rightarrow Push Down Aulsmata is an extension of NFA with ε-transitions with the addition of stack.
\rightarrow Stack (Last in First Out) is used to store the string of stack symbols and read the symbols, push and pop only at the top of stack.
\rightarrow Puch-down autornater can remember an infinite amount of string information.
\rightarrow Push-down can access the information on its stack in LIFo uny.
\rightarrow Push down automata can recognize only CFL.
\rightarrow The PDA is more powerful than finite automate which has finite memory.
DEFINITION OF PUSH-DOWN AUTOMATE:
PDA involves seven tuples ar components.

$$
\text { PDA } P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z_{0}, F\right)
$$

Where,
$Q \rightarrow$ Finite non-emply set of states.
$\Sigma \rightarrow$ Finite set of input symbols.
$\Gamma \rightarrow$ Finite stack alphabet [This is the set of symbols that are pushed to the stack]
$\delta \rightarrow$ Transition function.

$$
\begin{aligned}
& \delta: Q \times\left(\sum \cup \varepsilon_{1}\right) \times \Gamma \rightarrow Q \times \Gamma^{*} \text { defined as } \\
& \delta(q, a, x)=\left(q^{\prime}, a x^{\prime}\right)
\end{aligned}
$$

where, $q, q^{\prime} \rightarrow$ states in Q

$$
\begin{gathered}
q, q \\
a
\end{gathered} \rightarrow \text { Input symbol in } \Sigma \text { or } \varepsilon_{1}
$$

$x, x^{\prime} \rightarrow$ stack symbol in Γ
$q_{0} \longrightarrow$ initial / start symbol $(90 \in Q)$
$z_{0} \rightarrow$ initial / start/Bottom of stack symbol $\left(z_{0} \in \Gamma\right)$
$F \rightarrow$ Final set of accepting states/Final state $(F \subseteq Q)$
Process of PDA:

Accept Reject

The PDA Consists of the following,

+ Finite state control unit
\rightarrow Input tape
\rightarrow Stack
\rightarrow Reading Head.
- The input string is present in input tape.
- The finite state control reed the input, one symbol at a time fro the input tape.
- The Finite state control is the NFA with ε_{1}-transition.
- After reading the input symbol, it recognizes the current state: the control and the symbol present at top of the stack.
- So, the Finite control consists of set of transitions, input and sot of Final states.
- I8 the transition of PDA depends on the current state, input symbol from the input tape and the symbol at top of stack.
- The PDA can also make a spontaneous transition using \& pts - input instead of an input symbol.
- The activities done by PDA is no follows,

1. Read the input symbol from input tape. If ε is the input, then no input symbol is consumed.
2. It makes the transition with the Qurrent state, in ut Symbol, symbol at the top of stack. \& after transition, the control may enter in either a new state or previous state.
3. Replace the symbol at top of the stack by any other symbol. The string could be also E_{1}.
i) If ε is used to replace the stack symbol, it Corresponds to a pop of the stack
ii) If the same symbol is again used to replace, then no change to the stack is made.
iii) The Finite state control can push one or more symbols to the stack.

The two different versions of PDA is as follows,

1. Ore that accept. He sting by entering an accepting state.
2. Accepts by implying the stack.

TYPES OF RDA:

1) Non Deterministic PDA [NPDA]
2) Deterministic PDA [DPDA]

Moves/ TRANSITIONS OF PDA: A transition is given by,

$$
\begin{array}{ll}
Q \times\left(\sum \cup \varepsilon_{1}\right) \times \Gamma \rightarrow Q \times \Gamma^{*} & {[D P D A]} \\
Q \times\left(\sum \cup \varepsilon_{1}\right) \times \Gamma \rightarrow 2^{\left(Q \times \Gamma^{*}\right)} & (N P D A)
\end{array}
$$

Qt $\left(\Sigma \cup \varepsilon_{1}\right) \times \Gamma \rightarrow$ implies that a transition based on

* Current state $q \in Q$
* Next input $\sum \cup \varepsilon_{1}$
* Stack symbol [Top most element of stack]
$\left(Q \times \Gamma^{*}\right) \rightarrow$ is implies that next state reached after transition.
(ii) $q^{\prime} \rightarrow$ Current / Next state defined in $Q, q^{\prime} \in Q$
(iii) stack symbol remaining after T^{*}.

OPERATIONS ON STACK:

1) PuSH :

$a b \Rightarrow$ Here the top most symbols on stack is ' b ' is replaced by ' a ' followed by ' b '. Since the input ' a ' is pustred/inserted on to the stack.
2) POP:

$$
\delta\left(q_{1}, a, b\right)=\left(q_{2}, \varepsilon_{1}\right)
$$

Next state
Top of stack Input Symbol Current state.
$\varepsilon \Rightarrow$ Here 'a' cancels ' b ' from the stack. The above transition cancels the top most stack symbols by the input processing.
3) READ INPUT WITH NO OPERATION ON STACK:

$$
\delta\left(q_{1}, a, b\right)=\left(q_{2}, b\right)
$$

No operation is performed on stack, the stack symbols are nether added up/deleted off.

THE LANGUAGE OF PA:
II can be accepted by two ways:

1. Acceptance by Final state.
2. Acceptance by Empty stack.

* These two mettrods are equivalent that the language is accepted by PDA by final state if only if the language is accepted by empty stack.
* However the PDA, P generated for a langrage is different that is accepted by final state is different with that of PDA generated by empty stack.
ACCEPTANCE BY FINAL STATE:
Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z_{0}, F\right)$ be a PDA.
Then $L(P)$, the language accepted by P by final state is,

$$
L(p)=\left\{w \mid\left(q_{0}, w, z_{0}\right) \vdash^{*}\left(q_{F}, \varepsilon_{1}, \infty\right)\right\}
$$

For some stack q_{F} in F and any stack string α, ie., starting in the initial Instantaneous Descriptor with w waiting on - The input, P consumes w from the input and enters an accepting state.

$$
\therefore q_{F} \in F, \alpha \in \Gamma^{*}
$$

INSTANTANEOUS DESCRIPTION OF DA (ID):-

* The execution status of the PDA is represented by the ID of PDA.
- It is a pictarial/diagrammatic representation of a string processed by a PDA.
* The ID records the state, stack contents and the input symbol. The ID is defined as 3 tuples (q, a, r) where,
$q \rightarrow$ state of PDA
$a \rightarrow$ Remaining input
$\gamma \rightarrow$ Stack contents.
If a PDA $P=\left(Q, \varepsilon, \Gamma, 8, q_{0}, z_{0}, F\right)$ has the transition $\delta(q, a, x)=(p, \infty)$ then for all the strings w in Σ^{*} and β in γ^{*}, the ID is given by

$$
\left(q_{1}, a w, x \beta\right) \upharpoonright_{p}^{*}\left(q_{2}, w, \alpha \beta\right)
$$

This means that by reading the input symbol ' a ' at the state ' q ' with x as top stack symbols replaces α far x and reaches the state ' p '.

REPRESENTATION OF FDA:

1. Transition Diagram.
a. Transition Function/Moves

Acceptance by empty stacks:
A PDA defined by $P=\left(-Q, \Sigma, \tau, \delta, q_{0}, z_{0}, F\right)$ accept a given language by generating the set of strings $\omega \in \Sigma^{*}$ by making ils stack empty such that,

$$
L(p)=\left\{\omega /\left(q_{0}, \omega, z_{0}\right)=(q, \varepsilon, \varepsilon)\right\}
$$

CONSTRUCTION OF PD / DESIGN OF FDA.
PROBLEMS

1. Design the PDA to accept the Language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$ accepting by final state/Emply stack (or) $L=\left\{0^{n} 1^{n} / n \geq 1\right\}$
Solution:

$$
\begin{aligned}
& L=\left\{a^{n} b^{n} / n \geq 1\right\} \\
& L=\{a b, a a b b, a a a b b b, \ldots\}
\end{aligned}
$$

Algorithm:
Consider $n=3, w=$ arabbb

1. Push ' n ' number of ' a ' s into the stack.
2. Far every ' b ' pop out an 'a' from the stack.
3. At the end of the string, the machine stops as it reaches the final state.

EXAMPLE: $\pi=3 \quad \omega=a a a b b b$

Transition diagram:
FINAL STATE:

PDA for $L=\left\{a^{n} b^{n} / n \geq 1\right\}$

$$
\begin{aligned}
& \text { PDA for } L=\left\{a^{n} b^{n} \mid n \geq 1\right\} \\
& \text { PDA } P_{F}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right)
\end{aligned}
$$

EMPTY STACK:

$$
\begin{aligned}
& \text { PDA for } L=\left\{a^{n} b^{n} / n \geq 1\right\} \\
& P D A P_{N}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, z_{0}\right\}, d, q_{0}, z_{0}, \phi\right)
\end{aligned}
$$

Transition Function/Moves defined as:
Let q_{0} be the initial state and z_{0} be the top symbol of the stack initially.

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a_{0}\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, b, a\right)=\left(q_{1}, \varepsilon_{0}\right) \\
& \delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{aligned}
$$

(or) $\delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, \varepsilon\right)$ Empty state.

INSTANTANEOUS DESCRIPTION:
Let wo consider strings $a a b b$ and $a a b$.
Input 1: $\omega=a a b b$

$$
\begin{aligned}
& \left(q_{0}, w, z_{0}\right) \sqrt{p}\left(q_{0}, a_{a} b b, z_{0}\right) \\
& \bar{P}\left(q_{0}, a b b, a z o\right) \\
& \Gamma_{p}\left(q_{0}, b b, a a z_{0}\right) \\
& \mid p \quad\left(q_{1}, b, a z_{0}\right) \\
& \mid \bar{p} \quad\left(q_{1}, \varepsilon_{1}, z_{0}\right) \\
& \sqrt{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \text { || Final state. }
\end{aligned}
$$

So, the string "arb" is accepted.
Input 2: $\omega=a a b$

$$
\begin{aligned}
\left(q_{0}, w, z_{0}\right) & \sqrt{p}\left(q_{0}, a b, z_{0}\right) \\
& \sqrt{p}\left(q_{0}, a b, a z_{0}\right) \\
& \sqrt{p}\left(q_{0}, b, a a z_{0}\right) \\
& \sqrt{p}\left(q_{1}, \varepsilon_{1}, a z_{0}\right)
\end{aligned}
$$

Hence there is no transition for $\left(q_{1}, \varepsilon_{1}, a z_{0}\right)$ in above PDA.
So the string alb is not accepted.
2) $L=\left\{a^{n} b^{n} / n \geq 0\right\}$ accept by final state.
step 1: $L=\left\{a^{n} b^{n} / n \geq 0\right\}$

$$
\therefore L=\{\varepsilon, a b, a a b b, a a a b b b, \ldots\}
$$

Step 2: Transition Diagram

step 3: Transition function / Moves.

$$
\begin{aligned}
& \delta\left(q_{0}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right) \\
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{aligned}
$$

$$
\text { PDA } P_{F}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, z_{0}\right), \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right)
$$

Step 4: Instantaneous description.

$$
\omega=a a b b
$$

$\left(q_{0}, a a b b, z_{0}\right) \sqrt{P}\left(q_{0}, a b b, a z_{0}\right)$

$$
\begin{aligned}
& \sqrt{p}\left(q_{0}, b b, a a z_{0}\right) \\
& \sqrt{p}\left(q_{1}, b, a z_{0}\right) \\
& \sqrt{P}\left(q_{1}, \varepsilon_{1}, z_{0}\right) \\
& \sqrt{\beta}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \therefore \quad q_{2} \in F . \text { So the string } \\
& \text { is accepted. }
\end{aligned}
$$ is accepted.

$$
L=\left\{a^{n} b^{n} / n \geq 0\right\}
$$ accept by empty stack:

3). $L=\{$ equal No. of a 's and b's $\}$ over $\{a, b\}$ accepted by , final Step 1: $L=\{\varepsilon, a b, b a, a a b b, a b a b, a b b a, \ldots\}$ skep 2: Transition diagram.
Final state.

Steps. Transition Function

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a_{a}\right) \\
& \delta\left(q_{0}, a, b\right)=\left(q_{0}, \varepsilon\right) \\
& \delta\left(q_{0}, b, z_{0}\right)=\left(q_{0}, b z_{0}\right) \\
& \delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{0}, \varepsilon_{1}\right) \\
& \delta\left(q_{0}, \varepsilon, z_{0}\right)=\left(q_{1}, z_{0}\right) \\
& \delta\left(q_{0}, z_{0}\right)=\left(z_{1}, \varepsilon\right)
\end{aligned}
$$

PDA definition:
Final state:
FDA $P_{F}=(\{q, q\},,\{a, b\}$,
$\left.\{a, b \neq 0\}, f, q_{0}, z_{0},\{q\},\right\}$
empty stack:

$$
\text { FDA } P=\left(\left\{q_{0}, q,\right\},\{a, b\},\right.
$$

$$
\left.\left\{a, b, z_{0}\right\}, 8, q_{0}, z_{0}, \phi\right\}
$$

// Final state
// Empty stack.

Step 4: Instantaneous Description. for final state.
Input: $\quad v_{1}=a b a b$
$\left(q_{0}, a b a b, z_{0}\right) p p\left(q_{0}, b a b, a z_{0}\right)$

$$
\begin{aligned}
& \sqrt{p}\left(q_{0}, a b, z_{0}\right) \\
& \sqrt{p}\left(q_{0}, b, a z_{0}\right) \\
& \sqrt{p}\left(q_{0}, \varepsilon_{0}, z_{0}\right)
\end{aligned}
$$

Ip $\left(q_{1}, \xi_{1}, z_{0}\right)$ // String is a accepted for
$\left(q_{0}, a b b, z_{0}\right)$

$$
\begin{aligned}
& V_{p}\left(q 0, b b, a z_{0}\right) \\
& \sqrt{p}\left(q_{0}, b, z_{0}\right) \\
& \sqrt{p}\left(q_{0}, \varepsilon, b z_{0}\right)
\end{aligned}
$$

There is no transition for $\left(q, \varepsilon, b z_{0}\right)$
\therefore The string is not accepted.

$$
L=\left\{0^{n}, 2 n / n \geq 0\right\}
$$

4) $\alpha=\left\{a^{n} b^{2 n} / n \geq 0\right\}$ (or) Design a PDA with set of strings with twice as many b's than a 's with a as the starting string (or) 2 occurrences of b's for each a 's. accept by
Step 1:

$$
L=\{\varepsilon, a b b, a a b b b b, \ldots\}
$$

Instar: To Design this PDA, is that when we read single 'a' we insert/puoh $2 a$'s on stack.

Then when we read ' b ' we pop each ' a ' on the top of stack and when reading z_{0} on stack, we reach final state.
step 3: Transition function: step 2: Transition diagram.

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a a z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a a a\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{0}\right) \\
& \delta\left(q_{1}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right) \\
& \delta\left(q_{0}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{aligned}
$$

PDA for $L=\left\{a^{n} b^{2 n} / n \geq 0\right\}$
PDA $P_{F}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right)$

Step 4: Instantaneous description
$\omega=a a b b b b$
(q_{0}, a abib,z_{0})
$1 \bar{p}$ ($\left.q_{0}, a b b b b, a a z_{0}\right)$
$F_{p}\left(q_{0}, b b b b, a a a a z_{0}\right)$
$i_{p}\left(q_{1}, b b b, a a a z z_{0}\right)$
$\sqrt{p} \quad\left(q_{1}, b b, a a z_{0}\right)$
$i_{p}\left(q_{1}, b, a z_{0}\right)$
$\sqrt{p} \quad\left(q_{1}, \varepsilon_{1}, z_{0}\right)$
$t \mid p\left(q_{2}, \varepsilon_{1}, z_{0}\right)$
\therefore The string aabbbb is accepted.
$\omega=a a b$
$\left(q_{0}, a a b, z_{0}\right) r_{p}\left(q_{0}, a b, a_{a}\right.$

$$
\begin{aligned}
& F_{p}\left(q_{0}, b,\right. \text { aga zo, } \\
& I_{p}\left(q_{1}, \varepsilon_{1}, \text { aaa } z_{0}\right)
\end{aligned}
$$

Here $a a b$ is not accepted as tore is no transilition for $\delta\left(q_{1}, \varepsilon_{1}, a\right)$.
5) $\alpha=\left\{0^{n} 1^{2 n} / n \geq 1\right\}$ accept by final state/Empty stack
(or) $\alpha=\left\{a^{n} b^{2 n} / n \geq 1\right\}$
Step 1:

$$
\begin{aligned}
L & =\left\{0^{n} 1^{2 n} / n \geq 1\right\} \\
\therefore L & =\{011,001111,000111111, \ldots\}
\end{aligned}
$$

Stop 2: Transition Diagram

FDA $P=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}\right.$ $\left.\left\{0, z_{0}\right), \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right\}$

$$
\begin{gathered}
\text { PDA } p=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}\right. \\
\left.\left\{0, z_{0}\right\}, \delta, q_{0}, z_{0}, \phi\right)
\end{gathered}
$$

Step 3: Transition moves - Finalstatal step 4: Instantaneous descriptrin

$$
\begin{aligned}
& \delta\left(q_{0}, 0, z_{0}\right)=\left(q_{0}, 00 z_{0}\right) \\
& \delta\left(q_{0}, 0,0\right)=\left(q_{0}, 000\right) \\
& \delta\left(q_{0}, 1,0\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, 1,0\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, \varepsilon_{0}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(q_{0}, ~ 4:\right. \text { Instantaneous } \\
&\delta=011, z 0) \\
& \sqrt{p}\left(q_{0}, 11,00 z 0\right) \\
&{ }_{p}\left(q_{1}, 1,0 z 0\right) \\
&{ }_{p}\left(q_{1}, \varepsilon_{1}, z 0\right) \\
&{ }_{p}\left(q_{2}, \varepsilon_{1}, z 0\right) \\
& \therefore \text { string is accepted. }
\end{aligned}
$$

b) $L=\left\{0^{n} 1^{3 n} \quad \mid n \geq 1\right\}$ using final state or /empty stacte. (or) $L=\left\{a^{n} b^{3 n} \mid n \geq 1\right\}$
$\operatorname{stap} 1:^{\prime} L=\{: 0111,00111111, \ldots\}$
sep 2: 0,0/0000

step 3: Transition Moves. For amply stack.

$$
\begin{array}{lr}
\delta\left(q_{0}, 0, z_{0}\right)=\left(q_{0}, 000 z_{0}\right) & \text { PD } \\
\delta\left(q_{0}, 0,0\right)=\left(q_{0}, 0000\right) & \left\{q_{0}, q_{1}, q_{2}\right\}, \\
\delta\left(q_{0}, 1,0\right)=\left(q_{1}, \varepsilon_{0}\right) & \left.\{0,1\},\left\{0, z_{0}\right\}, \delta, q_{0}, z_{0}, \phi\right) \\
\delta\left(q_{1}, 1,0\right)=\left(q_{1}, \varepsilon_{)}\right) & \\
\delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, \varepsilon_{1}\right) &
\end{array}
$$

Step 4: Instantaneous description $\omega=0111$

$$
\begin{aligned}
\left(q_{0}, 011, z_{0}\right) \quad & \sqrt{p}\left(q_{0}, 11,000 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, 11,00 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, 1,0 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, \varepsilon_{1}, z_{0}\right) \quad \therefore \text { The string is accepted } \\
& \sqrt{p}\left(q_{2}, \varepsilon_{1}, \varepsilon\right) \quad \therefore \quad \text {. }
\end{aligned}
$$

7) $L=\left\{0^{n} 1^{3 n} / n \geq 0\right\}$ using final state step 1: $L=\{\varepsilon, 0111,00111111, \ldots\}$
step 2: Transition Diagram
$0,0 / 0000$ $0,0 / 0000$
$0, z_{0} / 000 z_{0}$

$$
P D A P_{F}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{2}\right\}\right) .
$$

3: Transition moves
4. Instantaneous description

$$
\begin{aligned}
& \delta\left(q_{0}, 0, z_{0}\right)=\left(q_{0}, 000 z_{0}\right) \\
& \delta\left(q_{0}, 0,0\right)=\left(q_{0}, 000\right) \\
& \delta\left(q_{0}, 1,0\right)=\left(q_{1}, \varepsilon_{)}\right) \\
& \delta\left(q_{1}, 1,0\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right) \\
& \delta\left(q_{0}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{aligned}
$$

$$
w=0111
$$

$\delta\left(q_{0}, 011, z_{0}\right){ }_{p}\left(q_{0}, 111,000 z_{0}\right)$

$$
\begin{aligned}
& \sqrt{p}\left(q_{1}, 11, \infty 0 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, 1,0 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, \varepsilon_{1}, z_{0}\right) \\
& \sqrt{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right)
\end{aligned}
$$

\therefore The string is accepted.
8) $L=\left\{0^{2 n}, 1^{n} / n \geq 0\right\}$ accept by final state.

Step 1: $L=\{\varepsilon, 001,000011, \ldots\}$
Idea: When reading first ' O ' we got some state and when we read the second ' o ' we push the single 'o' to the stack ard move to the initial state itself. Then while reading ' 1 we thy to pop ' O ' and when reading empty siring and z_{0} at the top star Symbol, we enter the final state.
step 2: Transition diagram.

(qu) $q^{2} 0, z_{0} / z_{0}$

$$
P D A P_{F}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{1,0\},\left\{0, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{3}\right\}\right)
$$

Step 3: Transition function

$$
\begin{aligned}
& \delta\left(q_{0}, 0, z_{0}\right)=\left(q_{1}, z_{0}\right) \\
& \delta\left(q_{0}, 0,0\right)=\left(q_{1}, 0\right) \\
& \delta\left(q_{1}, 0, z_{0}\right)=\left(q_{0}, 0 z_{0}\right) \\
& \delta\left(q_{1}, 0,0\right)=\left(q_{0}, 00\right) \\
& \delta\left(q_{0}, 1,0\right)=\left(q_{2}, \varepsilon_{1}\right) \\
& \delta\left(q_{2}, 1,0\right)=\left(q_{2}, \varepsilon_{1}\right) \\
& \delta\left(q_{2}, \varepsilon_{1}, z_{0}\right)=\left(q_{3}, z_{0}\right) \\
& \delta\left(q_{0}, \varepsilon_{1}, z_{0}\right)=\left(q_{3}, z_{0}\right)
\end{aligned}
$$

slept : Irotantancous description

$$
\left.\begin{array}{rl}
\frac{101=001}{\left(q_{0}, 001, z_{0}\right)} & { }^{1} p \\
& q_{p}\left(q_{1}, 01, z_{0}\right) \\
& \\
& { }_{p}\left(q_{0}, 1,020\right) \\
& q_{p}\left(q_{3}, z_{1}, z_{0}\right)
\end{array}\right)
$$

The string is accepted.
$w_{2}=011$
$\left(q_{0}, 011, z_{0}\right) \sqrt{p}\left(q_{1}, 11, z_{0}\right)$
Since there is no transition for $\delta\left(q, i, 1, z_{0}\right)$ the string is not accepted.
9) $L=\left\{a^{n} b^{2 n+1} / n \geq 1\right\}$ by empty slacio

Step 1: $L=\{a b b b$, a abbbbb,$\ldots\}$
Step 2: Transition Diagram:

$$
\begin{aligned}
& \rightarrow q_{0}^{a, a, / a a a}, b, a / \varepsilon \\
& \text { PA } P_{N}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0}, \phi\right)
\end{aligned}
$$

stap 3 : Transition Function

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, q_{a} z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, a_{a}\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \delta\left(q_{1}, b_{0} z_{0}\right)=\left(q_{0}, z_{0}\right) \\
& \delta\left(q_{2}, \varepsilon_{1}, z_{0}\right)=\left(q_{8}, \varepsilon_{0}\right) . \\
& \delta\left(q_{1}, a\right)=\left(q_{1}, \varepsilon_{1}\right)
\end{aligned}
$$

Sap 1: $\frac{\text { Instantanaous }}{\text { description: }}$
$\omega_{1}=$ abbb
$\left(q_{0}, a b b b, z_{0}\right) \mid \vec{p}\left(q_{0}, b b b, a a z_{0}\right)$

$$
\begin{aligned}
& t_{p}\left(q_{1}, b_{b}, a z_{0}\right) \\
& t_{p}\left(q_{1}, b, z_{0}\right) \\
& t_{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \\
& t_{p}\left(q_{3}, \varepsilon_{1}, \varepsilon_{0}\right)
\end{aligned}
$$

\therefore string is acceptad.
w_{2}, $a b b^{\prime}$
$\left(q_{0}, a b b, z_{0}\right) T_{p}\left(q_{0}, b b, a a z_{0}\right)$

$$
\begin{aligned}
& t_{p}\left(q_{1}, b, a z_{0}\right) \\
& t_{p}\left(q_{1}, \epsilon_{1}, z_{0}\right)
\end{aligned}
$$

The is no transition \therefore Sting is not accepted.
10) $L=\left\{a^{n} b^{2 n+1} / n \geq 0\right\}$ accopted by Final state.
$\alpha=\{b, a b b b, a a b b b b b, \ldots\}$

11) $L=\left\{a^{n} b^{m} / n>m\right\}$

Step 1: $L=\{a a b$, aaab, aaabb, ... $\}$
Step 2: Transitron Dlagram:

$$
\overline{P D A} P_{N}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\left\{q_{1} b\right\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0}, \phi\right)
$$

Steps: Transition function.

$$
\begin{array}{ll}
\delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) & \delta\left(q_{1}, b, a\right)=\left(q_{1}, \varepsilon_{)}\right) \\
\delta\left(q_{0}, a, a\right)=\left(q_{0}, a_{0}\right) & \delta\left(q_{1}, \varepsilon_{1}, a\right)=\left(q_{2}, \varepsilon_{1}\right) \\
\delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) & \delta\left(q_{2}, \varepsilon_{1}, a\right)=\left(q_{2}, \varepsilon_{1}\right) \\
& \delta\left(q_{2}, \varepsilon_{1}, z_{0}\right)=\left(q_{3}, \varepsilon_{1}\right)
\end{array}
$$

Step 4: Instantaneous description

$$
\begin{aligned}
& \omega_{1}=a a b \\
& \delta\left(q_{0}, a a b, z_{0}\right) / \vec{p}\left(q_{0}, a b, a z_{0}\right) \\
& r_{p}\left(q_{0}, b, a a z_{0}\right) \\
& \text { 价 }\left(q_{1}, \varepsilon, a z_{0}\right) \\
& t_{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \\
& t_{p}\left(q_{3}, \varepsilon_{1}, \varepsilon\right)
\end{aligned}
$$

\therefore String is accepted.
$\omega_{2}=a b$
$\left(q_{0}, \frac{\left.a b_{1} z_{0}\right) \sqrt{p}}{\left(q_{0}, b_{0}, a z_{0}\right)}\right.$

$$
p_{p}\left(q_{1}, \epsilon_{1}, z_{0}\right)
$$

There is no transition for

$$
\delta\left(q_{1}, \varepsilon_{1}, \pi_{0}\right)
$$

\Rightarrow The string is not accepted.
12) $L=\left\{a^{n} b^{m} / n<m\right\}$
step 1: $\alpha=\{a b b, a a b b b, a b b b, \cdots\}$
step 2: Write transition function.
Step 3: Transition diagram

PDA for $\alpha=\left\{a^{n} b^{m} \mid n<m\right\}$
PDA $P_{N}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\left\{a, z_{0}\right\}, \delta, q_{0}, z_{0}, \phi\right)$
step 4: Instantaneous description
13) $L=\left\{a_{\text {Push }}^{n} b^{2} a_{y_{\text {pop }}^{n}} / n \geq 1\right\}$
(4) $\alpha=\left\{a^{n} b^{3} a^{n} \mid n \geq 1\right\} \quad a^{n} b^{3} a^{n}$ push read pop a, ala push read pop $a, a / \varepsilon$
\qquad
15) $\alpha=\left\{a^{n} b^{m} c^{m} / n, m \geq 1\right\} \quad \begin{array}{ll}a^{n} & b^{m} c^{m} \\ \text { read push pop }\end{array}$

$\left\{\begin{array}{l}c, b / \varepsilon \\ q_{3}, \varepsilon, z o\end{array}\right.$

16) $L=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\} a^{n} b^{n} c^{m}$

$$
\begin{equation*}
\xrightarrow{a, a / a a}, q_{0} \xrightarrow{b, a / z_{0} / a z_{0}} q^{b} c, z_{0} / z_{0} \longrightarrow q_{2} \varepsilon_{1}, z_{0} / z_{0} \tag{3}
\end{equation*}
$$

17) $L=\left\{a^{n} b^{m} c^{n} / n, m \geq 1\right\} a^{n} b^{m} c^{n}$

$$
\longrightarrow(90 \xrightarrow{a, b, d a l a z o}
$$

18) $\mathcal{L}=\left\{a^{n} b^{m} c^{n+m} \mid n, m \geq 1\right\}$ an $b^{m} c^{n} c^{m}$
$a, a / a a$
$a, z 0$ push push pop pop
a, zolazo
(0)

M) $L=\left\{a^{n+m} b^{m} c^{n} / n, m \geq 1\right\}$ (or) $\left\{a^{n} a^{m} b^{m} c^{n}\right\}$ a, al aco a
a, 0 olazo

19) $L=\left\{\begin{array}{c}a^{n} b^{n+a / a a} \\ \left.c^{n} / m / n, m \geq 1\right\}^{(m)}\left\{a^{n} b^{n} b^{m} c^{m}\right\} \\ \text { (b) }\end{array}\right.$

20) N_{0} PDA:-

$$
\begin{aligned}
& L=\left\{\begin{array}{l}
\left\{a^{n} b^{m} c^{n} d^{m} / n, m \geq 1\right\} \\
\text { puch push pop pop }
\end{array}=\left\{\underset{\text { push pop }}{\left.a^{n} b^{n} c^{n} / n \geq 1\right\}}\right.\right.
\end{aligned}
$$

24) $L=\left\{a^{m} b^{m} c^{n} \cdot / n, m z 1\right\}$ by Emply stack

25) $L=\left\{a^{n} b a^{n} / n \geq 0\right\}$ by Emply stack

2b) $L=\left\{a^{n} b^{2 n+2} / n \geq 0\right\}$

27) $L=\left\{a^{n} b a^{n} / n \geq 1\right\} \quad L=\{a b a, a a b a a, a a b a a a, \ldots\}$

Design a FDAA for the language

1. $L=\left\{w / w \in(a+b)^{*}\right.$ and $\left.n_{a}(w)>n_{b}(w)\right\}$ $n_{a}(w)$ means total no. of a 's in input string and $n_{b}(w)$ means total no. of b 's in input string, problem states that total no. of a 's are more than total no. of b's in input string.
2. PDA Transition diagram:

3. Transition moves

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{0}, b, z_{0}\right)=\left(q_{0}, b z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, q_{a}\right) \\
& \delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right) \\
& \delta\left(q_{0}, a, b\right)=\left(q_{0}, \varepsilon_{1}\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{0}, \varepsilon_{1}\right) \\
& \delta\left(q_{0}, \varepsilon_{1}, a\right)=\left(q_{f}, a\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FDA } P_{F}=\left(\left\{q_{0}, q_{p}\right\},\{a, b\}\right. \\
& \left.\left\{a, b, z_{0}\right\}, \delta, q_{0}, z_{0},\left\{q_{f}\right\}\right)
\end{aligned}
$$

1. Instantaneous description
$\delta\left(q_{0}, ~ a a b a b a b, z_{0}\right)$
$t_{p}\left(q_{0}, a b a b a b, a z_{0}\right)$
$t_{p}\left(q_{0}, b a b a b, a a z_{0}\right)$
Ip $\left(q_{0}, a b a b, a z_{0}\right)$
$\sqrt{p}\left(q_{0}, b a b, a a z_{0}\right)$
$F_{p}\left(q_{0}, a b, a z_{0}\right)$
$i_{p}\left(q_{0}, b, q a z_{0}\right)$
$\bar{T}_{p}(90, \varepsilon, a z 0)$
$t p\left(q_{F}, a\right)$
\therefore It is accepted.

Design PDA for the language that accepts strings with $n_{a}(w)<n_{b}(w)$

Transition diagram:
a, bl
$a, a, a a a$

b,b/bb
PDA $P_{F}=\left(\left\{q_{0}, q_{F}\right\},\{a, b\},\left\{a, b, z_{0}\right\}\right.$,
$b, a / E$

$$
\left.\delta, q_{0}, z_{0},\left\{q_{F}\right\}\right)
$$

Transition moves

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{0}, b, z_{0}\right)=\left(q_{0}, b z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{0}, q_{a}\right) \\
& \delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{0}, \varepsilon_{1}\right) \\
& \delta\left(q_{0}, a, b\right)=\left(q_{0}, \varepsilon_{0}\right) \\
& \delta\left(q_{0}, \varepsilon, b\right)=\left(q_{F}, b\right)
\end{aligned}
$$

Instantaneous description.

$$
\begin{aligned}
& \delta\left(q_{0}, a b b a b, z_{0}\right) \\
& t_{p}\left(q_{0}, b b a b, a z_{0}\right) \\
& t_{p}\left(q_{0}, b a b, z_{0}\right) \\
& t_{p}\left(q_{0}, a b, b z_{0}\right) \\
& t_{p}\left(q_{0}, b, z_{0}\right) \\
& t_{p}\left(q_{0}, \varepsilon, b z_{0}\right) \\
& t_{p}\left(q_{F}, b\right)
\end{aligned}
$$

\therefore It is accepted.

DETERMINISTIC PUSH DOWN AUTOMATA (DPDA)
Definition:
A PDA $P=\left(Q, \varepsilon, \Gamma, \delta, q_{0}, z_{0}, F\right)$ Ps deterministic of and only If It satisfies the following conditions

1. $\delta(q, a, x)$ has only one member for any given q in Q, a in Σ, or $a=\varepsilon$, and x in Γ
2. If $\delta(q, a, x)$ is non empty for some a in Σ, then $\delta(q, \varepsilon, x)$ must be empty.
Problem:
3. $L=-\left\{\omega c \omega^{R} \mid \omega\right.$ is in $\left.(0+1)^{*}\right\} \quad /$ odd Palindrome Idea: The PDA for this is designed in such a way that DPDA is to store o's and I's on stack until it sees the middle end marker. After thus, it goes to another state in which A matches i / p symbols against stack symbols and paps the stack of they match or else rejected. Thus the PDA is Strictly DPDA.

II does not have a choice of move in the stuart state using the same input and stack symbol.
step 1: $L=\{c, 000, \overrightarrow{\mathrm{Cl}}, \overrightarrow{\mathrm{OCl}}, 11011,00000, \ldots\}$
step 2: Transition diagram.

$$
\begin{array}{ll}
\text { Step 3: Transition function } & \\
\delta\left(q_{0}, 0, z_{0}\right)=\left(q_{0}, 0 z_{0}\right) & \delta\left(q_{0}, c, z_{0}\right)=\left(q_{1}, z_{0}\right) \\
\delta\left(q_{0}, 0,0\right)=\left(q_{0}, 00\right) & \delta\left(q_{0}, c, 0\right)=\left(q_{1}, 0\right) \\
\delta\left(q_{0}, 0,1\right)=\left(q_{0}, 01\right) & \delta\left(q_{0}, c, 1\right)=\left(q_{1}, 1\right) \\
\delta\left(q_{0}, 1, z_{0}\right)=\left(q_{0}, 1 z_{0}\right) & \delta\left(q_{1}, 1,1\right)=\left(q_{1}, \varepsilon_{1}\right) \\
\delta\left(q_{0}, 1,-1\right)=\left(q_{0}, 11\right) & \delta\left(q_{1}, 0,0\right)=\left(q_{1}, \varepsilon_{1}\right) \\
\delta\left(q_{0}, 1,0\right)=\left(q_{0}, 10\right) & \delta\left(q_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{array}
$$

Step 4: Instantaneous description:

$$
\begin{aligned}
& \omega_{1}=0\|C\| 0 \\
& \delta\left(q_{0}, 0 \| C 110, z_{0}\right) \sqrt{p}\left(q_{0},\|c\| 0,0 z_{0}\right) \\
& \sqrt{p}\left(q_{0}, 1 c \| 0,10 z_{0}\right) \\
& \sqrt{p}\left(q_{0}, c \| 0,110 z_{0}\right) \\
& \sqrt{p}\left(q_{1}, 110,110 z_{0}\right) \\
& \\
& \sqrt{p}\left(q_{1}, 10,10 z_{0}\right) \\
& \\
& \sqrt{p}\left(q_{1}, 0,0 z_{0}\right) \\
& \\
& \sqrt{p}\left(q_{1}, \varepsilon_{1}, z_{0}\right) \\
&
\end{aligned}
$$

\therefore The string is accepted.
NPDA [Non Deterministic Push Down Automate]
$\alpha=\left\{\omega \omega^{R} \mid \omega \in(a, b)^{*}\right\}$ or $L=\{\omega / \omega$ is an even palindrome?
Idea: Here we don't know the 'c' middle end maker. So not able to know when to push cor pop. Whenever top of stack and input symbol are same, then corresponding one change to centre (ie) when top of stack = input symbol, we have to assume
that might be centre has came or not.

$$
\begin{aligned}
\text { PDA } \rightarrow \text { Accept: Centre has come. } \\
\rightarrow \text { Reject : Centre has not come. }
\end{aligned}
$$

step 1: $L=\{\varepsilon, a a, b b, a b b a, a a a a, b a a b, .$.
step 2: Transition diagram.

$$
\xrightarrow{\substack{a, b / a b \\
a, a / a a \\
a, z_{0} / a z_{0}}} \begin{aligned}
& \text { NPDA for } L=\left\{w w^{R} \mid \text { in }(a, b)^{*}\right\} \\
& \begin{array}{l}
\text { for } \\
b, z_{0} / b z_{0} \\
b, b / b b \\
b, a / b a
\end{array} \\
& \text { NPDA } P=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, b, z_{0}\right\}, \delta,\right. \\
& \left.q_{0}, z_{0},\left\{q_{2}\right\}\right) .
\end{aligned}
$$

step 3: Transition function:

$$
\begin{array}{ll}
\delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) & \delta\left(q_{0}, b, a\right)=\left(q_{0}, b a\right) \\
\delta\left(q_{0}, a, a\right)=\left(q_{0}, a\right) & \delta\left(q_{0}, a, a\right)=\left(q_{1}, \varepsilon_{)}\right) \\
\delta\left(q_{0}, a, b\right)=\left(q_{0}, a b\right) & \delta\left(q_{0}, b, b\right)=\left(q_{1}, \varepsilon_{)}\right) \\
\delta\left(q_{0}, b, z_{0}\right)=\left(q_{0}, b z_{0}\right) & \delta\left(q_{1}, a, a\right)=\left(q_{1}, \varepsilon_{)}\right) \\
\delta\left(q_{0}, b, b\right)=\left(q_{0}, b b\right) & \delta\left(q_{1}, b, b\right)=\left(q_{1}, \varepsilon_{0}\right) \\
& \delta\left(q_{1}, \varepsilon_{1}, z_{0}\right)=\left(q_{2}, z_{0}\right)
\end{array}
$$

Step 4: Instantaneous description

$$
\omega=a a a a
$$

$$
\delta\left(q_{0}, a a a a, z_{0}\right) \sqrt{p}\left(q_{0}, a a a, a z_{0}\right)
$$

centre hasn't come (push) Centre has come (Pop)
 No transition

Equivalence of PDA's AND CFI
3 CLASS OF LANGUAGE

1. Context free language
2. Language accepted by final state of PDA
3. Language accepted by empty stack by PDA core under the same class.

Problems:
FROM GRAMMAR CFG TO PUSHDOWN ALTOMATA(PDA)
Definition : Let $G=(V, T, P, S)$ be a $C F G$.
construct the PDA P that accepts $L(G)$ by emplystack as follows A PDA $P=(\{q\}, T, V \cup T, \delta, q, s)$ where s is defined by,
(i) For each variable A in CFG
$\delta(q, \varepsilon, A)=\{(q, \beta) \mid A \rightarrow \beta$ is a production of $G\}$
ii) For each terminal a in CFG

$$
\delta(q, a, a)=\{(q, \varepsilon)\}
$$

PROBLEM:

1) Construct the PDA for the following grammar:

$$
E \rightarrow E+E \mid E * E / a
$$

Solution:
Step 1:

$$
\begin{array}{ll}
\text { 1: } G: E \rightarrow E+E|E * E| a \\
V=\{E\} & P=\{E \rightarrow E+E ; E \rightarrow E * E, E \rightarrow a\} \\
T=\{+, *, a\} & S=E
\end{array}
$$

Step 2: PDA $P=(\{q\},\{+, *, a\},\{E, *,+, a\}, \delta, q, E)$
stop 3: Transition function of PDA
For Nonterminal Variable ' E '

$$
\delta(q, \varepsilon, E)=\{(q, E+E),(q, E * E),(q, a)\}
$$

For terminal $+, *, a$

$$
\begin{aligned}
& \delta(q, t, t)=\{(q, \varepsilon)\} \\
& \delta(q, *, *)=\{(q, \varepsilon)\} \\
& \delta(q, a, a)=\{(q, \varepsilon)\}
\end{aligned}
$$

Step 4: Instantaneous description

Selecting string:

$$
\left\lvert\, \begin{array}{ll}
\angle M D: & (E \rightarrow E * E) \\
E \rightarrow E * E & (E \rightarrow a) \\
\underset{\ln d}{ } a * E & (E \rightarrow E+E) \\
\overrightarrow{\operatorname{lm}} a * E+E & (E \rightarrow a) \\
\overrightarrow{\operatorname{lm}} a * a+E & (E \rightarrow a * a \\
\overrightarrow{\operatorname{lm}} a * a+a & (E \rightarrow a)
\end{array}\right.
$$

$(q, a * a+a, E)$

$$
\begin{aligned}
& \sqrt{p}(q, \xi a * a+a, E) \\
& \sqrt{p}(q, a * a+a, E * E) \\
& \sqrt{p}(q, a * a+a, a * E) \\
& \sqrt{p}(q, * a+a, * E) \\
& \sqrt{p}(q, a+a, E) \\
& t_{p}(q, a+a, E+E) \\
& \sqrt{p}(q, a+a, a+E) \\
& \sqrt{p}(q,+a,+E) \\
& \sqrt{p}(q, a, E) \\
& \sqrt{p}(q, a, a) \\
& \operatorname{T}(q, \varepsilon, \varepsilon)
\end{aligned}
$$

Thus the CFG accepts the string $a * a+a$ and it is accepted by PDA by amply stack.
2.

$$
\begin{aligned}
& S \rightarrow O S I / A \\
& A \rightarrow|A O| S \mid \varepsilon_{1}
\end{aligned}
$$

Step 1:

$$
\begin{aligned}
& V=\{S, A\} \\
& T=\{0,1\} \\
& P=\{S \rightarrow O S 1, S \rightarrow A, A \rightarrow \mid A O, A \rightarrow S, A \rightarrow \varepsilon\} \\
& S=S
\end{aligned}
$$

Step 2: PDA $P=(\{9\},\{0,1\},\{s, A, 0,1\}, \delta, q, S\}$
step 3: Transition function
For variables s and A
i) $\delta(q, \varepsilon, s)=\{(q, o s 1),(q, A)\}$
ii) $\delta(q, \varepsilon, A)=\{(q, \mid A O),(q, s),(q, \varepsilon)\}$

For Terminals, 1 and 0

$$
\begin{aligned}
& \delta(q, 0,0)=\{\delta(q, \varepsilon)\} \\
& \delta(q, 1,1)=\{\delta(q, \varepsilon)\}
\end{aligned}
$$

Step 4: Instantaneous description

$$
\begin{aligned}
& \omega_{1}= 0101 \\
& \delta(q, 0101,5) \sqrt{p}(q, 0101,081) \\
& \operatorname{Tp}(q, 101,51) \\
& \operatorname{Tp}(q, 101, A 1) \\
& \operatorname{Tp}(q, 101,1401) \\
& \operatorname{Tp}(q, 01,401) \\
& \operatorname{Tp}(q, 01,01) \\
& \operatorname{rp}(q, 1,1) \\
& \sqrt{p}(q, \varepsilon, q)
\end{aligned}
$$

selecting string: AMD:

$$
\begin{aligned}
& \delta \text { Tm } \text { 081 }[S \rightarrow 0 S 1] \\
& \overrightarrow{I m} Q A 1 . \quad[s \rightarrow A] \\
& \rightarrow \text { O|AOI [} A \rightarrow \mid A O) \\
& \overrightarrow{I m}^{m} 0 \mid \varepsilon_{0} 01[A \rightarrow \varepsilon] \\
& \rightarrow 0101
\end{aligned}
$$

3. $S \rightarrow a A A, A \rightarrow a s / b s / a$

Qi:

$$
\begin{array}{ll}
V=\{S, A\} & P=\{S \rightarrow a A A, A \rightarrow a S, A \rightarrow b S, A \rightarrow a\} \\
T=\{a, b\} & S=S
\end{array}
$$

Slap 1: PDA $P=(\{a\},\{a, b\},\{s, A, a, b\}, \delta, q, 5)$
Sop 2: For ronterminal (Variables): s, A For terminals $: a, b$

$$
\begin{array}{ll}
\delta(q, \varepsilon, s)=\{(q, a, A A)\} & \text { For terminals } \\
\delta(q, a, b, b)=\{(q, \xi)\} \\
\delta(q, A)=\{(q, a s),(q, b s),(q, a)\} & \delta(q, b, b)=\{(q, \varepsilon)\}
\end{array}
$$

step 3: Instantaneous description.
$\omega_{1}=$ aqaara
$\delta(q, a a a a a a, s)$
$t p(q, a 9 a a a a, a A A)$
$t p(q$, aqua, $A A)$
$F p(q, a a a a a, a S A)$
$\sqrt{p}(q, a q a a, 5 A)$
$\sqrt{p}(q, a, a a a, a A A A)$
$\operatorname{tp}(q$, aaa, $A A A)$
$1 p(q, a a a, a A A)$
$\Gamma_{p}(q, a a, A A)$
Ip $(q, a a, a A)$
$t_{p}(q, a, A)$
$\operatorname{Pr}(q, a, a)$
Ip $(q, \varepsilon, \varepsilon) \therefore$ The string is accepted by amply stack.
4. $I \rightarrow a|b| I_{a}\left|I_{b}\right| I_{0} d I_{1}, E \rightarrow I|E * E| E+E \mid(E)$

Solution :-

$$
\begin{aligned}
& \text { Solution :- } \quad P=\{1, E, a, b, 0,1, *,+, c, 1\} \\
& V=\{I, E\} \quad S=E \\
& T=\{a, b, 0,1, *, t, c,\}\} \quad S=
\end{aligned}
$$

Step 2:

$$
\begin{aligned}
& \operatorname{PDA} P=(\{q\},\{a, b, 0,1, *, t, c,)\},\left\{I, E, a, b, 0_{1,}\right. \\
&*,+, c,)\}, 8, q, E) .
\end{aligned}
$$

step 3: For nonterminals I, E
Transition functions:-

$$
\begin{aligned}
\delta(q, \varepsilon, I)=\{ & (q, a),(q, b),\left(q, I_{a}\right),\left(q, I_{b}\right) \\
& \left.\left(q, I_{0}\right),\left(q, I_{1}\right)\right\} \\
\delta(q, \varepsilon, E)= & \{(q, I),(q, E * E),(q, E+E), \\
& (q,(E))\}
\end{aligned}
$$

step 4: Instantaneous description:

$$
w_{1}=a b o l
$$

$$
\begin{aligned}
& \delta(q, a b o l, E) \sqrt{p}(q, a b o l, I) \\
& T_{p}\left(q, a b o l, I_{1}\right) \\
& T_{P}(q, a b o l, I 01) \\
& t_{p}(q, a b o l, \text { bol }) \\
& t_{p}(q, a b o l, a b o l) \\
& \text { ip }(q, b o l \text {, bol }) \\
& T_{p}(q, 01,01) \\
& \text { Ip }(q, 1,1) \quad \operatorname{tp}(q, \varepsilon, \varepsilon)
\end{aligned}
$$

For terminals

$$
\begin{aligned}
& \delta(q, a, a)=\{(q, \varepsilon)\} \\
& \delta(q, b, b)=\{(q, \varepsilon)\} \\
& \delta(q, 0,0)=\{(q, \varepsilon)\} \\
& \delta(q, 1,1)=\{(q, \varepsilon)\} \\
& \delta(q, t,+)=\{(q, \varepsilon)\} \\
& \delta(q, *, *)=\{(q, \varepsilon)\} \\
& \delta(q, c, c)=\{(q, \varepsilon)\} \\
& \delta(q, 0,))=\{(q, \varepsilon)\}
\end{aligned}
$$

Conversion From pa to CFG
RULE 1: If q_{0} is start state then Q is set of states of PDA, then start production is given by $S \rightarrow\left[q_{0}, z_{0}, Q\right]$
$S \rightarrow$ [initial state, initial stack symbol, each state in Q]
RULE2: Production Rule for instantaneous description of the form
Rush: $\delta\left(q_{i}, a_{1}, z_{0}\right)=\left(q_{i+1}, z_{1} z_{2}\right)$ then

$$
\left[q_{i}^{\prime}, z_{0}^{*}, q_{i+k}\right] \longrightarrow a\left[q_{i+1}, z, q_{m}\right]\left[q_{m}, z_{2}, q_{i+k}\right]
$$

Pop:

$$
\begin{gathered}
\delta\left(q_{i}, a, z_{0}\right)=\left(q_{i}+1, \varepsilon_{1}\right) \\
{\left[q_{i}, z_{0}, q_{i+1}\right] \longrightarrow a}
\end{gathered}
$$

READ:

$$
\begin{aligned}
& \delta\left(q_{i}, a_{,}, z_{0}\right)=\left(q_{i+1}, z\right) \\
& {\left[q_{i}, z_{0}, q_{i+m}\right] \rightarrow a\left[q_{i+1}, z_{1}, q_{i+m}\right]}
\end{aligned}
$$

No. of Variables: $V=Q^{2} M+1 \quad\left[\begin{array}{lll}Q & \rightarrow & \text { No. of states } \\ M \rightarrow N o . ~ o f ~ s t a r ~\end{array}\right.$

1) Convert PDA to CFG
$P=(\{p, q\},\{0,1\},\{x, z\}, \delta, q, z)$ where δp dafineat by

$$
\begin{aligned}
& P=(\{p, q\},\{0,1\},\{x, z\}, \delta, q, z \\
& \delta(q, 1, z)=(q, x z), \delta(q, 1, x)=(q, x x), \delta(q, \varepsilon, x)=(q, \varepsilon) \\
& \delta(q, 0, x)=(p, x), \delta(p, 1, x)=(p, \varepsilon), \delta(p, 0, z)=(q, z) .
\end{aligned}
$$

Solution:

Production p:

* For start symbol $s, s \rightarrow[q, z, p] /[q, z, q]$

$$
S \rightarrow G /+1
$$

* For transition functions,
(i) Push

$1 / 4$
$p, p^{2,3}$
p, q
q, p
q, q

$$
\begin{aligned}
& \delta(q, 1, z)=(q, x z) \\
& {[q, z, p] \rightarrow 1[q, x, p][p, z, p]} \\
& q_{0}^{k}, p
\end{aligned}
$$

$$
\begin{aligned}
& {[q, z, p] \rightarrow 1[q, x, p)} \\
& {\left[q, z, p_{1}\right] \rightarrow 1[q, x, q][q, z, p] \quad \therefore \mid G \rightarrow I D G}
\end{aligned}
$$

$$
\begin{aligned}
& \left.[p, F q],[q, z p],\left[q^{H} z q\right]\right\} \\
& T=\Sigma=\{0,1\} \quad ; S=S \\
& {\left[\begin{array}{rl}
V & =Q^{2} M+1 \\
& =2^{2} \times 2+1
\end{array}\right.} \\
& \left.=2^{2} \times 2+1=9\right]
\end{aligned}
$$

$$
[q, z, q] \rightarrow 1[q, x, p][p, z, q]
$$

$$
H \rightarrow I C F
$$

$$
[q, z, q] \rightarrow 1[q, x, q] \cdot[q, z, q]
$$

$$
H \rightarrow I D H
$$

ii) Push

$$
\begin{aligned}
& \delta(q, 1, x)=(q, x) \\
& {[q, x, p] \rightarrow 1[q, x, p][p, x, p]} \\
& {[q, x, p] \rightarrow 1[q, x, q][q, x, p]} \\
& {[q, x, q] \rightarrow 1[q, x, p][p, x, q]} \\
& {[q, x, q] \rightarrow 1[q, x, q][q, x, q]}
\end{aligned}
$$

iii) Pop

$$
\begin{aligned}
& \delta(q, \varepsilon, x)=(q, \varepsilon) \\
& {[q, x, q] \rightarrow \xi}
\end{aligned}
$$

$$
2^{0}=1 \text { production }
$$

$$
\therefore D \rightarrow \varepsilon_{1}
$$

iv) Read

$$
\begin{array}{ll}
\delta(q, 0, x)=[p, x) \\
{[q, x, p] \rightarrow 0[p, x, p]} \\
{[q, x, q] \rightarrow 0[p, x, q]}
\end{array} \quad \begin{aligned}
& \\
& {[q \rightarrow O A} \\
& D \rightarrow O B
\end{aligned}
$$

$$
2^{1}=2 P_{\text {reduction }}
$$

v) $P_{0 p}$:

$$
\begin{gathered}
\delta(p, 1, x)=(p, \varepsilon) \\
{[p, x, p] \rightarrow 1}
\end{gathered}
$$

vi) read:

$$
\begin{aligned}
& \delta(p, 0, z)=(q, z) \\
& {[p, z, p] \rightarrow 0[q, z, p]} \\
& {[p, z, q] \rightarrow 0[q, z, q]}
\end{aligned}
$$

$$
\begin{aligned}
& E \rightarrow O G \\
& F \rightarrow O H
\end{aligned}
$$

Since B has no transition (Production),
$\delta \rightarrow G / H$
$G \rightarrow I C E / I D G$
$H \rightarrow I C F / I D H$
$C \rightarrow|C A / I D C|: O A$
$D \rightarrow \mid C B / I D D / O B / G$

Remove B,

$$
\begin{aligned}
& S \rightarrow G / H \\
& G \rightarrow I C E / I D G \\
& H \rightarrow I C F / I D H \\
& C \rightarrow \mid C A / I D C / O A \\
& D \rightarrow I D D / E
\end{aligned}
$$

$$
A \rightarrow 1 ; E \rightarrow O G ; F \rightarrow O H
$$

2) PDA $P=\left(\{90, q\},,\{0,1\},\{x, y, z\}, 8, q_{0}, z,\{9\},\right)$

$$
\begin{aligned}
& \text { 2) PDA } P=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\{x, y, z\}, \delta, q_{0},\right. \\
& \delta\left(q_{0}, 0, z\right)=\left(q_{1}, z\right), \delta\left(q_{0}, 1, z\right)=\left(q_{0}, x z\right), \delta\left(q_{0}, 0, x\right)=\left(q_{1}, \varepsilon_{1}\right) \\
& \left.\delta\left(q_{0}, 1, x\right)=\left(q_{0}, x x\right), \delta\left(q_{1}, 0, z\right)=\left(q_{1}, y z\right), \delta\right)=\left(q_{0}, z\right) \\
& \delta\left(q_{1}, 0, y\right)=\left(q_{1}, y y\right), \delta\left(q_{1}, 1, y\right)=\left(q_{1}, \varepsilon_{1}\right)
\end{aligned}
$$

Solution:

$$
T=\{0,1\} ; \quad S=S
$$

Production P:
i) Start Symbol, S

$$
\begin{aligned}
& S \rightarrow\left[q_{0}, z, q_{0}\right] /\left[q_{0}, z, q_{1}\right] \\
& \frac{S \rightarrow A / B}{\left.\frac{r a d i}{\delta(} q_{0}, 0, z\right)=\left(q_{1}, z\right)} \\
& \text { ii) }\left[q_{0}, z, q_{0}\right] \rightarrow 0\left[q_{1}, z, q_{0}\right] \\
& {\left[q_{0}, z, q_{1}\right] \rightarrow 0\left[q_{1}, z, q_{1}\right]} \\
& A \rightarrow O C ; B \rightarrow O D
\end{aligned}
$$

iii) Push $\delta\left(9_{0}, 1, z\right)=\left(9_{0}, x z\right)$
$\left[q_{0}, z, q_{0}\right] \rightarrow 1\left[q_{0}, x, q_{0}\right]\left[q_{0}, z, q_{0}\right]$
$\left[q_{0}, x, q_{0}\right] \rightarrow 1\left[q_{0}, x, q_{1}\right]\left[q_{1}, z, q_{0}\right]$

$$
\left[q_{0}, z, q_{1}\right] \rightarrow 1\left[q_{0}, x, q_{0}\right]\left[q_{0}, z, q_{1}\right]
$$

$\left[q_{0}, z, q_{1}\right] \rightarrow 1\left[q_{0}, x, q_{1}\right]\left[q_{1}, z, q_{1}\right]$

$A \rightarrow I E A ;$	$B \rightarrow I E B$
$A \rightarrow \mid F C$	$;$
	$B \rightarrow I F D$

iv) Pop $\delta\left(q_{0}, 0, x\right)=\left(q_{1}, \epsilon_{1}\right)$
$\left[q_{0}, x, q_{1}\right] \rightarrow 0$ $F \rightarrow 0$
v) Push $\delta(90,1, x)=(90, x x)$

$$
\begin{aligned}
& {\left[q_{0}, x, q_{0}\right] \rightarrow 1\left[q_{0}, x, q_{0}\right]} \\
& {\left[q_{0}, x, q_{0}\right]} \\
& {\left[q_{0}^{-}, x, q_{0}\right] \rightarrow 1\left[q_{0}, x, q_{1}\right]\left[q_{1}, x, q_{0}\right]} \\
& {\left[q_{0}, x, q_{1}\right] \rightarrow 1\left[q_{0}, x, q_{0}\right]\left[q_{0}, x q_{1}\right]} \\
& {\left[q_{0}, x, q_{1}\right] \rightarrow 1\left[q_{0}, x, q_{1}\right]\left[q_{1}, x, q^{\prime}\right.} \\
& \begin{array}{ll}
E \rightarrow I E E & F \rightarrow I E F \\
E \rightarrow I F G & F \rightarrow 1 F H
\end{array}
\end{aligned}
$$

vi) Push $\delta\left(q_{1}, 0, z\right)=\left(q_{1}, y z\right)$ $\left[q_{1}, z, q_{0}\right] \rightarrow 0\left[q_{1}, y, q_{0}\right]\left[q_{0}, z, q_{0}\right]$ $\left[q_{1}, z, q_{0}\right] \Rightarrow 0\left[q_{1}, y, q_{1}\right]\left[q_{1}, z, q_{0}\right.$ $\left[q_{1}, z, q_{1}\right] \rightarrow 0\left[q_{1}, y, q_{0}\right]\left[q_{0}, z, q_{i}\right.$ $\left[q_{1}, z, q_{1}\right] \rightarrow 0\left[q_{1}, q_{1}, q_{1}\right]\left[q_{1}, z, q_{1}\right.$

$$
\begin{aligned}
& G=(V, T, p, s) \\
& V=\left\{\delta,\left[q_{0}, z_{B}, q_{0}\right],\left[q_{0}, z, q_{1}\right],\left[q_{1}, z, q_{0}\right],\left[q_{1}, z, q_{1}\right]\right. \\
& {\left[q_{0}, \tilde{E}_{x}^{E}, q_{0}\right],\left[q_{0}, x, q_{1}\right],\left[q_{1}, x, q_{0}\right],\left[q_{1}^{H}, x, q_{1}\right]} \\
& {\left[q_{0}, y^{I}, q_{0}\right],\left[q_{0}, y^{J}, q_{1}\right],\left[q_{1}, y^{K} y, q_{0}\right],\left[q_{1}^{L}, y, q_{1}\right]}
\end{aligned}
$$

$C \rightarrow O K A$
$c \rightarrow O L C$
$D \rightarrow O K B$
$D \rightarrow O L D$
Read: $\delta\left(q_{1}, 1, z\right)=\left(q_{0}, z\right)$
$\left[q_{1}, z, q_{0}\right] \rightarrow 1\left[q_{0}, z, q_{0}\right]$
$\left[q_{1}, z, q_{1}\right] \rightarrow 1\left[q_{0}, z, q_{1}\right]$

$C \rightarrow 1 A$
$D \rightarrow 1 B$

vii) Read: $\delta\left(q_{1}, 1, z\right)=\left(q_{0}, z\right)$
$\left[q_{1}, z, q_{0}\right] \rightarrow 1\left[q_{0}, z, q_{0}\right]$
$\left[q_{1}, z, q_{1}\right] \rightarrow 1\left[q_{0}, z, q_{1}\right]$
$C \rightarrow \mid A$

$$
D \rightarrow I B
$$

viii) Push. $\delta\left(q_{1}, 0, y\right)=\left(q_{1}, y y\right)$
$\left[q_{1}, y, q_{0}\right] \rightarrow 0\left[q_{1}, y, q_{0}\right]\left[q_{0}, y, q_{0}\right]$
$\left[q_{1}, y, q_{0}\right] \rightarrow 0\left[q_{1}, y, q_{1}\right]\left[q_{1}, y, q_{0}\right]$
$\left[q_{1}, y, q_{1}\right] \rightarrow 0\left[q_{1}, y, q_{0}\right]\left[q_{0}, y, q_{1}\right]$
$\left[q_{1}, y, q_{1}\right] \rightarrow \circ\left[q_{1}, y, q_{1}\right]\left[q_{1}, y, q_{1}\right]$
$K \rightarrow O K I ; L \rightarrow O K J$
$k \rightarrow O L K ; \quad L \rightarrow O L L$
(x) Pop: $\delta\left(q_{1}, 1, y\right)=\left(q_{1}, \varepsilon_{1}\right)$

$$
\left[q_{1}, y_{1} q_{1}\right] \rightarrow 1 \quad ⺊ \rightarrow 1
$$

Transitions
$S \rightarrow A / B$
$A \rightarrow O C / I E A / I F C$
$B \rightarrow O D / I E B / I F D$
$C \rightarrow$ OKA /OLE/ IA
$D \rightarrow$ KB/ OLD/ IB
$E \rightarrow I E E / I F G$
$\mathrm{F} \rightarrow \mathrm{O} / \mathrm{IEF} / \mathrm{FH}$
$K \rightarrow O K I / O L K$
$L \rightarrow 1 / O K J / O L L$
There is no transition for
G, H, I, J, so remove
$S \rightarrow A / B$
$A \rightarrow O C / I E A / I F C$
$B \rightarrow D D / I E B / I F D$
$C \rightarrow O K A / O L C / I A$
$D \rightarrow O K B / O L D / / B$
$E \rightarrow I E E$
$F \rightarrow O / I E F$
$K \rightarrow$ OLE $; L=1 / 0 L L$

CONVERSION FROM DA BY EMPTY STACK TO FINAL STATE

1) Construct a PDA to accept the language $L=\left\{a^{n} b^{m} / n>m\right\}$ by reaching empty stack and Convert into PDA by final state.
Son:
1. $L=\{a a b, a a a b b, a a a b, \ldots\}$
2. Transition diagram

$$
\begin{aligned}
& \xrightarrow[P D A]{P} P_{N}=\left(\left\{q_{0}, b, a \mid \varepsilon_{1}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\left\{q, z_{0}\right\}, \delta,\right.
\end{aligned}
$$

$\left.q_{0}, z_{0}, \phi\right)$
\because PDA for $L=\left\{a^{n} b^{m} / n>m\right\}$ by empty stack
3. Transition function:

$$
\begin{array}{ll}
\text { 3. Transition function: } & \delta\left(q_{1}, b, a\right)=\left(q_{1}, k\right) \\
\delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, q_{0}\right) & \delta\left(q_{0}, q_{1}, a\right)=(q, a) \\
\delta\left(q_{0}, a, a\right)=\left(q_{0}, q_{a}\right) & \delta\left(q_{2}, \varepsilon_{1}, a\right)=\left(q, \varepsilon_{0}\right) \\
\delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon_{1}\right) & \delta\left(q_{3}, z_{1}, z_{0}\right)=\left(q, \varepsilon_{0}\right)
\end{array}
$$

4. Conversion from empty stack to final state:

PDA for $\alpha=\left\{a^{n} b^{m} \mid n>m\right\}$ by final stake

$$
P_{F}=\left(\left\{P_{0}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{a_{1} b\right\},\left\{a, z_{0}, x_{0}\right\}, \delta,\right.
$$

5. Instantaneous description:-
(i) $\omega=a a b$ by emply stack PN
$\left(q_{0}, a a b, z_{0}\right) \sqrt{p}\left(q_{0}, a b, a z_{0}\right)$

$$
\begin{aligned}
& r_{p}\left(q_{0}, b, a a z_{0}\right) \\
& T_{p}\left(q_{1}, \varepsilon_{1}, a z_{0}\right) \\
& T_{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \\
& \sqrt{p}\left(q_{3}, \varepsilon_{1}, \varepsilon_{1}\right)
\end{aligned}
$$

\therefore The string is accepted by empty stack.
(ii) $w=a a b$ by final state $P F$ $\left(P_{0}, a a b, x_{0}\right) \sqrt{P}\left(P_{0}, G a a b, x_{0}\right)$ $\sqrt{p}\left(q_{0}, a a b, z_{0} \times 0\right)$ $r_{p}(90, a b, a \geq 0 \times 0)$ $\sqrt{P}\left(q_{0}, b, a_{0} z_{0} \times 0\right)$ $\sqrt{p}\left(q_{1}, \varepsilon_{1}, a z_{0} \times 0\right)$ $r_{p}\left(q_{2}, \varepsilon_{1}, z_{0} x_{0}\right)$ Pp $\left(q_{3}, \varepsilon_{1}, x_{0}\right)$ $T_{p}\left(q_{4}, \varepsilon_{1}, x_{0}\right)$
\therefore The string is accepted by final stale.

CONVERSION FROM DA BY FINAL STATE TO PDA BY EMPTY STACK
Design a PDA to accept the language $L=\left\{a^{2 n} b^{n+1} \mid n \geq 1\right\}$ by reaching Final state and convert this PDA by mashing FINAL STATE into PDA by em ply stack.
Sol: $1.1=\{a a b b$, aaaabbb, aqaaaaabbbb,$\ldots\}$
2. Transition Diagram.

3. Transition Function

$$
\begin{aligned}
& \delta\left(q_{0}, a, z_{0}\right)=\left(q_{1}, z_{0}\right) \\
& \delta\left(q_{0}, a, a\right)=\left(q_{1}, a\right) \\
& \delta\left(q_{0}, b, a\right)=\left(q_{2}, a\right) \\
& \delta\left(q_{1}, a, a\right)=\left(q_{0}, a, a\right) \\
& \delta\left(q_{1}, a, z_{0}\right)=\left(q_{0}, a z_{0}\right) \\
& \delta\left(q_{2}, b, a\right)=\left(q_{2}, \varepsilon_{0}\right) \\
& \delta\left(q_{2}, q_{1}, z_{0}\right)=\left(q_{3}, z_{0}\right)
\end{aligned}
$$

4. CONVERSION : PDA OF EMPTY STACK

PDA for $L=\left\{a^{2 n} b^{n+1} / n z 1\right\}$ by empty stack

$$
P_{N}=\left(\left\{p_{0}, q_{0}, q_{1}, q_{2}, q_{3}, p_{1}, p_{2}\right\},\{q, b\},\left\{q, z_{0}, x_{0}\right\}, \delta, p_{0}, x_{0},\left\{q_{3}\right.\right.
$$

5. Instantaneous desviption:
$\omega=a a b b$ By final state (p_{k})
$\left(q_{0}, a a b b, z_{0}\right) \stackrel{t}{p}\left(q_{1}, a b b, z_{0}\right)$

$$
\begin{aligned}
& \sqrt{p}\left(q_{0}, b b, a z_{0}\right) \\
& \sqrt{p}\left(q_{2}, b, a z_{0}\right) \\
& \sqrt{p}\left(q_{2}, \varepsilon_{1}, z_{0}\right) \\
& \sqrt{p}\left(q_{3}, \varepsilon_{1}, z_{0}\right)
\end{aligned}
$$

Accepted by Final state
$w=a l a b b$ by empty stack (PN) $\left(p_{0}, a a b b, x_{0}\right) \mid t\left(p_{0}, \varepsilon_{a} a b b, x_{0}\right)$ $\sqrt{p}\left(q_{0}, a a b b, z_{0} x_{0}\right)$

$$
\begin{aligned}
& \sqrt{p}\left(q_{1}, a b b, z_{0} x_{0}\right) \sqrt{p}\left(q_{0}, b b, a z_{0} x_{0}\right) \\
& \sqrt{p}\left(q_{2}, b, a z_{0} x_{0}\right) \sqrt{p}\left(q_{2}, \varepsilon_{1}, z_{0} x_{0}\right) \\
& \sqrt{p}\left(q_{3}, \varepsilon_{1}, z_{0} x_{0}\right) \sqrt{p}\left(p_{1}, \varepsilon_{1}, x_{0}\right) \\
& \sqrt{p}\left(p_{2}, \varepsilon_{1}, \varepsilon_{1}\right) \therefore \text { Accepted by emply}
\end{aligned}
$$

UNIT IV
 PROPERTIES OF CONTEXT FREE
 LANGUAGES

SIMPLICATION OF CFG:
Sinpifitation of CFG inexins andution of grammar uy oremouing wseless symiols, thus reduing the length of grammar

The properties of viebued grammar are,

Eliminating Useless symbols/production:
Let $G=(V, T, P, S)$ ed grammar. A symbol ' x ' is sesepul if there is α derivation, $S \stackrel{*}{\Longrightarrow} \alpha \times \beta \Rightarrow \omega$ for some α, β and ω where ω is in T^{*}, otherumie it is useless.

There are turo urays to find cusepul prodution.
(1) some derminal seing mevet be dorived from ' x '.
(2) x must ocuer in some stuin deruied fuem S.

Tuo derms are involued,
(1) Generating symbds (2) Reachable symbols.

Qunctating symbel: If ' x ' is generating if $x \Rightarrow \omega$ for some T^{*} in W,

Step :
(1) auery symbal of T is generating, therepore it Generate itself
(2) If A terats to $a(A \rightarrow a)$, then A is also generating for $a \& T$ or $a \leqslant \varepsilon 1$

Reachalle symbol: ' x ' is reaching if there is a derivation, $S \stackrel{\oplus}{\Longrightarrow} \alpha \times \beta$ for some $\alpha \& \beta$.

Sleps:
(1) S is a reachalule because S is a stort symbl.
(2) If A is reachalile, then all prodution mith A in the head, all symble of thase prodicition - tre etso reachalie

PROBLENOS:
$(1) S \rightarrow A B|a, A \rightarrow B C| b, B \rightarrow a B|C, C \rightarrow a C| B$
Solution
(1) Idenaby all generating varlalu:
(2) Generating symbols are $\{a, b, c, s, A$,
(3) Useless symbal is $B, C \times$ eliminate B, C

$$
\begin{aligned}
& S \rightarrow a \\
& A \rightarrow b
\end{aligned}
$$

(4) Remouing innelachalule production/uselus. unreachalue production: $A \rightarrow b$
(5) Ans: Usefuel prodection : $s \rightarrow a$.
(2) $s \rightarrow a s / A / C$
$A \rightarrow a$
$B \rightarrow a a$
$c \rightarrow a c b$
Solution:
(1) Gunerating Symbals: $\{a, b, A, B, s\}$
(2) Ureless symbal: C

$$
\begin{aligned}
\therefore \quad S & \rightarrow a S \mid A \\
A & \rightarrow a \\
B & \rightarrow a a
\end{aligned}
$$

(3) Unreabable symbol/prodution: B

Ans: $\left[\begin{array}{l}S \rightarrow a S \\ A \rightarrow a\end{array}\right] \rightarrow$ Useful prodution
(3) $S \rightarrow a A|a| B b \mid C C$
$A \rightarrow a b$
$B \rightarrow a \mid A a$
$C \rightarrow C C D$
$D \rightarrow d d d$
Solution: (1) Generating symbols: $\{a, b, c, d, B, A, B, D\}$ (2) Usiless symbal: C

$$
\begin{aligned}
\therefore \quad S & \rightarrow a A|a| B b \\
A & \rightarrow a B \\
B & \rightarrow a \mid A a \\
D & \rightarrow d d d
\end{aligned}
$$

(3) Unreachalle symbor/prodution: D

(4) $S \rightarrow a A \mid b B$

$$
\begin{aligned}
& A \rightarrow a A \mid a \\
& B \rightarrow b B \\
& D \rightarrow a b \mid E a \\
& E \rightarrow a c \mid d
\end{aligned}
$$

Solution:
(1) Generating symbol: $\{a, b, c, d, S, A, E, D\}$
(2) Useless symbol: B.

$$
\begin{aligned}
\therefore \quad S & \rightarrow a A \\
A & \rightarrow a A \mid a \\
D & \rightarrow a b \mid E a \\
E & \rightarrow a c \mid d
\end{aligned}
$$

(3) Unreachalule symbol: D, E

$$
\therefore \text { Ans }=\left[\begin{array}{l}
S \rightarrow a A \\
A \rightarrow a A \mid a
\end{array} \rightarrow\right. \text { useful production }
$$

Eliminating \& / Null production:
A production which is of the form $A \rightarrow a l$ is called a-production. If G is in $L(G)$, it is not possible to eliminate all at -production. The same is possible if 4 is not in L(G).

For each variable A, if $A \stackrel{*}{\Longrightarrow} Q_{1}$, then A is called as nullalule variable.
ale need to check whether the varialile is nullalle or not.

If $B \rightarrow C_{1} \cdot C_{2}, C_{3} \ldots . C_{n}$ where each C_{i} is nullalle, then B is nuclalule.

PROBLEMS:
(1) $S \rightarrow a s a \mid b A b$
$A \rightarrow \vartheta \xi$
Solution:
(i) $V=\{S, A\}$
(ii) Null production: $A \rightarrow E_{1}$
(iii) Nullable varialule: $\{A\}$
Civ) Celiminate wherever A is there which should not afbut coresspording grammai.

If we ramove $A, b A b$

$$
\Rightarrow b \& b
$$

$$
\Rightarrow b b
$$

$$
\therefore \quad s \rightarrow a s a\left|b_{A}^{x} b\right| b b
$$

$A \rightarrow \varepsilon_{\dot{1}} \times \quad \quad \quad b A b$ can be eliminated. because A is useless symbel)

$$
\therefore \quad \leq \rightarrow a s a / b b
$$

(2) $S \rightarrow A B$

$$
\begin{aligned}
& A \rightarrow a A A \mid \xi \\
& B \rightarrow b B B \mid \xi
\end{aligned}
$$

Solution
(i) $V=\{S, A, B\}$
(ii) Null produution: $\quad\{A \rightarrow \xi, B \rightarrow \xi$)
(ili) Nullable variable: $\{A, B, S\}$
(IV) Fuid production aido tecuitrout nullable varialule.

$$
\begin{aligned}
& S \rightarrow A B|A| B \mid \sum_{x}^{x}\left(\therefore A B \rightarrow A a_{1}\right) \\
& A \rightarrow a A A|a A| a A|a| \varepsilon^{x}
\end{aligned}
$$

$$
\begin{aligned}
& B \rightarrow b B B|b B| b B|b| g^{x} \\
& \therefore \left\lvert\, \begin{array}{l}
S \rightarrow A B|A| B \\
A
\end{array}\right. \\
& B \rightarrow a A A|a A| a \\
& B B B|b B| b
\end{aligned}
$$

[Eleminate null x duplieate values]
(3)

$$
\begin{aligned}
& A \rightarrow O B|||B| \\
& B \rightarrow O B||B| \xi
\end{aligned}
$$

Solution:
(1) $V=\{A, B\}$
(2) Null production $\therefore B \rightarrow \xi$.
(3) Nullable raviable: $\{B\}$
(4) find produition with ecuithout nullable variables

$$
\begin{aligned}
A & \rightarrow O B||O 1|| B|\mid 11 \\
B & \rightarrow O B|O||B| 1 \mid \xi_{1}^{x} \\
\therefore A & \rightarrow 0 B 1|01||B| \mid 11 \\
B & \rightarrow O B|0||B| 1
\end{aligned}
$$

(4) $S \rightarrow a|A b| a B a$
$A \rightarrow b / \xi$
$B \rightarrow b \mid A$
Solution:
(i) Variable: $\{S, A, B\}$
(2) Null production: $A \rightarrow \xi$:
(3) Nullable vauable: $\{A, B\}$
(4) friod production,
$s \rightarrow a|A b| b|a B a| a a$
$A \rightarrow b \mid q_{i}^{*}$
$B \rightarrow b|A| G^{x}!$

$$
\therefore \begin{aligned}
& S \rightarrow a|A b| b|a B a| a a \\
& A \rightarrow b \\
& B \rightarrow b \mid A
\end{aligned}
$$

Clemenation of unit production:
A unit production is production which is of the form $A \rightarrow B$ where both $A \times B$ are variables.

UNIT PAIR: If the sequence of derivation steps are $A \Rightarrow B_{1} \Rightarrow B_{2} \ldots B_{n} \Rightarrow \alpha$, then These unit productions pore replaced dy a ron-unit production, $B_{n} \rightarrow \infty$ directly from A.

$$
\therefore \quad A \rightarrow \alpha
$$

(A, B) sues that $A \stackrel{*}{\Rightarrow} B$ is called an unit pair.
How to eliminate unit production:
Guvien a $C F G, G=(V, T, P, s)$ with unit production then constavet a new $C F G G_{1}=\left(V_{1} T_{1} P_{1}, S\right)$
(1) Find all the dint pair of 9 .
(2) For each unit pain (A, B) if there is a production $A \rightarrow B$ replace it with $A \rightarrow \alpha$ provided $B \rightarrow \alpha$ is a production in O.

PROBLEMS
(I)

$$
\begin{aligned}
& S \rightarrow A a \mid B \\
& B \rightarrow A \mid b b \\
& A \rightarrow a|b c| B
\end{aligned}
$$

Solution:
(i) Find all unit produetion

$$
\begin{aligned}
& S \rightarrow B \\
& B \rightarrow A \\
& A \rightarrow B
\end{aligned}
$$

(ii)

$$
\begin{array}{rlr}
S & \rightarrow B & \\
& \rightarrow A & \\
& \rightarrow a \mid b c \\
& \rightarrow a b \\
& \rightarrow A \mid b c \\
& \rightarrow A \mid b b \\
& \rightarrow a|b c| b b \\
A & \rightarrow B b \\
\therefore B \rightarrow A a|a| b c \mid b b \\
& \rightarrow B \rightarrow a|b c| b b \\
A & \rightarrow a|b c| b b
\end{array}
$$

(2)

$$
\begin{aligned}
& S \rightarrow O A||B| C \\
& A \rightarrow O S \mid 00 \\
& B \rightarrow 1 \mid A \\
& C \rightarrow 01
\end{aligned}
$$

Solution:
(i) Fird all dinit produltion

$$
S \rightarrow c
$$

(ii)

$$
\begin{aligned}
S & \rightarrow C & & B \rightarrow A \\
& \rightarrow 0 i & & \rightarrow 0 S 100
\end{aligned}
$$

$\therefore S \rightarrow O A||B| 0| \Rightarrow$ Remove umreaibable prodection.
$A \rightarrow 0 S 100$
C is unraachalle
$B \rightarrow 1105100$

$$
\therefore S \rightarrow O A||B| O|
$$

Ans: $A \rightarrow O S 100$
$C \rightarrow 01$
$B \rightarrow 1105100$
(3)

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a \\
& B \rightarrow C \mid b \\
& C \rightarrow D \\
& D \rightarrow E \mid b C \\
& E \rightarrow d \mid A B
\end{aligned}
$$

Solution:
(i) Find all dinit prodution

$$
\begin{aligned}
& B \rightarrow C \\
& C \rightarrow D \\
& D \rightarrow E
\end{aligned}
$$

(ii) $B \rightarrow C \quad D \rightarrow E \quad C \rightarrow D$

$$
\left.\begin{array}{l}
\rightarrow d|A B| b|b \quad \rightarrow d| A b \quad c \rightarrow d|A b| b c \\
\therefore \quad S \rightarrow A B \\
A \rightarrow a \\
B \rightarrow d|A b| B C \mid b \\
C
\end{array}\right]
$$

(iii) Remoue uncabdable production D and E

Ans:

$$
\begin{aligned}
\therefore \quad S & \rightarrow A B \\
A & \rightarrow a \\
B & \rightarrow d|A b| B C \mid b \\
C & \rightarrow d|A b| b C
\end{aligned}
$$

NORMAL FORM OF CFG:
(1) Chomsky Normal form (CNF)
(2) Greibauk Normal Form (GNF)

CONVERSION FROM CFG INTO NF:
Any CFL without al is generated lu a grammar in which all productions are of the form $A \rightarrow B C(O)$ $A \rightarrow a$ where A, B, C are varialules and a is a terminal.

Steps:
(1) Write down the rule of CFG

$$
\begin{aligned}
\text { Non-Terminal (NT) } & \rightarrow N T N T \\
N T & \rightarrow \text { Terminal }
\end{aligned}
$$

(2) Write the guin production.
(3) Simplify the CFG
(3.1) Elimination of a_{4}-production
(3.2) Elimination iq unit production
(3.3) Elimination of useless production.
(4) convert CFO units CNF
(5) Write down the resultant production.

PROBLEMS:
(1) Consturet the grammar $\{\{S, A, B],\{a, b \hat{y}, p, 5)$ 解 $\{$ the produltion

$$
\begin{aligned}
& S \rightarrow b A \mid a B \\
& A \rightarrow b A A|a s| a \\
& B \rightarrow a B B|b S| b
\end{aligned}
$$

Convert into CNF.

Solution:
(1) Rule Of CNF:

$$
\begin{aligned}
& N T \rightarrow N T \quad N T \\
& N T \rightarrow T
\end{aligned}
$$

(2) Write the given production

$$
\begin{aligned}
& S \rightarrow b A \mid a B \\
& A \rightarrow b A A|a s| a \\
& B \rightarrow a B B|b s| b
\end{aligned}
$$

(3) semplify the CFO
(3.1) Qlimirate al-prodution:

There is no at-prodution in the guien
Grammar. Then CFG is,

$$
\begin{aligned}
& S \rightarrow b A \mid a B \\
& A \rightarrow b A A|a S| a \\
& B \rightarrow a B B|b S| b
\end{aligned}
$$

(3-2) Alimirate unit prodution:
There is no cunit prodution in the guen Geramman. Then CFG is,

$$
\begin{aligned}
& S \rightarrow b A \mid a B \\
& A \rightarrow b A A|a s| a \\
& B \rightarrow a B B|b s| b
\end{aligned}
$$

(3.3) Elimination of useless production:

There is no useless production in the gen Grammar. Then CFG is,

$$
\begin{aligned}
& S \rightarrow b A \mid a B \\
& A \rightarrow b A A|a s| a \\
& B \rightarrow a B B|b S| b
\end{aligned}
$$

(4) Simplify CFG to CNF:
$S \rightarrow b A$ (Bul el)
$S \rightarrow a B$ (Rule 2)
$A \rightarrow$ bAA (Rule 3)
$A \rightarrow$ as (Rule 4)
$A \rightarrow a \quad$ (Rule 5) //CNF formate
$B \rightarrow a B B$ (Rule 6)
$B \rightarrow$ bs (Rule)
$B \rightarrow b \quad$ (Rules) //CNF format.

Rule 1:

$$
\begin{gathered}
S \rightarrow \underline{b} A \\
S \rightarrow c_{b} A \\
c_{b} \rightarrow b
\end{gathered}
$$

Rule 2

$$
\begin{aligned}
& s \rightarrow \underline{a} B \\
& s \rightarrow C_{a} B \\
& C_{a} \rightarrow a
\end{aligned}
$$

Rule 3 :

$$
\begin{aligned}
A & \rightarrow b A A \\
& \rightarrow C_{b} A A \\
A & \rightarrow C_{b} D_{1} \\
C_{b} & \rightarrow b \\
D_{1} & \rightarrow A A
\end{aligned}
$$

Rule 6:

$$
\begin{aligned}
B & \rightarrow A B B \\
& \rightarrow C a B B \\
B & \rightarrow C a D_{2} \\
D_{2} & \rightarrow B B
\end{aligned}
$$

Rule 7:

$$
\begin{aligned}
& B \rightarrow b_{s} \\
& B \rightarrow c_{b S} S
\end{aligned}
$$

(5) Resultant productions are,
$s \rightarrow C_{b} A \mid C a B$
$A \rightarrow C_{b} D_{1}|C a s| a$
$B \rightarrow C_{a} D_{2}|C b s| b$
$D_{1} \rightarrow A A$
$D_{2} \rightarrow B B$
$C_{a} \rightarrow a$
$C_{b} \rightarrow b$
(2) $S \rightarrow A S B / \frac{F}{7}$
$A \rightarrow a A S \mid a$. convert into CNF.
$B \rightarrow s b s|A| b b$
Solution:
(1) Rule of CNF:

$$
\begin{aligned}
& \text { NT } \rightarrow \text { NT NT } \\
& \text { NT } \rightarrow T
\end{aligned}
$$

(2) Quvin prodution:

$$
\begin{aligned}
& S \rightarrow A S B \mid=S \\
& A \rightarrow a A S \mid a \\
& B \rightarrow S B S|A| b b .
\end{aligned}
$$

(3) Simplify CFG:
(3.1) Qlimination of a_{y}-production:

$$
V=\{s, A, B\}
$$

Nell produition : $\quad S \rightarrow$ 急
Nullable variable: $\{s\}$

$$
\begin{aligned}
S & \rightarrow A S B|A B| E: X \\
A & \rightarrow a A S|a A| a \\
B & \rightarrow S b S|b S| S b|b| A \mid b b \\
S & \rightarrow A S B \mid A B \\
A & \rightarrow a A S|a A| a \\
B & \rightarrow S b S|b s| S b|b| A \mid b b
\end{aligned}
$$

(3.2) Gliminate unit production:

- First all unit production

$$
B \rightarrow A
$$

- $B \rightarrow A$

$$
\begin{array}{rlrl}
B & \rightarrow A & B & \rightarrow A \\
& \rightarrow a & & \rightarrow a A
\end{array}
$$

- There is no unreachable prodution

$$
\therefore \quad\left\{\begin{array}{l}
S \rightarrow A S B \mid A B \\
A \rightarrow a A S|a A| a \\
B \rightarrow S b S|b S| S b|b| a A S|a A| a \mid b b
\end{array}\right.
$$

(3.3) Aleminate cuseless production:
there is no deseless production in the guien Grammar G.

Then CFG,

$$
\begin{aligned}
& S \rightarrow A S B \mid A B \\
& A \rightarrow a A S|a A| a \\
& B \rightarrow S b S|b S| s b|b| a A S|a A| a \mid b b
\end{aligned}
$$

(4) semplifes CFG to CNF:

$$
\text { : } \begin{aligned}
S & \rightarrow A S B \\
S & \rightarrow A D_{1} \\
D_{1} & \rightarrow S B
\end{aligned}
$$

$$
S \rightarrow A B
$$

$$
S \rightarrow A B
$$

-

$$
\begin{aligned}
A & \rightarrow a A S \\
& \rightarrow C a A S \\
A & \rightarrow C a D_{2} \\
C a & \rightarrow a \\
D_{2} & \rightarrow A S
\end{aligned}
$$

$$
A \rightarrow a
$$

$$
A \rightarrow C a A
$$

- $B \rightarrow S D S$

$$
\begin{array}{ll}
B \rightarrow S \underline{b} \\
B \rightarrow S C_{b} \quad B & B \rightarrow B S
\end{array} \quad B \rightarrow C_{B S} \quad B \rightarrow a S
$$

$$
\rightarrow s C_{b} S \quad B \rightarrow S C_{b} \quad B \rightarrow C_{b} s
$$

$$
B \rightarrow S D_{3}
$$

$$
D_{3} \rightarrow C_{b} S
$$

$$
c_{b} \rightarrow b
$$

$B \rightarrow a A$
$B \rightarrow a$

$$
B \rightarrow C a A
$$

$$
\begin{aligned}
B & \rightarrow b b \\
& \rightarrow c_{b} b \\
\hline B & C_{b} c_{b}
\end{aligned}
$$

(5) Final productions are,

$$
\begin{aligned}
& S \rightarrow A D_{1} \mid A B \\
& A \rightarrow C_{a}\left|D_{2}\right| C_{a} A \mid a \\
& B \rightarrow S D_{3}\left|S C_{b}\right| C_{b} S|b| C_{0} D_{2}\left|C_{a} A\right| a \mid C_{b} C_{b} \\
& D_{1} \rightarrow S B \\
& D_{2} \rightarrow A S \\
& D_{3} \rightarrow C_{b} S \\
& C_{a} \rightarrow a \\
& C_{b} \rightarrow b
\end{aligned}
$$

GREIBACK NORMAL FORM
A CFG is in GNF if the productions are is the following form,

$$
\begin{aligned}
& A \rightarrow b \text { (or }) \\
& A \rightarrow b c_{1} c_{2} \cdots \cdots c_{n}
\end{aligned}
$$

where A, C_{1}, C_{2}.
In are varialules and b is a terminal.
Note:
Rule:

$$
\begin{aligned}
& \text { NT } \rightarrow T \\
& \text { NT } \rightarrow T \text { NT:....NT }
\end{aligned}
$$

CONVERSION FROM CFG INTO GNF:
Steps:
(1) Simplify CFG (Eliminating a_{1}-production, unit production, useless production)
(2) Check whether the simplified CFG in CNF format for not. If not convert it into CNF.
(3) Change the names of the non-termenal symbols into some A_{i} in ascending order of i.
(4) Alter the rules so that, non-terminal symbols are in ascending order such that if the production is of the form $A_{i} \rightarrow A_{j} \alpha$ then it $j x$ should never le $i \geqslant j$.
(5) Remove left revision production $A_{i} \rightarrow A_{i} \alpha$

Rules: By Introduing new varialle, $B_{i} \rightarrow \alpha B_{i} \mid \propto$
(6) Check whether the production is in GNF format. for not. If it is not, then convert it into GNF.
(7) Write the denal set if production in geven CFG arder

PROBCEM:
(1)

$$
\begin{aligned}
& S \rightarrow C A \mid B B \\
& B \rightarrow b \mid S B \\
& C \rightarrow b \\
& A \rightarrow a
\end{aligned}
$$

qolution:
(1-1) Alimirate ;-production:
There is no E-production in given framoxar.
(1.2) Aleminate unit production:

No denit production
(1.3) Climinate useless prodution

No useless production
(2) Check whether sumplipied CFE is CNF format or not.

All are in CNF.
\(\left.\left.\begin{array}{l}S \rightarrow C A \mid B B

B \rightarrow b \mid S B

C \rightarrow b

A\end{array}\right\} a=$$
\begin{array}{rl}A l l\end{array}
$$\right\}\)| | $\rightarrow N F$ format |
| ---: | :--- |
| CNion are in | |

(B) Charge the hame of NT \rightarrow (Nomederminal)

Replace S my A_{1}
C luy A is
A lyy A
B dyy A.
we get,

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{3} A_{4} A_{7} \\
& A_{4} \rightarrow b \mid \quad A_{4} \\
& A_{a} \rightarrow b: \\
& A_{a_{2}} \rightarrow a
\end{aligned}
$$

(4) Alter the oules so that, NT symbole are oin ascending order $\left[A_{i} \rightarrow A_{j} \alpha\right]$

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{3} \\
& i=1, j=2 \quad i<j \\
& A_{1} \rightarrow A_{4} A_{4} \\
& i=1, j=4 \quad i<j
\end{aligned}
$$

$A_{4} \rightarrow b / / G N F$ format
$A_{4} \rightarrow \mathrm{AlA}_{4} \rightarrow$ (1)

$$
d=4, j=1 \quad i>j
$$

sub $A_{1}=A_{2} A_{3} / A_{4}$ in (1)

$$
\begin{array}{cc}
\therefore A_{4} \rightarrow A_{2} A_{3} A_{4} \mid & A_{4} A_{4} A_{4} \tag{2}\\
i=4, j=2 & i=4, j=4 \\
& i>j
\end{array}
$$

sub $A_{2}=b$ in (2)

$$
\begin{equation*}
A_{4} \rightarrow b A_{3} A_{4} \mid A_{4} A_{4} A_{4} \tag{3}
\end{equation*}
$$

(5) Here $i=j$ x then remove left reursion
$A_{4} \rightarrow b_{3} A_{4}$ (TNTNT) $/ 1$ GNF format

$$
A_{4}^{A_{4}} \rightarrow A_{4}: A_{4}^{\alpha} A_{4}
$$

serice $\quad \begin{array}{ll}A & \rightarrow \alpha \\ B & \rightarrow \alpha B \mid \alpha\end{array}$

Introduing B4 as new varuable

$$
\begin{aligned}
& B_{4} \rightarrow A_{4} A_{4} B_{4} \mid A_{4} A_{4} \\
& A_{4} \rightarrow b\left|b A_{3} A_{4}\right| B_{4}\left|b A_{3} A_{4} B_{4}\right| / G N F \text { format } \\
& \therefore A_{1} \rightarrow A_{2} A_{3} \mid A_{4} A_{4} \\
& A_{4} \rightarrow b\left|b B_{4}\right| b A_{3} A_{4} \mid b A_{3} A_{4} B_{4} \\
& A_{2} \rightarrow b \\
& A_{3} \rightarrow a
\end{aligned}
$$

(6) Cheek whether guien production are in GNF Oor not

$$
\begin{aligned}
& A_{1} \rightarrow b A_{3}\left|b A_{4}\right| b B_{4} A_{4}\left|b A_{3} A_{4} A_{4}\right| b A_{3} A_{4} B_{4} A_{4} \\
& A_{4} \rightarrow b\left|B_{4}\right| b A_{3} A_{4} \mid b A_{3} A_{4} B_{4} \\
& A_{2} \rightarrow b \\
& A_{3} \rightarrow a \\
& B_{4} \rightarrow A_{4} A_{4} B_{4} / A_{4} A_{4}
\end{aligned}
$$

(2) $S \rightarrow A B$
$A \rightarrow B S \mid b$. convert into GNF

$$
B \rightarrow S A \mid a
$$

Solution
(1.1) Qleminate ap-production: No ap-prodution
(1.2) Aleminate unit prodution: No unit prodution
(1.3) Climinate seseless production: No useless prodiation
(2) Cheek whether the simplified CFG in CNF format or not.
$\left.\begin{array}{l}S \rightarrow A B \\ A \rightarrow B S \mid b \\ B \rightarrow S A \mid a\end{array}\right\}$ All are in CNF.
(3) Change the names of NT symbols into some A_{i} in ascending order of i.

Replace S by A I
A by A_{2}
B by $A 3$
we get:

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{3} \\
& A_{2} \rightarrow A_{3} A_{1} \mid b \\
& A_{3} \rightarrow A_{1} A_{2} \mid a
\end{aligned}
$$

(4) Alter the rules so that, NT symbols are in ascending order. $A_{i} \rightarrow A_{j} \alpha$

$$
\begin{array}{ll}
A_{1} \rightarrow A_{2} A_{3} & \\
i=1, j=2 & i<j \\
A_{2} \rightarrow A_{3} A_{1} \mid b & \\
i=2, j=3 & i<j \\
A_{3} \rightarrow A_{1} A_{2} \mid a & \rightarrow(1 \\
i=3, j=1 & i>j
\end{array}
$$

sub $A_{1}=A_{2} A_{3}$ in (1)

$$
\begin{gather*}
\therefore A_{3} \rightarrow A_{2} A_{3} A_{2} \mid a \tag{2}\\
j=2, i=3 \quad i>j
\end{gather*}
$$

sub $A_{2}=A_{3} A \| b$ in (2)

$$
\begin{aligned}
& A_{3} \rightarrow A_{3} A_{1} A_{3} A_{2}\left|B^{\top} A_{3}^{N T} A_{2}^{N T}\right| a^{V_{T}^{T}} \\
& i=3, j=3 \quad i=j
\end{aligned}
$$

(5) Here $i=j k$ then rumove lift reursion
$A_{3} \rightarrow b_{3} A_{2} \mid$ a $/ / G N F$ format

$$
A_{3} \rightarrow A_{3} A_{1} A_{1}^{\alpha} A_{3} A_{2}
$$

Since $\begin{aligned} & A \rightarrow \alpha \\ & B \rightarrow \alpha B / \alpha\end{aligned}$ Introdue B_{3} new voriatile

$$
\begin{aligned}
\therefore B_{3} & \rightarrow A_{1} A_{3} A_{2} B_{3} \mid A_{1} A_{3} A_{2} \\
A_{3} & \rightarrow b A_{3} A_{2}|a| b A_{3} A_{2} B_{3} \mid a_{3} \\
\therefore A_{1} & \rightarrow A_{2} A_{3} \\
A_{2} & \rightarrow A_{3} A_{1} \mid b \\
A_{3} & \rightarrow b A_{3} A_{2}|a| b A_{3} A_{2} B_{3} \mid a B_{3}
\end{aligned}
$$

(16) Cheek whether guien produttion are in GNF or not.

$$
\begin{aligned}
& A_{1} \rightarrow A_{2} A_{3} \\
& \rightarrow A_{3} A_{1} A_{3} \mid b \\
& A_{1} \rightarrow b A_{3} A_{2} A_{1} A_{3}\left|a A_{1} A_{3}\right| b A_{3} A_{2} B_{3} A_{1} A_{3} \mid \\
& a_{3} A_{1} A_{3} \mid b \\
& A_{2} \rightarrow A_{3} A_{1} \mid b \\
& \rightarrow A_{3} A_{2} A_{1}\left|a_{1}\right|\left|b A_{3} A_{2} B_{3} A_{1}\right| a B_{3} A_{1} \mid \\
& \text { b } \\
& A_{3} \rightarrow b_{3} A_{2}|a| b_{3} A_{2} B_{3} \mid a B_{3} \\
& \therefore A_{1} \rightarrow \therefore A_{3} A_{2} A_{1} A_{3}\left|a_{1} A_{1} A_{3}\right| B_{3} A_{2} B_{3} A_{1} A_{3}\left|a B_{3} A_{1} A_{3}\right| b \\
& A_{2} \rightarrow b_{3} A_{2} A_{1}\left|a_{1}\right|\left|A_{1}\right| A_{3} A_{2} B_{3} A_{1}\left|a B_{3} A_{1}\right| b \\
& A_{3} \rightarrow b A_{3} A_{2}|a| b A_{3} A_{2} B_{3} \mid a B_{3} \\
& \begin{array}{l}
\left.B_{3} \rightarrow b_{3} A_{2} A_{1} A_{3} A_{2} B_{3} / a A_{1} A_{3} A_{3} A_{2} B_{3} / b A_{3} A_{2} B_{3} A_{1} A_{3} A_{3} A_{3} /\right] \\
\quad a B_{3} A_{1} A_{3} A_{3} A_{2} B_{3} / b A_{3} A_{2} B_{3} / b A_{3} A_{2} A_{1} A_{3} A_{2} / a A_{1} A_{3} A_{3} A_{2}
\end{array} \\
& b A_{3} A_{2} B_{3} A_{1} A_{3} A_{3} A_{2} / a B_{3} A_{1} A_{3} A_{3} A_{2} / b A_{3} A_{2}
\end{aligned}
$$

UNiT-㐫 Turing Machine:
Definitions of Turing Machine - Models - Computable Languages \& Function

- Techniques For Turing Machine - Construction - Multi head \& Multi Tape

Turing Machine - The Halting problem - Partial solvability - Problems about Turing Machine - chomskian Hierarchy of Languages.
INTRODUCTION - TURING MACHINE (TM):

- During the year 1936, Alan Turing introduced a new mathematical model called Turing Machine
- Turing Machine is an abstract machine (ar) mathematical model to represent a rest computer.
- Turing Machine is a tool, for studying the computatululy of mathematical function.
- Turing Hypothesis believed that na function is computable if and only if it can be computed by turing machine.
- Turing machine can solve any problem that a modern computer can solve.
- Turing machine is used to define the language and to compile the integer functions.
- Turing machine accepts recursive language or recursive enumerable language.
- Turing machine differs from PPA and FA.
- FA has finite memory and PDA has infinite memory and access in MFO Order
- But YM has both infurite memory and no restoricition in accessing the input.
- YM has infinite tape memory \& the tape head can move either left or right to access the input

Model of turing Maci+ine:
Turing Machine has

- Finite conterol-which contains set of states and transitions between the states.

2. Turing Machine has van input tape (ie) divided into cells \& each cell can hold any one of the finite nurriber of sym bots over alphabet.

- If It has a tape head that scans one all on the input tape at a time.

WORKING OF TURING MACHINE:

- The Turing Machine, the input initially consists of a ferite length string of symbols chosen from the $1 / p$ alphabet 2 the i / p is placed on the input tape.
- All other tape cells extending infinitely into the left \& right of the unput tape contain's the spirial symbol called 'BLank symbol'
- The tape head is positioned at one of the tape cells for scanning the input symbol from the input tape.
- nutially the tape head points at the left most cell of the input tape

FORMAL NOTATION/DEFINIIION OF A TURING MACHINE:
Turing Machine has 7 -tuple:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right) \quad \text { whine }
$$

Q \rightarrow The Finite set of states of the Finite control.
$\Sigma \rightarrow$ the Finite set of input symbols.
$\Gamma \rightarrow$ the complete set of tape symbols, Σ is al ways a subset of Γ.

$$
(\Sigma \subseteq r)
$$

$\delta \rightarrow$ The Tradition Function $\mid \delta(q, x)=(P, y, D)$.
where $q \rightarrow$ a state, $x \rightarrow$ atape symbol, $P \rightarrow$ new state samestate in $Q, Y \rightarrow$ symbol in Γ, written in the all being scanned, replacing whatever symbol was there.
$D \rightarrow$ Direction, either Left or Right and telling us the direction in which the head moves.
$q_{0} \rightarrow$ The start state, a member in Q, in which the Finite control is fourid initially
$B \rightarrow$ The blank symbol. This symbol is in Γ but not in \sum
$F \rightarrow$ The set of Final / Accepting states le $F \subseteq Q$.
Processing of move in a turing machine:

- The single move of a Turing Machine depends on the current state of Finite control and the tape symbol present un the input tape.
- The Following changes happen in one of a TM.
\rightarrow Changes the state apter consuming an isp symbol. It may also be in the same state our transfer to any new state
\rightarrow The Tape symbol to be replaced for the scanned i / p tape symbol
\rightarrow Deciding the move of the tape head to left or right of $1 / p$ tape
\rightarrow Whether to halt the $T M$ or not.
INSTANTANEOUS DESCRIPTIONS OF A TM: (ID).
- The execution sequence of an i / p string is represented by the $1 D$ of a $P M$.
- Each move of TM is represented by the ID.
- ID of va PM describes the current configuration and ut can be of following types

\sim	Accepting configuration
\sim	Rejecting configuration

- A move of PM can bi represented vas a pair of $x p$ separated by the symbol 1 :
- Each move is represented by $\alpha_{1} q \alpha_{2}$ where α_{1} b α_{A} are the strings from Γ^{*} and q is the state θ $T M$
- The move can be of single move or zero orr more moves as $\vdash_{m}=$ single move $\vdash_{m}^{*}=\operatorname{xer} \theta /$ moore moves.
Let wo woe the string
$x_{1} x_{2} \ldots x_{i-1} q x_{i} x i+1 \cdots x_{n}$ to represent ID.
where 1. q is the state of $P M$.

2. The Tape head is scanning the it symbol from theft.
3. $x_{1} x_{2} \ldots x_{n}$ is the portion of the tape between the leftmost \& rightmost non-Blank.
If the transition function of $T M$ is
CASE 1: $\delta\left(q, x_{i}\right)=(p, y, r)$
le. the next move is leftward. Then

$$
x_{1} x_{2} \ldots x_{i-1} q x_{i} x_{i+1} \cdots x_{n} t_{m} x_{1} x_{2} \cdots x_{i-2} P x_{i-1} y x_{i+1} \ldots x_{n}
$$

NOTE: This rove reflects the change to state P and the fact that the tape head is now positioned at cell $i-1$.
There are 2 important exceptions

1. If $i=1$, their M moves to the blank to the heft of $x 1 \cdots \times n$. In that case, $x_{1} x_{2} \cdots x_{i-1} q \times i x_{i+1} \cdots x_{n} \vdash_{m}$ PRY $_{2} \cdots x_{n}$.
2. If $i=n$, then the sym bol B written over x_{n} joins the infinite sequence of trailing blanks and doesn't appear in next $X D$.

$$
x_{1} x_{2} \cdots x_{n-1} q x_{i} \cdots x_{n} t_{m} x_{1} x_{2} \cdots x_{n-2} p x_{n-1} y
$$

CASE 2: $S\left(q, x_{i}\right)=(P, Y, R)$.e, the next move is Rightward, then $x_{1} x_{2} \cdots x_{i-1} q x_{i} x_{i+1} \cdots x_{n} \vdash_{m} x_{1} x_{2} \cdots x_{i-1} y p x_{i+1}$. Here the move reflects the fact that the head is $\cdots x_{n}$ moved to cell etc.
AGAIN THERE ARE 2 IMPORTANT EXCEPTIONS:

1. If $i=n$, then the $i+1^{\text {st }}$ cell holds vablank and that cell was not part of the previous ID. Mus we insert,

$$
x_{1} x_{2} \cdots x_{i-1} q x_{i} x_{i+1} \cdots x_{n} t_{m} x_{1} x_{2} \cdots x_{n-1} y P_{B}
$$

2. ${ }^{4} \mid=1$ \& $Y=B$, then the symbol B written over x_{1} pins the infinite sequence of leading blanks \& doesn't appear in next ID ie $x_{1} x_{2} \cdots q x_{i} \cdots x_{n} t_{m} y p_{x_{2}} \cdots x_{n}$.
LANGUAGE OF A TM:

- The set of languages accepted by $T M$ is Mecuraively enmerabl. language.
- The input string is placed on the input tape \& the tape head begins at the Leftmost input symbol

If the Y_{M} enters an accepting state, then $1 / p$ is accepted else the i / p string is not accepted.

The Languages accepted by $T M M$ is defined as $L(M)$ and it is denoted by $L(-M)=\left\{w / w\right.$ is un $\left.\Sigma^{*} q_{0} w\right|_{m} ^{*} \alpha_{1} p \alpha_{2}$ for some state P in $F \& \alpha_{1}$ and $\mathcal{\alpha}_{2}$ is in $\left.\Gamma^{*}\right\}$.
HALTING OF TM:

- There is another notion of "acceptance" le commonly used for $T M$: acceptance by halting.
- We say a TM halts up it enters a state q, scanning a $1 / p$ tape symbol x, and there is no move in this situation (ie) $\delta(q, x)$ is undefined.
- PM always halts. when it is an accepting slate. Unfortunately, it is not always posiciple to require that a TM halts even of ut doesn't accept.
- Those lang with PM that donot halt eventually, regardless of whether or not they accept are called recursive.
- TM that always halt, regardless of whether our not they accept, are a good model of an "algorithm". Ip van algorithm to solve a given problem exists, then we say the problem is "decidable". So PM's that always halt.

COMPUTABLE E LANGUAGE AND FUNCTIONS:
DESIGN A TM FOR COMPUTABLE FUNCTIONS

PRoblems :

1. DESIGN a PM to process zero function suck that $f(x)=0$. where x is input.
SOLUTIoN:
STEP: IDEAIOF CREATION:
The idea to design this $T M$ is that x is the i / p, if $x=5$, then i / p tape contains 5 no. of i 's in the uriput and steps are as follows.
(i) The TM initially in the state qu and if it reads ' 1 ' as the heft most symbol, it replaces ' ' to ' β ' $\&$ moves to right without changing the state.
(ii) The TM remains in the same state go and replaces all I's to ' B ' until it pes ' B '.
(iii) At state qu, if it finds ' B ' it enters the final slate ql, then halt the TM.

STER: DIAGRAMMATIC REPRESENTATION.
EXAMPLE $X=3$.

Input tape | 1 | 1 | $1 / B$ |
| :--- | :--- | :--- |
| ar | | |

$$
\begin{aligned}
& \text { qi } \quad\left(q_{0}, 1\right)=(q 0, B, R) \text {. } \\
& \begin{array}{|l|l|l|}
\hline B & 1 & 1
\end{array} \mathrm{~B}, \quad(\text { no }, 1)=\left(q_{0}, B, R\right) \\
& \begin{array}{|l|l|l|l|}
\hline B & B & 1 & B \\
\hline q_{0} & (q 0,1) & =(q 0, B, R) \text {. } \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|}
\hline B \mid & B & B & B \\
q_{0}^{N}
\end{array} \quad(q 0, B)=(q, B, L) \text { halts } \\
& \begin{array}{c|c|c|c|}
\hline B|B| B \mid B \\
\leftarrow q_{1}
\end{array}
\end{aligned}
$$

STEPS: TRANSITION TABLE		
STATE	1	B
$\rightarrow Q_{0}$	(q, B, R)	$(q 1, B, L)$
\mid	-	-

STEP: TRANSITION DIAGRAM.

TM FOR $f\binom{x}{n}=0$.

STEP 6: TM DEFINITION IS

$$
M=(\{q u, q,\},\{,\},\{1, B\}, \delta, q 0, B,\{q,\}
$$

$\delta: \delta(q 0,1)=(q 0, B, R)$
$\delta(q \circ, B)=(q, B, L)$
STEP 6: INSTANTANEOUS DESCRIPTION:
EXAMPLE $\quad x=\left.2 \quad \delta(q 0,11 B)\right|_{m}(B q O \mid B) r_{m}(B B q O B) r_{m}(B q \| B B)$ string accepted and all is changed to BLank and the zero functio is implemented.
2. Design a $T M$ to implement the Function $F(n)=x+1$.

SOLUTION: If $x=3$ then
Input Tape

output Tape | | 1 | 1 | 1 | B | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- |

STEP 1:

1. TM is initially. in the state q_{0} and ut reads ${ }^{1}$ ' ur the leftmost uriput tape.
2. At state qu when it reads '"' it remains in the same plate, without changing ' '' and just move the tape head to righ 3. At state vo, it skips all is and searches for the ist blank symbol B.
3. At state go, when it finds ist ' B ', it enters the Final state qi \& changes ' B ' to ' C_{1} '.

STEP 3 : TRANSITION DIAGRAM

TM for $f(x)=x+1$.

8TEP 4: TM Definition $M=(\{q 0, q\},,\{1\},\{1, B\}, \delta, q 0, B,\{q\}$,

$$
\begin{aligned}
\delta \cdot \delta(q 0,1) & =(q 0,1, R) \\
\delta(q 0, B) & =(q 1,1, R) .
\end{aligned}
$$

STEP 4: INSTANTANEOUS DESCRIPTION: $x=3$;

$$
\overline{\left.\delta(q 0,111 B) \vdash_{m}(1 q 0 \| B) \vdash_{m}(11 q \circ 1 B) \vdash_{m}(111 q \circ B) \vdash_{m}(111 q \| B)\right)}
$$

stirring is accepted.
3. Design a PM to implement the function $f(x)=x+2$.

SOLUTION: EXAMPLE: $x=3$
Input tape:

1	1	1	B	\cdots

output tape:

1	1	1	1	1	B

STEP I:

1. At state go, the initial state of $T M$, it reads the leftmost 1 , il skips 1 and searches for the 1 st BLank symbol ' B ' and moves to right R. At state vo, when it reads inst B, it changes B to C_{1} ' and moves to right to see the next Blank symbol ' B ' and changes to ' q 3. At state q I, when it finds the $2^{\text {nd }}$ ' B ' blank symbol, it changes B to '" and moves to right and enters the accepting slate qa.

STEP: TRANSITION TABLE:

	1	B
$\rightarrow q_{0}$	$\left(q_{0}, 1, R\right)$	$\left(q_{1}, 1, R\right)$
q_{1}	-	$\left(q_{2}, 1, R\right)$
$* q_{2}$	-	-

STEP 3: TRANSITION DIAGRAM.

$B \mid \rightarrow$
TM for $f(x)=x+2$.
STEP 4 : TM definition $M=(\{q 0, q 1, q 2\},\{1\},\{1, B\}, 8, q 0, B,\{q 2\})$
$\delta: \delta(q 0,1)=(q 0,1, R)$

$$
\begin{aligned}
& \delta\left(q_{0}, B\right)=\left(q_{1}, 1, R\right) \\
& \delta\left(q_{1}, B\right)=\left(q_{2}, 1, R\right) .
\end{aligned}
$$

STEP 5: ID $x=3$

$$
\begin{gathered}
8(q 0,111 B) r_{m}(q 0111 B) r_{m}(1 q 011 B) r_{m}(11 q 01 B) r_{m}(111 q 0 B) r_{m} \\
(91111 q 1 B) r_{m}(11111 q 2 B)
\end{gathered}
$$

String is accepted.
4. Design a TM to implement the concatenation function $f(x, y)=x y$ ($\theta 0$) to implement addition function $f(x, y)=x+y$
SOLUTION:
STEP:
Let wo assume that x is represented by the 1^{x} and y is represented by i^{y} in the input tape. The 1^{x} and $1 y$ is separated by the separator symbol ' $\#$ ' and is shown below. $x=2 \quad y=3$
Input:

1	1	$\#$	1	1	1	B

output:

The sum of 2 values are performed by replacing the last 'I' by Blank symbol and the step 3 are as follows:
a. At initial state qu, when it reads ' 1 ', it skips the i's and remain in the same state.
b. At state qu, when it reads '\#'it reaches the state ql and changes '\#' to ',' and moves right
c. At state qI, it skips all is and searches for ' B ' by moving righ d. At state qi, when it sees blank symbol, it moves left and changes state to qu.
e. At state $q, 2$, when it finds ' 1 ' it replaces ' 1 ' to B and enters the Final state $q 3$.
sTEP 2: TRANSITION TABLE

state	1	$\#$	B
$\rightarrow q_{0}$	$(q 0,1, R)$	$\left(q_{1}, 1, R\right)$	-
q_{1}	$\left(q_{1}, 1, R\right)$	-	$\left(q_{2, B, L)}\right.$
q_{2}	$\left(q_{3}, B, R\right)$	-	-
q_{3}	-		-

STEP 3: TRANSITION DIAGRAM.

IM for $f(x, y)=x+y$.

STEP 4: YM depinition $M=\left(\{q 0, q 1, q 2, q 3\},\{1\},\{1, \#, B\}, 8, q 0, B,{ }^{\prime}\right.$ $\left\{q_{3}\right\}$),
STEP 5: TD EXAMPLE $x=2 \quad y=3$

$$
\begin{aligned}
& \delta(90,11 \# 111 B) r_{m}(q 011 \# 111 B) 1_{m}(1 q 01 \# 111 B) r_{m}(11 q 0 \# 111 B) \\
& F_{m}(\|q\| \| \beta) r_{m}(\|, q,\| B) r_{m}(\| \| q \| B) \vdash_{m}(\| \| q, B) \\
& f_{m}\left(1111 q_{2}\right) t_{m}\left(\| \| B q_{3} B\right)
\end{aligned}
$$

string accepted - The function $f(x, y)=x+y$ is umplementect.
5. Design a Tiv to perform subtraction $f(x, y)=\left\{\begin{array}{cl}x-y & \text { if } x>y \\ 0 & \text { if } x \leqslant y\end{array}\right.$ SOLUTION:

The idea to create a PM to perform subtraction is, the $1 / \mathrm{P}$ is represented as $1^{m} \# 1^{n}$. The value 1^{m} and 1^{n} is separated by va separator symbol ' \#' and $1^{n} \# 1^{n}$ is surrounded by B.
This proper subtraction function say that

$$
f(m, n)=\left\{\begin{array}{cl}
f(m-n, & \text { if } m>n \\
0, & \text { if } m \leq n
\end{array}\right\}
$$

So we have to design a TM such that of $m>n$ the subtracted value that is $1^{m}-1^{n}$ should be on the tape. And of $m \leq n$, then tape should have only ' B '

$$
\text { if } m=4 ; n=2(1 e) m>2
$$

Input | 1 | 1 | 1 | 1 | $\#$ | 1 | 1 | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output: $\frac{B|B| 1|1| B|B| \cdots}{m-n=2}$
If $m=2, n=4, m \leq n$.
Input: $1 / 1|\# / 1 / 1 / 1| 0 \mid .$.

- The idea to design this $T M$ is that the $T M$ process in such a way that for each ' 1 ' on the Leftmost side, it replaces ' on the right most side to ' B '. ['I' appearing before ' B ']
- After replacing with is to the reft and right when the m / c encounters separator symbol on right side, it is clear that n value ends.
- When 'n' value ends, it starts replacing '\#', to ',' and enters final |accepting state.
- Similarly of $m \leq n$, then $m \mid c$ encounters the symbol ($\#$ '
from initial state then it starts replacing all is and '\#' to Blank and enter the Final state:

STEP 2: YRANSITION DIAGRAM:

Step 3: Transition table:

	1	$\#$	B
$\rightarrow q_{0}$	$(q 1, B, R)$	$(q 5, B, R)$	-
q_{1}	$(q, 1, R)$	$(q 1, \#, R)$	$(q 2, B, L)$
q_{2}	$(q, 3, B, 1)$	$(q 4,1, R)$	-
q_{3}	$(q 3,1, R)$	$(q 3, \#, 1)$	$(q 0, B, R)$
$* q_{4}$	-	-	-
q_{5}	$(q 5, B, R)$		$(q 6, B, R)$
$q 6$	-	-	-

STEP 4: TM defurition $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right\},\{1\},\{1, \#, B\}\right.$.

$$
\left.8, q_{0}, B,\left\{q_{4}, q_{6}\right\}\right)
$$

STEP 5: 1D: $m=2 \quad n=1$

$$
\begin{aligned}
& \left.8(q 0,11 \# \mid B) 1_{m}(q 011 \# \mid B) r_{m}\left(B q_{1} \# \mid B\right) r_{m}\left(B\left|q_{1} \#\right| B\right)\right|_{m} \\
& \left(B\left|\# q_{1}\right| B\right) \vdash_{m}\left(B|\#| q_{1} B\right) \vdash_{m}\left(B \mid \# q_{3} B\right) \vdash_{m}\left(B \mid q_{3} \# B\right) \vdash_{m}\left(B q_{3} \mid \# B-\right. \\
& 1_{m}\left(q_{3} B \mid \# B\right) 1_{m}\left(B q_{0} \mid \# B\right) r_{m}\left(B B q_{1} \# B\right) r_{m}\left(B B \# q_{1} B\right) r_{m}\left(B B q_{2} \# B .\right. \\
& \text { - (Dna. D) }
\end{aligned}
$$

String accepted and now the uriput tape contain one I's and the function $f(m-n)=m-n$ is implemented.
Eg:2 $m=1, n=2$.

$$
\begin{aligned}
& \delta(q 0, \mid \# \| B) r_{m}(q 0 \mid \# \| B) r_{m}\left(B q_{1} \# \| B\right) r_{m}\left(B \# q_{1} \| B\right) t_{m}\left(B \#\left|q_{1}\right|\right. \\
& r_{m}\left(B \# \| q_{1} B\right) r_{m}\left(B \#\left|q_{2}\right| B\right) r_{m}\left(B \# q_{3} \mid B\right) r_{m}\left(B q_{3} \# \mid B\right) \\
& t_{m}\left(q_{3} B \# \mid B\right) r_{m}\left(B q_{0} \# \mid B\right) r_{m}\left(B B q_{5} \mid B\right) r_{m}\left(B B B q_{5} B\right) r_{m}\left(B B B B q_{b}\right.
\end{aligned}
$$

Slaving accepted. sirice m is less than n, then the i / p tape contains sere value.
6. Design a TM to implement multiplication function $f(x, y)=x * y$.

STEP 1:
The idea to deaignthis PM us that we place the input as $1^{x} \#^{y} \#$ on the $T M$. Now the multiplication is done by performing successive addetion and it is shown below.

$$
x=2 \quad y=3
$$

input:

$$
\begin{aligned}
& x=2 \quad y=3 \\
& x * y=2 * 3=6 .
\end{aligned}
$$

output:

STEPS:
a. At initial state when ' 1 ' firids in the $1 / p$, replace it to ' B ' and move right foo searcherig $\#$
b. After Finding ' \#', copy the ' y ' no. of i's tor x ' no. of times in β 8 ymbols
c. After performing ' x ' no. of copy with ' y ' no. of is we replay \#, " \# bo ' B ' then reach to final state and the tape contains $1^{x y}$.

8TEP2: TRANSITION DIAGRAM:

STEP 3: Transition Table.

states	1	$\#$	B	y
$\rightarrow q_{0}$	(q, B, R)	$(q 6, B, R)$	-	-
q_{1}	$\left(q_{1}, 1, R\right)$	$(q 2, \#, R)$	-	-
q_{2}	$\left(q_{3}, y_{1}, R\right)$	$(q 5, \#, L)$	-	-
q_{3}	$\left(q_{3}, 1, R\right)$	$(q 3, \#, R)$	$\left(q_{4}, 1, L\right)$	-
q_{4}	$\left(q_{4}, 1, L\right)$	$(q 4, \#, L)$	-	$(q 2, y, R)$
q_{5}	$\left(q_{5}, 1, L\right)$	$(q 5, \#, L)$	$\left(q_{0}, B, R\right)$	$(q 5,1, L)$
q_{6}	$\left(q_{6}, B, R\right)$	$(q 7, B, R)$	-	-
q_{7}	-	-	-	-

STEP 4: INSTANTANEOUS DESCRIPITON: $x=2, y=1$.

$$
\begin{aligned}
& \delta(q 0,11 \# 1 \# B) r_{m}(q 0 \| \# 1 \# B) r_{m}\left(B q_{1} 1 \# 1 \# B\right) r_{m}\left(B\left|q_{1} \#\right| \# B\right) \\
& r_{m}\left(B 1 \# q_{2} \mid \# B\right) r_{m}\left(B \mid \# Y q_{3} \# B\right) r_{m}\left(B \mid q / / \# y \# q_{3} B\right) r_{m}\left(B \mid H y q_{4} \#\right. \text { : } \\
& f_{m}(B \mid \# q 4 y \# 1) r_{m}\left(B 1 \# y q_{2} \# 1\right) I_{m}\left(B \mid \# q_{5} y \# 1\right) I_{m}\left(B\left|q_{5} \#\right| \# 1\right) \\
& F_{m}\left(B q_{5} \mid \# 1 \# 1\right) \vdash_{m}\left(q_{5} B 1 \# 1 \# 1\right) r_{m}\left(B q_{0} \mid \# 1 \# 1\right) r_{m}\left(B B q_{1} \# \mid \# 1\right) \\
& r_{m}\left(B B \# q_{2} \mid \#\right) r_{m}\left(B B \# y q_{3} \# \mid B\right) r_{m}\left(B B \# \text { Y\# } q_{3} \mid B\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{m}\left(B B \# y \# \mid q_{3} B\right) r_{m}\left(B B \# Y \# q_{4} 11\right) \vdash_{m}\left(B B \# y q_{4} \# 11\right) \\
& \dagger_{m}\left(B B \# q_{4} y \# 11\right) t_{m}\left(B B \# y q_{2} \# 11\right) \vdash_{m}\left(B B \# q_{5} y \# 11\right) \vdash_{m}\left(B B q_{5} \#\right. \\
& F_{m}\left(B q_{5} B \# 1 \| 11\right) r_{m}\left(B B q_{0} \# 1 \# 11\right) r_{m}\left(B B B q_{6} 1 \neq 11\right) \Gamma_{m} \\
& \text { \#11) } \\
& \left(B B B B q_{6} \# 11\right) r_{m}\left(B B B B B q_{2} 11\right)
\end{aligned}
$$

Strung is accepted and the $f(x, y)=f y x * y$ is implemented.
7. Design a $Y M$ to perform is complement of a no. over $\Sigma=\{0,1\}$. SOLUTION:
on Reading the $1 / p$;
\rightarrow of the symbol $=0$ replaces it by 'I' \& move right
\rightarrow If the symbol $=1$ replace it by ' 0 ' \& move right
\rightarrow Perform step : :2 until the $1 / p$ symbols are processed from left to right
\rightarrow Halt the mic when it encounters the $1^{\text {st }}$ Blank symbol.
Example: $1011 \rightarrow 0100$

$$
y p \quad 0 / p
$$

STEP 2: TRANSTIION TABLE:
STEP 3: RRANSITION DIAGRAM.

	0	1	B
$\rightarrow q_{0}$	$(q, 1, R)$	$(q 0,0, R)$	$(q 1, B, R)$
$* q_{1}$	$(-$	-	-

STEP 4: PM Definition $M=(\{q 0, q\},,\{0,1\},\{0,1, B\}, s, q 0, B,\{q\}$,
STEP 5 : TP , $\omega=101$

$$
8(q 0,101 B) 1_{m}(q 0101 B) r_{m}\left(0 q_{0} 01 B\right) 1_{m}\left(01 q_{01 B}\right) r_{m}\left(010 q_{0} B\right)
$$

Storing accepted and is complement is implemented.
8. Design a TM to per form 2 's complement of a no over $\Sigma=\{0,1\}$. NOTE: Don't change the bits from the right towards left until the st, has been processed perform complementation to the rest of the bits from right to left [after st I is processed]
SOLUTION:
STEP 1:
a. Traverse Right \& Locate Right most bit.
b. If the bit $=0$, perform no replaces \& move left.
c. If the $b i t=1$, perform no change \& move left.
d. If the next bit symbol = '0' replace it by ' 1 ' and move left.
e. Else if the next bit symbol = '1' replace it by ' 0 ' \& move left.
f. Perform steps until all the i / p symbols are processed [From Right to Left]
g. Halt the $m \mid c$.

STEP 2: TRANGITION DIAG TAM:

STEP 4: TM Definition:

$$
M=\left(\left\{q q_{0}, q 1,0,2, q 3\right\},\{0,1\},\{0,1, B\}, \delta, q_{0}, B,\left\{q_{3}\right\}\right)
$$

STEP 5: $\underset{\sim}{\sim} D \cdot \omega=101$.

$$
\begin{aligned}
& \delta(q 0,101 B) \vdash_{m}(q / 0 \mid 01 B) r_{m}(1 q / 01 B) r_{m}\left(10 q_{0} 1 B\right) r_{m}\left(101 q_{0} B\right) \\
& T_{m}\left(10 q_{1}, B\right) F_{m}\left(1 q_{2} 01 B\right) f_{m}\left(q_{2} 111 B\right) \dot{F}_{m}\left(q_{2} B 0 \| B\right) F_{m}\left(B q_{3} 0 \| B\right)
\end{aligned}
$$

String is accepted and function is implemented.

Computable language

1. Design a PM that accepts the language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

SOLUTION:
STEP: IDEA OF CREATION:
a. The idea to create this $T M$ is to place $a^{n} b^{n}$ in the $1 / p$ tape b. Let the $T M$ initially be in the state qu (initial state).
c. while in q_{0}, the machine reads ' 0 ' and changes to ${ }^{\circ} 0$ ' to x and moves to the right and changes uts state to q_{1} and starts scanning the next uniput
d. From the q_{i}, while reading ' a ' it doesnot change state but simply moves to the right until seeing list' b '
e. When seeing ' b ' from state q_{1}, it ruck the state q_{2} and change ' b ' to ' y ', and moves to left to see ' x '
f. The From state qr when it sees X, it the state to go and repeat the process.
I The major vide is that for each ' a ', we try to " b ' and alternatively, the process is repeated

STEP R: TRANSITION DIAGRAM.

REJECTING STATE.

$$
\begin{aligned}
& (q 3, b)=(\text { reject }, b, R)[b>a] \\
& (q 3, a)=(\text { qreject, } a, R)[b a] \\
& (q 3, b)=(\text { reject }, B, R)[a>b]
\end{aligned}
$$

STEP 3: TRANSITION TABLE.

a	b	x			
$\rightarrow q_{0}$	(q, x, R)	-	$(q 3, y, R)$	-	
q_{1}	$\left(q_{1}, q, R\right)$	$(q 2, y, L)$	(q, y, R)	-	-
q_{2}	$\left(q_{2}, a, L\right)$	-	$(q 2, y, L)$	(q, x, R)	-
q_{3}	-	-	(q, y, y, R)	-	(q, i, B, R)
$* q_{4}$	-	-	-	-	

STEP 4: TM definition $M=(\{q 0, q 1, q 2, q 3, q 4\},\{a, b\},\{a, b, x, y, B\}$,
STEP 5: $1 D \quad \omega 1=a a b b$ $\left.8, q_{0}, B,\left\{9_{4}\right\}\right\}$

$$
\begin{aligned}
& \overline{\delta(q 0, a a b b)} \vdash_{m}\left(q_{0} a a b b\right) \vdash_{m}\left(x q_{1} a b b\right) \vdash_{m}\left(x a q_{1} b b\right) \vdash_{m}\left(x q_{2} a y 1\right) \\
& \vdash_{m}\left(q_{2} x a y b\right) \vdash_{m}\left(x q_{0} a y y_{1}\right) \vdash_{m}\left(x x q_{1} y 1\right) \vdash_{m}\left(x x y q_{1}\right) \vdash_{m}\left(x x q_{2} y y\right) \\
& \vdash_{m}\left(x q_{2} x y y\right) \vdash_{m}\left(x x q_{6} y y\right) \vdash_{m}\left(x x y q_{3} y\right) \vdash_{m}\left(x x y y q_{3} B\right) \vdash_{m}(x x y \times B
\end{aligned}
$$

String "abb" is accepted.
ID $\omega_{2}=a a b$.

$$
\begin{aligned}
& \text { ID } w_{2}=a a b . \\
& 8\left(q_{0}, a a b\right) t_{m}\left(q_{0} a a b\right) F_{m}\left(x q_{1} a b\right) \vdash_{m}\left(x a q_{1} b\right) \vdash_{m}\left(x q_{2} a y\right) \\
& F_{m}\left(q_{2} x a y\right) \vdash_{m}\left(q_{0} a y\right) \vdash_{m}\left(x x q_{1} y\right) \vdash_{m}\left(x x y q_{1} B\right)
\end{aligned}
$$

string "abb" is rejected.
2. Design a $T M$ that accepts the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.

SOLUTION:

The construction is similar to the design $a^{n} b^{n}$. Here we have to replace each ' a ' by ' x ' \& ' b ' by ' y ' and ' c ' by ' z ' respectively. IDEA:
a. श्रिtially the $T M$ is vat go. At go if it ferids a^{\prime} 's replace it by x 's and move right with state qr.
b. At qr i, if it furids $b^{\prime} s$, replace it by 'y's and moves right with state q_{2}.
c. At state q_{2}, if it prods c's replace it: by z and enters $q 3$ by moving left
d. At q_{3}; if it finds the reftemest x by skipping z by a then is goes to state qu. Repeat the process till ot $q 0$, if firido y : step 2: TRansition Diagram.

Rejecting

$z \mid z \rightarrow$
STEP 3: TRANSITION TABLP.

	a	b	c	x	y	z	B
q_{0}	(q, y, R)	-	-	-	$\left(q_{4}, y_{1}, R\right)$	-	-
q_{1}	$\left(q_{1}, a, R\right)$	$\left(q_{R}, y, R\right)$	-	-	$\left(q_{1}, y_{1}, R\right)$	-	-
q_{2}	-	(q, b, R)	$\left(q_{3}, z, L\right)$	-	-	$\left(q_{2}, x, L\right)$	-
q_{3}	$\left(q_{3}, q, L\right)$	$(q 3, b, L)$	-	$\left(q_{0}, x, R\right)$	$\left(q_{3}, y, L\right)$	$\left(q_{3}, z, L\right)$	-
q_{4}	-	-	-	-	$(q 4, y, R)$	$\left(q_{4}, y_{1} R\right)$	$\left(q_{5}, B, R\right)$
$q_{4} r$	-	-	-	-	-	-	-

STEP 4: TM Defurution $M=\left(\left\{q 0, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{a, b, c\}\right.$, $\{a, b, c, x, y, z, B\}, \delta, q, B,\{q 5\})$.

STEP 5: $1 \mathrm{D} \quad \omega 1=a \mathrm{abbcc}$.

$$
\begin{aligned}
& \delta(q 0, a a b b c c) r_{m}(q 0 a a b b c c) r_{m}(x q, a b b c c) r_{m}(x a q, b b c c) \\
& t_{m}\left(x a y q_{z} b c c\right) t_{m}\left(x a y b q_{2} c c\right) t_{m}\left(x a y q_{3} b z c\right) t_{m}\left(x a q_{3} y b z c\right) \\
& t_{m}\left(x q_{3} a y b x c\right) t_{m}(q 3 x a y b z c) r_{m}\left(x q_{0} a y b x c\right) t_{m}\left(x \times q_{1} y b z_{c}\right) \\
& \vdash_{m}\left(x x y q_{1} b x^{\prime} c\right) \vdash_{m}\left(x x y y q_{2} z c\right) \vdash_{m}(x x y y z q z c) \vdash_{m}\left(x x y y q_{3} z z\right) \\
& F_{m}\left(x x y q_{3} y z z\right) \vdash_{m}\left(x x q_{3} y y z z\right) \vdash_{m}\left(x q_{3} x y y z z\right) t_{m}\left(x x q_{0} y y z z\right) \\
& F_{m}\left(x x y q_{4} y z z\right) t_{m}\left(x x y y q_{4} z z\right) F_{m}\left(x x y y z q_{4} z\right) \\
& \dagger_{m}\left(x x y y z z q_{4} B\right) \frac{1}{m}(x x \text { yo zzBq5) }
\end{aligned}
$$

strung "cabbcc" is accepted.
3. Design a PM for Language t. The set of strings with an equal no of O 's and is
SOLUTION:
Assalume that the $1 / p$ string may start with ether oor 1, but it should have equal no. of 0 's and 1 's.
For eg 0101, 0110, 1001...
a. Change all's to x^{\prime} s and all is to $y^{\prime} s$, whether the i / p maybe in anyposution till reaches the blank symbol.
b. Initially, the r_{M} is at state qu. At qu, of it firids the leftmost symbol as ' σ ' change it to X and enters $Q 1$
then moves right. M it finds I by skipping o's y^{\prime} 's at qI, change it to y and enters state qp. At state q_{2}, the M_{M} searches for the leftmost x by skipping $o^{\prime} s$ and $y^{\prime} s$ and enters go. Repeat the process till the 'MM finds blank symbol at c.' At go, if it finds the leftmost symbol as 1 , change it ta y and enters state q_{3}. At q_{3}, if it furids D^{\prime} 's by skipping is and $x^{\prime} s$, change ut to x and enters state q_{4} by moving left At q_{4}, it searches for the leftmost y. Ip it ferids y at q_{4}, the MM enters state vo. Repeat the process till it funds blank symbol. d. For all other state changes, the input is rejected.

STER: TRANSTITON DIAGRAM:

STEP 4: T_{M} defection $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{0,1\}\right.$,

$$
\left.\{0,1, x, y, B\}, 8, q 0, B,\left\{q_{5}\right\}\right)
$$

STEP 5: $1 \mathrm{D} \quad \omega 1=1001$

$$
\begin{aligned}
& \left.8(q 0,1001) \vdash_{m}\left(q_{0} 1001\right) \vdash_{m}\left(q_{q} 001\right)\right)_{m}\left(q_{4} \times \times 01\right) \vdash_{m}\left(y_{q_{0}} \times 01\right) \\
& \left.\Gamma_{m}\left(y \times q_{0} \circ i\right) I_{m}\left(y \times x q_{1}\right)\right)\left.\left.\vdash_{m}\left(y \times q_{2} \times y 1\right)\right|_{m}\left(y \times x q_{0} y\right)\right|_{m}\left(y \times x y q_{0} R .\right. \\
& F_{m}\left(Y \times \times Y B q_{5}\right) \Rightarrow \text { string is accepted. } \\
& \omega_{2}=0100 . \\
& 8(q 0,0100) r_{m}\left(q 10 q_{0} 0100\right) 1_{m}\left(q_{2} \times y 00\right) \vdash_{m}\left(x q_{0} y 00\right) r_{m} \\
& \left(x y q_{0} 00\right) \vdash_{m}(x y \times q, 0) 1_{m}(x y \times \circ q, \beta) \Rightarrow \operatorname{Rejected} \text { [NoTransition] }
\end{aligned}
$$

4. Design a TM te accept the Language 2 contains a substring " $010^{\prime \prime}$ SOLUTION:

$$
T M: M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\},\{0,1, B\}, 8, q_{0}, B,\left\{\alpha_{4}\right\}\right) \text {. }
$$

5. Design the M_{M} to accept the language of palindromes over the alphabet $\{a, b\}$ or to accept the lang. $L=\left\{\omega \omega^{R} \mid \omega \in\{a, b\}\right\}$.
SOLUTION:
STEP: IDEA OF CREATION:

- The VM that we are designing now should accept the $^{\text {n }}$ when strings of palindromes such as $a b a b a, a b b b b a$.... The idea to design this $T M$, is that of the m / c reads ' a ' on the
left most symbol, replace ' a ' to ' B ' and move to right ard changes last ' $C a$ ' to B.
- Similarly of the m / c reads ' b ' then it replaces b to B and moves to right by searching B and last b and replace b to B.
- So the overall idea is for each ' a ' that is foist ' a ' on the left if matches the last ' a ' on the right most side and for each b on the $1^{\text {st }}$ time on the left, it matches last-b on right si
STEP 3: TRANSITION DIAGRAM.

REJECTING STATE

$$
\begin{aligned}
& 8(q, i a)= \\
& \quad(q \text { reject, } a, L \\
& \delta(q, b)= \\
& (q \text { reject, } b, L)
\end{aligned}
$$

TM for $\left.L=\left\{\omega \omega^{l} \mid \omega \in(a, b) *\right\}\right\}$
L: $M=\left\{9,0, a, a_{1}, a_{3}, a, a, 5, a, b\right\}$
STEP $4: M=(\{q 0, q 1, q 2, q 3, q 4, q, q, q 6\},\{a, b\},\{a, b, B\}, \delta, q 0, B,\{q, q\})$.
6. Design the TM to compute the fo $F(\omega)=\omega c \omega R$. where w is any string of $a^{\prime} s \& b^{\prime} s$.
SOLUTION:
STEP I: IDEA OF CREATION.

- The idea to create this TM is that to read the strung and to create $\omega c \omega R$.
\rightarrow Here we initially read all the symbols dir the string ow an unto ' B ' and then moves on the reft one position and symbol.
\rightarrow Ip the symbol is ' a ', then we replace it by x and of
the symbol is ' b ', et is replaced by y.
\rightarrow After replacing the symbol, we move to the right and replace B by ' a ' ar ' b ' based on the symbol read before the B.
\rightarrow After processing all the strings w and we replace ' x ' by ' a ' and ' y ' by b.
\rightarrow After replacing the entire string symbol in " ω ', we move to the right side until blank sym bol.
STEP 2: Transition Diagram.

Rejecting state
STEP 4: TM Definition

$$
\begin{aligned}
& \delta\left(q_{1}, a\right)=(\text { reject }, a, L) \\
& \delta(q 1, b)=(\text { qreject }, b, L)
\end{aligned}
$$

STEP a: TRANSITION TABLE

$$
\begin{aligned}
& M=(\{q 0, q 1, q 2, q 3, q 4, q 51 q 6\}, \\
& \{a, b\},\left\{a, b_{1}^{c} B\right\}, 8, q 0, B_{1} \\
& c, q 8\} \\
& \{q 8\})
\end{aligned}
$$

STEP 5: 10 -any strung.

Design a TM which recognizes the input language having a substring as 101 and replaces every oeccerremee of 101 hg 110 . sols The TM has to be constructed considering 101 as a Sub string and leaving 110 substring after complete scan of the input.

Design a Tm which reverse the given string "abb".

On: Design the TM to accept the set of all strings over alphalut $\{a, b\}$ with even number of $a^{\prime} s$.
Solution:

TM $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{a, b, B\}, \delta, q_{0}, B,\left\{q_{0}\right\}\right)$
On: Design a TM that accepts the language of odd integers lurittin in binary.
Sole:
logic: The binary string that ends mirth 1 is always an odd integer. Hence the TM will be

Techniques for Turing Machine construction

* Here det us see some of the programming teitniques that are used to construct an efficient TM that puinetions as powerful as a conventional computer.
* The different lechneques that are used to foreign a $T M$ are as follows,
(1) storage in finite contra
(2) Multiple tracks or multi head TM
(3) Multiple tape (or) multi tape TM
(4) suleratines

Slorage in pinite control:

* In $T M$, generally the pinite control contains the FA with the state transitions.
* And the finite control in TM represents the set of states.
* But here in the storage of finite control, we store the data along with the state, so here we ese the finite control to hold finite amount of data and it is shown below,

* This type of $7 n$ wakes the state to remember and to have a memory for the symbol scanned in the unset From the above $T M$, the Hate is $49:$ and This state q contains A, B, C as the symbol in storage
with q
o This type of $T M$ can le designed to store in the state with any data from the i / p.
* Each state contains the ' B ' lank symbol as its storage initially
* This type of $7 M$ is weed to store any symbol in the input and to chuck whether the stored symbol appears in the input.

PROBLEMS [For storage in finite control]
On: Design a TM to auept the string $01^{*}+10^{*}$.
soon:
To design a TM, that it should supt the strings such as $01111,10000 \ldots$ etc so the string should have the persist symbol as ' 0 ' or ' 1 ' and it should not appear else where in the input.
Step 1: Transition

step 2: Transition table

Step 3: TM Definition

$$
\begin{aligned}
T M M= & \left\{\left\{\left[q_{0}, B\right],[q, 0],[q, 1],[q 1, B]\right\},\{0,1\}\right. \\
& \left.\{0,1, B\}, \delta,\left[q_{0}, B\right], B,\left\{\left[q_{1}, B\right]\right\}\right)
\end{aligned}
$$

Multiple Tracks or Multi Head Turing Machine:
Now eve are going to extend this M to include trultiple tracks in the input tape

- In this TM, where the finite control contains the state and its storage and the input tape contains prultepte tracks
- Each track in the isp tape contains one symbol.
- The tape alphalut of TM consists of tuples diets one component in each track and the number of components in the tuples depends on the number of backs of the input date.

Finite control

- Here, the cell scanned by the tape head contains the symbol $[x, y, z]$.
- The multiple tracks of TM is used to fond whether the number is odd / even.
- The multiple bricks can le used to check whether the number is prime.
Example: Design a TM A using multiple backs to check whether the guin input number is prime or chat.
son:
* store the isp symbol in the $1^{\text {st }}$ back of i / p tape * Shore the number 2 is binary in the $2^{\text {nd }}$ tracks of isp tape
* copy the i / p in the $3^{\text {rd }}$ Track also.
* All the symleols in the three tracks of the TM are in binary form.
* Now subtract the $2^{\text {nd }}$ track from tried tran until tue get ' O ' or any remainder.
* If the remainder is zero, then the number is not prime, since the prime number is one which is divided dy 1 and itself
* If the remainder is non-zero value, then the $2^{n d}$ rock value is incremented li 1 and again subtraction procedure is continued.
* If the value of the $2^{\text {nd }} k 1^{\text {st }}$ track is equal, then the number is prime number. Let us take an isp value 5 and it is stored as,

Track 1	1	0	1	B	\cdots
	B	1	0	B	\cdots
Track	B				
Track	1	0	1	B	\cdots

pride the value 2 in $2^{\text {nd }}$ wrack from value in $3^{\text {at }}$ brach

1	O	1	B	\cdots
B	1	O	B	\cdots
1	O	1	B	\cdots

\longrightarrow| 1 | 0 | 1 | B | \ddots |
| :---: | :---: | :---: | :---: | :---: |
| B | 1 | 0 | B | \therefore |
| 0 | 1 | 1 | B | - |

\longrightarrow| 1 | 0 | 1 | B | \cdots |
| :---: | :---: | :---: | :---: | :---: |
| B | 1 | 0 | B | \cdots |
| B | 0 | 1 | B | \cdots |

The remainder is 1 , so increment the value of $2^{\text {nd t }}$ track buy 1

1	0	1	B	\cdots
B	1	1	B	\cdots
1	0	1	B	\cdots

The remainder is 2 , so usirement the value of $2^{\text {nd }}$ rack.

1	0	1	B	\cdots
1	0	0	B	\cdots
1	0	1	B	\cdots

The remainder is 1, so irivement value of 2 bt rack le 1.

1	0	1	B	\cdots
1	0	1	B	\cdots
1	0	1	B	\cdots

Now the value of first x second brock is equal, so the number 5 is a prime number.
Example 2: Input string $={ }^{\prime} 7{ }^{\prime}$

1	1	1	B	\cdots
B	1	0	B	\cdots
1	1	1	B	\cdots

Sulubracting 2 from 7 , we get.

The remainder is 1 , so increment the value of $2^{\text {nd }}$ track dy 1

The remainders is 1 , so increment the value of $2^{\text {nd }}$ track dey 1.

Remainder is 3 , so increment value of $2^{\text {nd }}$ track by 1 .

Remainder is 2 , so invement the value of $2^{\text {nd }}$ track by 1 .

Remainder is 1 , so interment value of $2^{\text {nd }}$ track by 1 .

Now the value of $1^{\text {st }} \times 2^{\text {nd }}$ track is equal, so the no. 7 is a paine number.

Example 3: I/P storing $=6$

on dividing 2 from b, we get 4 then dy sulubracting 4 by 2 , we get 2 and again by subtracting 2 ley 2 we get 0 , since the remainder is 0 , the number b is not a prime number.

Problems:
An: Build a mullitrack turing machine for checking evtether given number is prime or not?
Soln: Here we can luiild a tiro track TM. We. evil consider the input $z=\{0,1\}$ ie a binary input strung. Let in due the number to be checked.
(1) We will guess a number m, where $1<m<n$ (2) divide n by m
(3) If inhere is 0 remainder then it halts and (4) Qhtoruuse it halts x bails. speed.

It can le modelled as,

On: Design a TM drhich recognise the i/planguage braving a sullistuing as 101 e replaces avery ocurence of 101 ley 110.

Sole: Replavment of any symbol by some another one means after reading of that speipei sypubal we
should point the replavment symbol.

* In this case 101 has do die replaced by 110^{-}. Then. Tin has to le construed considering 101 as a sulestaning and leaving 110 sulistring of tor complete scan of the input

Multitape Turing Machine:
The multitape TM has a finite control state and some finite number of tapes. Each tape in the multiple cor multitape the is suited into cells ard each well can hold any synod x the multitape $7 M$ is shown below,

The multitape has the following,
(1) The i / p which is the finite sequence of i / p syonbols and is plaid on the, st tape.
(2) All the other cells of all the tapes hold the lank symeds.
(3) The finite control is in the initial state.
(4) The head of the first tape is at the left end of the input.
(5) All the other tape head will we at some arbitrary cell.
since the tapes other than 1 st tape are comptelely blanks, there is no need to see where the head is placed initially ant all the cells of those tapes look the same. A move of the muututape TA depends on the following.
(1) State of the furite control
(2) Symbol scanned dy each tape head.

In a single move, the multitape ma does the following,
(1) The finite control enters a new state.
(2) On each tape, a new tape symbol is written on the cell scanned.
(3) Each of the tape head brakes a move, which can le either left, right or stationary
(4) The heads move independently, 80 different heads may move in different directions and some heads may
not at all move.
Checking off symbols:
The TV can be eselinded by using checking off symbols. This method is used by the Tia for the languages that contains the repeated string, and to compare the length of the two sultetrings.

The examples danguages are,

$$
\begin{aligned}
& L=\left\{\omega \subset \omega \mid \omega=\{a, b\}^{*}\right\} \\
& L=\left\{\omega \omega \mid \omega=\{0,1\}^{*}\right\} \\
& L=\left\{\omega \omega^{*} \mid \omega=\{0,1\}^{*}\right\}
\end{aligned}
$$

PROBLEM:

1) Design a boring machine to ruegnize the larrguage

Subroutines:
敢There are some frolulems, in which some tasks need to le performed repeatedly and it can lu e done by subroutines. The subroutines are also called as function. The subroutine in the luting machine is a set of states that specifically performs some tasks.
\rightarrow The set of states in the subroutine Pas one start state and another state namely the return state.
\rightarrow The return state of the subroutine doesnot have moves and it pass the control to other set of slater of the turing machine that calls the subroutine.
\rightarrow The subroutirie is called whencuer there is a transition to its initial slate.
\rightarrow The calls eure made to the start state of different copies of the subroutine and each copy returns to a different state.
\rightarrow The subroutines of the TM perform some task simultaneously.

PROBLEM:

Design a TTM to perform the muluplucation function $f(m, n)=m * n$ using subroutine.
Sols: Transition diagram dor subroutine copy.

Transition diagram for main program.

The complete multiplication program uses the subroutine copy.
Transition tall for subroutine copy program.

state	0	$\#$	x	B
$\rightarrow q_{1}$	$\left(q_{2}, x, R\right)$	$\left(q_{4}, \#, L\right)$	-	-
q_{2}	$\left(q_{2}, 0, R\right)$	$\left(q_{2,} \#, R\right)$	-	$\left(q_{3}, 0, L\right)$
q_{3}	$\left(q_{3}, 0, L\right)$	$\left(q_{3,} \#, L\right)$	$\left(q_{1}, x, k\right)$	-
q_{4}	$(-$	$\left(q_{5}, \#, R\right)$	$\left(q_{4}, 0, L\right)$	-

Tranistion table for main program.

slat	0	\#	B
$\rightarrow q_{0}$	$\left(q_{6}, B, R\right)$	-	-
q_{5}	$\left(q_{7}, 0, L\right)$	-	-
q_{6}	$\left(q_{6}, 0, R\right)$	$\left(q_{1}, \#, R\right)$	-
q_{7}	-	$\left(q_{2}, \#, L\right)$	-
q_{8}	$\left(q_{9}, 0, L\right)$	-	$\left(q_{01}, B, R\right)$
q_{9}	$\left(q_{9}, 0, L\right)$	-	$\left(q_{9}, B, R\right)$
q_{10}	-	$\left(q_{11}, B, R\right)$	$\left(q_{7}, B, R\right)$
q_{11}	$\left(q_{11}, B, R\right)$	$\left(q_{12}, B, R\right)$	-
q_{12}	-	-	-

Non-Detorministu Thing Machine [NTM]

* Non eleterminision is a powerful feature of 704 .
* These NTM machines are easy to design and are equivalent to deterministic TM.
* A NTM cauepts a string, w if there exists a least one sequence of moves from the initial state to final state

Definition:
A NTM is elefenied as,

$$
M=\left(Q, \Sigma, F, s, q_{0}, B, F\right)
$$

where $Q \rightarrow$ set of states including initial, having rejecting states.
$\Sigma \rightarrow$ finite set of input elphaluete.
$\Gamma \rightarrow$ finite set of tape symbols.
$\delta \rightarrow$ Transition function eleferied by

$$
\delta: Q \times T \rightarrow P(Q \times \Gamma \times\{L, R, N\})
$$

Where $P \rightarrow$ powerset
$90 \rightarrow$ initial state
$B \rightarrow$ blank symbol
$F \rightarrow$ set of ferial states $(F \subseteq Q)$
The biansition function δ takes on the states tape symbols and head movement.

Example:

The above traniftion takes on two paths for the same imper a. The transition of ' a ' at go is defined as

$$
\delta(q 0, a)=\left\{\left(q_{0}, a, R\right),\left(q_{1}, x, R\right)\right\}
$$

THE HALTING PROBLEM:

* The Hatting prolilen is the problem of finding if the program x machine halts or loop forever.
* The halting problem is undecidable over $T M$. Description:
* Consider the TM M and a guien string w, the problem is to determine whether M halts thy icthen accepting (or) refacing ω ar rein forever.

Example:
while (1)
'Prints ("ftalting problem");

* The above code goes to an undinite loop since the forgument. of urhile loop is true foreuor.
* Thus if doesnt halts.
* Hence Turing producer is the example for unduidabilet * This concept of solving the halting problem being proved pas undecidalele upas done by Turing in 1936 .
* The undecidalility can we proved by reduction. techniques.
* Representation of the Hatting set:

The halting set is represented as,

$$
h(M, w)= \begin{cases}1 & \text { if M halts on input w } \\ 0 & \text { otherwise. }\end{cases}
$$

Where $M \rightarrow \operatorname{Tn} A$
$\mathrm{W} \rightarrow$ I/P string
Theorem: Halting prover of tra is unsolvalule undecidable

Proof:

* The theorem is proved lye the method of proof lay contradiction.
* let us assume that $T M$ is solvalule/decidable construction of H,

* Conner a string descriluing M and i / p string w fog M.
* Let H), generates "halt", if H_{i} determines that the turing machine M stops after accepting the $i / p \omega$.
* atheruise $H 1$ loops borcuer when, M does n't stope on processing u.

Construction of H .

- H_{2} is constructed with both the i / p s being M.
- H_{2} determines M and hats if M hats othoruvic loops forever.

Construction of $t B$:

- Let H_{3} due construuled from the outputs of H_{2}.
- If the outputs of H_{2} are halt, the H_{3} loops forever
- alse if the $\% / p$ of H_{2} is loop forever than H_{3} hals o Thus H_{3} acts construction to that of H_{2}.

- Let the output of H_{3} dee givers as input to itself
- If the i / p is loop forever, then H_{3} acts contradutary to it, hence hates.
- And if tine i / p is halt, then His loops ley the construction
- Since the result is incorrect ib both the cases, H_{3} doesnt exist.
(Thus H_{2} docent exist because of H_{3}.
- Similarly H_{1}, doesn't exist, because of H_{2}.
- Thus Halting problem is undeicdalle.

Partial solvalulity:
Prolilem Types,
There are basically three types of problems namely,

* oselidablo/solvable/Reuersuc
* Condesiralle /unsolvable
* Sernidecidalele /partial solvable/ Recursiuly enumerable.

Devidalile /solvalule prolilems:

* A proven, P is said to he deudalele if there exists a turing machine, $T M$ that decides P.
* Thus P is said to le recursive.
* Consider a TM, M that halts with iuther "yes" or "no" after computing the input.

$$
\omega \in \quad \Sigma^{*} \rightarrow N \rightarrow \text { Nos }(\text { if } \omega \in L \text {) }
$$

* The machine finally terminates after processing
* Int is guin by the function.

$$
F_{p}(\omega)=\left\{\begin{array}{lll}
1 & \text { if } p(w) \\
0 & \text { if } \Gamma p(\omega)
\end{array}\right.
$$

* The machine that applies $F_{p}(w)$ is said to be lṻring computable.

Undecidable prolutem:
A problem, P is said to be undeuidalile, if there is $\mu T M, T M$ that doesn't decides P.

Semidecidalle / partial solvable / Recursively enumerable

* A problem $P P$ is said to be semi-dridable, if p is recursively enumerable.
* A problem is RE if M terminates with "yes" if it auepts $\omega \in L$; and doesn't halt if $w \not \& L$.
* Then the problem is said to be partial solvable (or) Turing ameptalle.

$$
W \in \Sigma^{*} \rightarrow M \rightarrow \text { yes }(\text { if } w \in L)
$$

* Partial solvalulity of machine is defined as

$$
F_{p}(w)= \begin{cases}1 & \text { if } P(w) \\ \text { undefined } & \text { if } \Gamma p(w)\end{cases}
$$

Properties:
The semi - devidalule PRE language are closed under (1) union
(2) Intersection
(3) But not vendor complementation.

Closure under union:

- Let $L_{1} \times L_{2}$ be tiro RE language.
- And consider M_{1} that is a semi dueptor for L_{1}

4 and M_{2} due a $T M$ for L_{2}.

- Ret ' ω ' $\in L_{1}$ but not in L_{2}. Then $W \pm L_{1} \cup L_{2}$ and eventually M_{3}. halts if M_{3} takes on both M_{1} and M_{2}. and halts if any of them halts.
- If $w \notin L_{1} x w \notin L_{2}$ then $w \notin L_{2}$, which Causes M_{3} to lop former.

(if $w \in L_{1} \cup L_{2}$)
(if $w \notin L_{1} \cup L_{2}$)
Closed under Intersection:
- Let L_{1} and L_{2} be two RE languages accepted by M_{1} and M_{2} respectively.
- Let $w \in L_{1}$ and $w \in L_{2}$ be the input string.
- The $T M, M B$ is constructed that takes on $M_{1} \times M_{2}$ and halts if both M_{1} and M_{2} halts:
- If $w \in L_{1} \cap L_{2}$, MB halts with "yes".
- Else Na_{3} loop forever.

Note:
The lest example of partial solvability is the halting froblem; aueptance problem.

CHOMSKY HIERARCHY OF LANGUAGES:
Refer UNIT -II.

Design aTM to auept the string with even number of o's $\& 1 / s$ Over the alphabet 0 \&l.

Design a Tui with not more than three -states that ameptrs the language $a(a+b)^{\infty}$. Assume $\left.\Sigma=d^{2} a, b\right\}$.
Son Let Regular Expression $=a(a+b)^{*}$ The corresponeling Tm well be

$$
\rightarrow 90 \xrightarrow{\text { ala }} \rightarrow
$$

UNIT V
 UNDECIDABILITY

\Rightarrow Recursive Language: (am)
A language is recursive if there exists a turing machine that accepts every string of the language and rejects the string that is not in the language.

\Rightarrow Language That is not Recursive Enumerable: (2m)
A language is recursively enumerable if there wrists a turing Machine that accepts energy stringy the language and does not accept strings that are not in the language.

C ${ }^{2} |$| $>y \mathrm{~s}$ | |
| :--- | :--- |
| | $>$ Infante sop. |

\Rightarrow Diagonalizatidn Language (ld): 10 l
The diagenaligation language La, we the set of stings W_{i} where w_{i} is not in L(Mi).

$$
\because L\left(M_{i}\right)=\phi \text { if } w_{i} \text { valid TM code. }
$$

La consist of ale string w starch that the TM 'M' Whose code wi whee dues not accept the input w.

It is clear that mother the $T m M i$ accepts the whet string or mot.

If $(i j)=1$, hes it is accepted.
\Rightarrow Diagonalization: (am)
The process of complementing the diagonal to comshuct the characteristic vector of a language that cannot be the language that appear k win any How is called Naigonaligation.

Then the complement of the diagonal carnot be the characteristic vector any turing machine.

THEOREM 1: Ld is not recursively enumerable

Ld is mot a reewrsintly enumerable language. (ie) There is T no Tiring Machine that accepts Ld.

Proof: Suppose Ld is accepted by some TM M defined by LCM). Sine Ld is a language ones alphabet 80.1s M would be in the list of Thing Machines constricted, where it includes all towing machines with wipe alphahd \{0,13. So there may be atleast one code for M, say i that \&

$$
M=M_{i}
$$

Then
By definition, $L d=\left\{w_{i} \mid M_{i}\right.$ does not accept $\{$ Here me have two possibilities

$$
\cdot \quad w_{i} \in L_{d}
$$

* This means that (i, i) entry is ' 0 ' and so M . does mot accept wi. But ow i assumption there is that there exists a Twining machine M_{i}. which accepts W_{i}. There is a contractiction.
- wi \ddagger Ld
* This means that (i, i) entry is ' 1 ' and so M i accept wi. But by definition of Ld, Mi docs mot accept wi. So thane is. a contradiction.

Thus it is clear that La is mot precursbity conimerabie, and Ld is not recursive toe.

Complementation Of Recursive And Recursive
Enumerable Languages
The recursive languages are closed under complement-- aton.

THEOREM :2 If L is a recursive language, so is $T I$
Let L be a reccursine language and M a Towing Machure that hats on all inperts and accepts L.

Construct a Tiring Machine M ' from M such that,
(B) The accepting states of M are made non-cceptind Rakes of M with ho transitions.
(ii) Create a mew accepting stats P which has no transitions
(iii) For sack pase of mon-accepting state of M and a rape symbol of M sh ch that M has no Framitwin. Make the travitition to the accepting state p^{\prime}.
If M inters a friar. stats on input W, then w M halts without accepting.

If M hales without acapting. M enters to fond stat..

$$
\begin{array}{ll}
& \text { M } \\
\Rightarrow \text { Accept ifrial stat } & \text { Reject. } \\
\Rightarrow \text { Refit } & \text { Accept if rial state. }
\end{array}
$$

fe is loon trim has either of the anent recaps or rejects.

So m^{\prime} accepts I when ix abs Hecursine.

THEOREM 3: If a language L and its complement L are both recursuliely enumerable, then L is recursive.

Proof: Let M_{1} and M_{2} be the Thing Machine Which accepts the language L and L Respectively.
consbut M to simulate simultaneously M_{1} and M_{2} M accept w if M accepts W.
M rejects w if N_{2} accepts N .

w is in either Lon L. so exactly one of $M, M M$, will accept.

Obviously M will always say either 'Yes' 'No' but mot both.

THEOREM 4: Lu is recursively enumerable.
PROOF: In order to prove shies therm, it ii necessary to construct a Turing machine that accepts 1,. The t wring machine u consists of a those

Wack whit tape whore the fist trace moke the wept tape Gen, wy), The second track ventron the tape of Ne whore tape symbols are wotton in whore torn ane the third Frack mpmesente the state w: which is also in unomy form.

THOth Control

Input
Tape of M

The operation of U are as of clams:
1.) First make kwh that the code for M is a legitimate cods for some Thing machine M. Chemise it hates without accepting.
as Enitidige the second tape with the winput wo in its encoded form. kep o the start state of M on the third tape and move the head of v's second tape of the tret stimulated cell.
$3)^{i}$ it the current state with of the current input stymest appease wa tracts the le wand two wapectively then U trade the combepmathe thateten
 $0^{i} \mathrm{byy} 0^{k}$ and o. by o.
4.) Mare the Head bu tape thur to the partition comspondity to the vale of M .
 if M has the transition of the form $\delta(0,0,0)=(0 x, 01,0 m)$ Othmaise M malts without accepting.

Thus U swinutete M and accepts w. Thus tu is vecuosindy unumetade.

THEOREM 5: LU is Recurscire enumerable but not recursive.

PROOF:
It is already proved that Lu is RE.
Assume Lu i\& Recurinis. According to the closure property of necursine sets s the complement of Lu (ie) LD ib also secursint.

Suppose A is an alquithm recognizing lu ld can be Hecomized as follows:
\Rightarrow Given sluing w in $(0+1)^{*}$ determined by an easy calculation, the value of suck what w wi. Integer i in binary is the conneponding code for

For some TMMi.
 w if and only if mi accepts wi.
\Rightarrow So the constructed algorithm also accepts wit and my $w=w_{i}$ which sis win $L\left(\overline{M_{i}}\right)$. This ix the algorithm cometructed for $L A$.

But wo suck degouthm exists and abe uh asermption of there is an algorithm A for Lu worst : false.

Hence Lu is RE but mot Mecunsine.

UNIVERSAL LANGUAGE $\left(L_{u}\right):(2 m)$

$$
L_{u}=\{\langle M, w\rangle / M \text { accepts }\}
$$

Lu is the set of showings representing a TM and an input vacapted by that TM. So there is a 7 M - called Lmiwensal Turing Machone.

POST CORTES PONDENICE PROBLEM
In this, the unteciclable problem about Turing machine ave reduced to undecidable problems about real things. The goal is to prow that Problem about Strings to be undecitlable

we reduce $L_{L 1}$ to mollified PCP then to PCP ming algorithm.
Definition.
An instance of Post's Correspondence problem (PCD) Consists of two lists of Strings over Σ

$$
\begin{aligned}
& A=W_{1}, W_{2}, \ldots W_{k} . \\
& B=x_{1}, x_{2} \ldots x_{k} \text { for some integer } k
\end{aligned}
$$

The instance of PCP has a solution if there is any sequence of intearers $i 1, i 2, \ldots i m$ With $m>1$ such that.

$$
W_{i 1}, W_{i 2}, w_{i 3} \ldots, W_{i m}=x_{i 1}, x_{i 2} \ldots x_{i} K
$$

is a solution to this instance of PCP

MODIFIED DOST'S CORRESPONDENCE PROBLEM
[MPCD]
Modified PCP

1. In order to simplify the reduction of L_{u} to $P C P$, an intermediate Version of $P C P$ called Modified Post's Correspondence problem is used.
The Modified PCP is the following Given lists A and B, of K String each from Σ^{*}

$$
A=W_{1}, W_{2}, \ldots W_{k} \quad B=x_{1}, x_{2}, \ldots x_{k} .
$$

It hos the Solution Such that

$$
W_{1}, W_{i 1}, W_{i 2} \ldots W_{i r}=x_{1}, x_{i 1}, \ldots . x_{i r}
$$

The difference between the MPCP and PCP is that in the MPCP, a solution is required to be stored with the first String on each list.

Theorem 6
Statement:
If there is a rechuction from to then
i) If Pl is undecidable, then So_{0} is P_{2}
ii) If P_{2} is non -RE, then S_{0} is P_{2}

Proof:
i) If P_{2} is undecidable, then So is P_{2}

Assume P_{1} is undecidable. Lit A be the algorithm Which Converts the instances of P_{1} to instances of P_{2}

Suppose w be the instances of P_{1}, given to the algorithm A that comerts w into an imtance x of

Algorithm output	
Yes	\times
No	\times
This is the Contratiction	

x is in $P_{2}\left[\because W\right.$ is in $\left.P_{1}\right]$
x is not in $P_{2}\left[\therefore W\right.$ is not in $\left.P_{3}\right]$
This is the Contradiction to our assumption that P_{1} is unteriatoble
Thus, if P_{1} is unteriatable, then P_{2} is abs undecidable.
ii) If P, is not- $R E$, then so is P_{2}

Assume that P_{1} is non -RE, but P_{2} is RE. Since P_{2}

If W is in P_{1} then x is in P_{2}, So the TM Will accept W If W is not in P_{1}, then x is not in P_{2}, so the $T M$ mon or moynot halt but will not accept w This is a Contradiction to ow r assumption. Thus if P_{1} is non -RE, then P_{2} is non $R E$

Theorem 7
Statement:
Lune is recursively enumerable
Proof:
The Contraction is based on a non-deterministic Turing machine

The theorem is proved at follows
i. A Turing Machine Code Mi_{i} is given a input to the TM
ii. A genes an in put w in a right way that M_{i} might accept.
iii. M is Simulated to the Universal Turing Machine U, which tests whether Mi accepts w. iv. If M_{i} accepts W, then M accepts w

Thus M_{i} accepts any String that will be queued vight by the Turing Machine M. if $L\left(M_{i}\right)=\phi$, then no guess is macle by Twin Machine M, So M does not accept $M i$.

Thus $L(M)=L_{\text {ne }}$
Theorem 8
Statement:
Line is not recursive:
Proof:
The algorithm of this theorem should be designed in Such a way that it Converts an input that is binary - Coctedpair (M, W) into a Turing Machine M^{1} such that $L\left(M^{*}\right)=\phi$ if and only if M accepts input w

The Ting Machine M^{1} is designed to perform the below operation

1. M ignores its own input x rather it replaces its input by w, the input string accepted by Thing Machine M. M is designed to accept a Specific pair (M, w) whose length is n, having \square sequence of n states like $q_{0}, q_{1}, q_{2}, \ldots . q_{n}$, Where q_{0} is the start state
a) For $i=0,1 \ldots n-1$, if the turing machine is at State q1, M writes $(i+1)$ st bit of the Code for (M, W) and goes to state nits moving right.
b) In state a_{n}, M moves right by replacing any non blanks to blanks
2. When the Turing machine M reaches a blank in State a_{n}, it was a Similar Collection of States to reposition its head at the Leftend of the tape.
3. M stimulates a universal Turing machine U on its present tape. If U accepts, then M accepts, if U does notapet, M never accepts. The simulation made here is by vectuction of L_{u} to $L_{n e}$.
Assume Lune is recursive. Then the algorithm for $L_{L L}$ is as follows
4. Convert (M, W) to the Turing machine M^{1} by rectuction of L_{4} to lime
5. By the hypothetical algorithm of Line, Tell
i) If $L\left(M^{*}\right)=\phi, M$ does not accepts W
ii) if $L\left(M^{1}\right)=\varnothing \quad M$ accepts W

By the algorithm of $L u$, this is not true. our assumption is Contractictory and Conclude that Laue is not recursive.
Theorem 9
statement
MPCP rectuces to $P C P$
proof:
Assume that $i_{1}, i_{2}, \ldots \ldots . . . i m$ is a solution to the given MPCP instance with lists A and B

Wo know that, according to MPCP

$$
W_{1} W_{i 1} W_{i 2} \ldots W_{i m}=X_{1} x_{i 1} \ldots x_{i m}
$$

Replace w's by y 's and x 's by z 's. Then we howe the string like $y_{1}, y_{i 1}, y_{i 2} \ldots y_{i m}$ and $Z_{1}, Z_{i 1}, Z_{i 2} \ldots Z_{i m}$. The only difference is that. the first string would be missing $a *$ at the beginning and the second string would be missing a* at the end

$$
\text { 米 } y_{1}, y_{i 1}, y_{i 2} \ldots y_{i m}=z_{1}, z_{i 1}, z_{i 2} \ldots Z_{i m}
$$

Using the Construction rule. Put $40=* y$, and $Z_{0}=Z_{1}$. Then fix the initial $*$ by replacing the first index by 0

$$
y_{1}, y_{i 1}, y_{i 2 \ldots} y_{i m}=z_{1}, z_{i 1}, z_{i 2} \ldots z_{i m} *
$$

Append the index $k+1$ i. $\quad y_{k+1}=\$$ and $z_{k \in x}$ 擞 $z_{K+1}=* \$$

$$
\text { * } y_{1}, y_{i 1}, y_{i 2} \ldots y_{i m} y_{k+1}=z_{1}, z_{i 1}, z_{i 2} \ldots z_{i m}
$$

$$
z_{k+d}
$$

Thus $0, i, i_{2}, \ldots$ in $k+1$ is a solution to the instance of $P C P$

For MPCP, i_{1}, i_{2}, \ldots. in is a solution. If we remove the *)s and the final $\$$ from the String $y_{1}, y_{i 1}, y_{i 2} \ldots \operatorname{Him}_{k+1}$, we get the string
Wi Will Win ... Nim

If we remove *'s and \& from the String $Z_{1}, Z_{i 1}, Z_{i 2}, \ldots Z_{i m} Z_{k+1}$, we get

$$
x_{1} x_{i 1} x_{i 2} \ldots x_{i m}
$$

So for PCP

$$
y_{1}, y_{i 1}, y_{i 2} \ldots y_{i m} y_{k+1}=z_{1}, z_{i 1}, z_{i 2} \ldots, z_{i m} z_{k+1}
$$

Which follows that

$$
W_{1} W_{i 1} W_{i 2} \ldots W_{i m}=x_{1} x_{i 1} x_{i 2} \ldots x_{i m}
$$

Thus a solution to the PCP instance implies a Solution to the MPCP instance. Thus there is II reduction of MPCP to PCP, Which confirms that if PCP were deciclable. PCP would tho be decidable.

Theorem 10
Statement
Post's Correspondence problem is undecidable

Proof:
The proof of this theorem is telling how to vectuce L_{u} to MPCP. It Can be proved using the Statement
"
M accepts w if and only if the constructed MPCP instance has a solution".
if Part
MPCP instance has a solution
To Prove: M accepts w
Assume a partial solution begins with.
A: \#
B: \# 90 WH
States and the tape symbols can only be handled by the pairs of vile (3) and all other tape symbols and \# mut be handled by pairs of from rule (2)
After reaching the accepting States, the rules (4) and (5) can be used. Thus, unless M reaches an accepting state, all partial Solutions have the form

$$
\begin{aligned}
& A: x \\
& B: x y
\end{aligned}
$$

Where
x - Sequence of ID's of M representing a Computation of M on input w possibly followed by \# and the beginning of the next ID a 4 - Completion of $a, \#$ and beginning of the ID that follows a, unto the point that x ended Within a it self
Thus as long as M Hoes not enter an accepting State, the partial solution is not a solution and Elso B is longer than A.

Only - if port M accepts W
If W is in $L(M)$, then stout with the poor from rule (1) and Simulate the computation of M on W. And using the rule (3) pair to copy the state from each ID and simulate one move of M. Then by using rule (2), to ropy tape Symbols and the marker \# as needed. If M reaches an accepting state, then the pairs from rule (4) and wile (5) allow the A string to Catch upto the B string and form a Solution.

Thus if there is a solution M must enter an accepting State and so Maccepts W

2 mark.
20. Define the claws P and NP.?
P consists of alt those languages or problems accepted by some Turing Machine that runs in some polynomial amount of time, as a function of its input length Ex: Krushkal's problem. NP is the clans of Language of problems that owe accepted by non-exterministic TM's with a polynomial bound on the time taken along any sequence of non-deterministic
Choices en ant also verifiable in Polynomial time.
5. Define NP hard problem?

A problem is said to be NP hard if there is a polynomial time reduction ie can be solvable in polynomial time.

Example:
Decision problems, search problems.
13. Define the basic recursive primitive function?
i) Zero function $z(x)=0$
ii) Successor function $s(x)=x+1$
iii) Projection function

$$
\begin{aligned}
& P_{1}\left(x_{1}, x_{2}\right)=x_{1} \\
& P_{2}\left(x_{1}, x_{2}\right)=x_{2}
\end{aligned}
$$

14. What do you mean by NP Complete problem? A Language L is NP Complete if its satisfies the following Condition
15. L is in NP
16. For every Language L ' in NP there is a polynomial-time vectuction of L' to L

Example: Travelling Salesman Problem.
19. What awe the properties of recursively enumerable bets which are undecidable?

1. Emptiness
2. Finiteness
3. Regularity
4. Context-freedom

UNIT - 5

UNDECIDABILITY

Non Recursive Enumerable (RE) Language - Undecidable Problem with RE Undecidable Problems about TM - Post's Correspondence Problem, The Class P and NP

RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES

Recursively Enumerable Language

A language $\mathrm{L} \subseteq \sum^{*}$ is recursively enumerable if there exist a Turing machine, M that accepts every string, $\mathrm{w} \in$ Land does not accept strings that are not in L.

If the input string is accepted, M halts with the answer, "YES".
If the string is not an element of L, then M may not halt and enters into infinite loop.

The language, L is Turing Acceptable.

Recursive Language

A language is said to be recursive if there exists of Turing machine, M that accepts every string, $\mathrm{w} \in \mathrm{L}$ and rejects those strings that are not in L .

If the input is accepted, M halts with the answer," YES"

$\mathrm{w} \notin \mathrm{L}$ the Turing machine doesn ${ }^{\text {" }} \mathrm{t}$ accept the string.

If $\mathrm{w} \notin \mathrm{L}$, then M halts with answer, "NO". This is also called as Turing Decidable language.

PROPERTIES OF RECURSIVE AND RE LANGUAGES

1. The union of two recursive language is recursive
2. The language L and its complement L are recursively enumerable, then L is recursive.
3. The complement of a recursive language is recursive.
4. . The Union of two recursively enumerable languages is recursively enumerable.
5. The intersection of two recursive language is recursive.
6. The intersection of two recursively enumerable language is recursively enumerable

Proofs on the Properties

Property-1

The union of two recursively enumerable languages is recursively enumerable.

Proof:

Let L_{1} and L_{2} be two recursively enumerable languages accepted by the Turing machines M_{1} and M_{2}.

If a string $w \in L_{1}$ then M_{1} returns "YES", accepting the input string: Else loops forever. Similarly if a string $w \in L_{2}$ then M_{2} returns "YES", else loops forever.

The Turing machine M_{3} that performs the union of L_{1} and L_{2} is given as

Here the output of M_{1} and M_{2} are written on the input tape of M_{3}. The turning machine, M_{3} returns "YES", if at least one of the outputs of M_{1} and M_{2} is "YES". The M_{3} decides on $\mathrm{L}_{1} \mathrm{UL}_{2}$ that halts with the answer, "YES" if $\quad w \in L_{1}$ or $w \in L_{2}$. Else M_{3} loops forever if both M_{1} and M_{2} loop forever.

Hence the union of two recursively enumerable languages is also recursively enumerable.

Property - 2

A language is recursive if and only if both it and its complement are recursively enumerable.

Proof

Let L and L be two recursively enumerable languages accepted by the Turing machines M_{1} and M_{2}. If a string, $w \in L$, it is accepted by M_{1} and M_{1} halts with answer "YES". Else M_{1} enters into infinite loop.

If a string, $w \in \bar{L}^{-}[w \notin L]$, then it is accepted by M_{2} and M_{2} halts with answer "YES". Otherwise M_{2} loops forever.

The Turing machine, M_{3} that simulates M_{1} and M_{2} simultaneously is given as

From the above design of $T M$, if $w \in L$, if $w \in L$, then M_{1} accepts w and halts with "YES".

If $w \notin L$, then M_{2} accepts $w[w \in L]$ and halts with "YES".
Since M_{1} and M_{2} are accepting the complements of each other, one of them is guaranteed to halt for every input, $w \in \Sigma^{*}$.

Hence M_{3} is a Turing machine that halts for all strings.
Thus if the language and its complement are recursively enumerable, then they are recursive.

Property - 3

The complement of a recursive language is recursive.

Proof

Let L be a recursive language accepted by the turning machine, M_{1}.
Let $\overline{\mathrm{L}}$ be a recursive language accepted by the Turing machine M_{2}.

The construction of M_{1} and M_{2} are given as,

Let $\mathrm{w} \in \mathrm{L}$, then M_{1} accepts w and halts with "YES".
M_{1} rejects w if $\mathrm{w} \notin$ Land halts with "NO"
M_{2} is activated once M_{1} halts.
M_{2} works on L and hence if M_{1} returns "YES", M_{2} halts with "NO".
If M_{1} returns "NO", then M_{2} halts with "YES"
Thus for all w , where $\mathrm{w} \in \mathrm{L}$ or $\mathrm{w} \notin \mathrm{L}, \mathrm{M}_{2}$ halts with either "YES" or "NO"
Hence the complement of a recursive language is also recursive.

Property - 4

The union of two recursive language is recursive.

Proof:-

Let L_{1} and L_{2} be two recursive languages that are accepted by the Turing machines M_{1} and M_{2}, given by

$$
\begin{aligned}
& \mathrm{L}\left(\mathrm{M}_{1}\right)=\mathrm{L}_{1} \\
& \mathrm{~L}\left(\mathrm{M}_{2}\right)=\mathrm{L}_{2}
\end{aligned}
$$

Let M_{3} be the Turing machine constructed by the union of M_{1} and $M_{2} . M_{3}$ is constructed as follows.

The Turing machine M_{3} first simulates M_{1} with the input string, w .
If $w \in L_{1}$, then M_{1} accepts and thus M_{3} also accepts since $L\left(M_{3}\right)=L\left(M_{1}\right) u L\left(M_{2}\right)$.
If M_{1} rejects string $\left[w \notin L_{1}\right]$, then M_{3} simulates $M_{2} . M_{3}$ halts with "YES" if M_{2} accepts „w", else returns "NO".

Hence M_{3}, M_{2}, M_{1} halt with either YES or NO on all possible inputs.
Thus the union of two recursive languages is also recursive.

Property - 5

The intersection of two recursive language is recursive.

Proof:-

Let L_{1} and L_{2} be two recursive languages accepted by M_{1} and M_{2} where

$$
\begin{aligned}
& \mathrm{L}(\mathrm{M} 1)=\mathrm{L}_{1} \\
& \mathrm{~L}(\mathrm{M} 2)=\mathrm{L}_{2}
\end{aligned}
$$

Let M_{3} be the Turing machine that is constructed by the intersection of M_{1} and $\mathrm{M}_{2}, \mathrm{M}_{3}$ is constructed as follows.

The Turing machine M_{3} simulates M 1 with the input string, w.
If $w \notin L_{1}$, then M_{1} halts along with M_{3} with answer "NO", since $L\left(M_{3}\right)=L\left(M_{1}\right) \cap$ $L\left(M_{2}\right)$. If then M_{1} accepts with the answer "YES" and M_{3} simulates M_{2}.

If M_{2} accepts the string, then the answer of M_{2} and M_{3} are "YES" and halts. Else, M_{2} and M_{3} halts with answer "NO".

Thus, the intersection of two recursive languages is recursive.

Property - 6

Intersection of two recursively enumerable languages is recursively enumerable.

Proof:-

Let L_{1} and L_{2} be two recursively enumerable languages accepted by the Turing machine M_{1} and M_{2}.

If a string $w \in L_{1}$ then M_{1} returns "YES" accepting the input. Else will not halt after rejecting $\mathrm{w} \notin \mathrm{L}_{1}$.

Similarly if a string, $w \in L_{2}$, then M_{2} returns "YES" else rejects „w" and loop forever.
The Turing machine, $\mathrm{M}_{3}=\mathrm{M}_{1} \cap \mathrm{M}_{2}$ is given as

Here the output of M_{1} and M_{2} are written the input tape of M_{3}. The machine, M_{3} returns "YES" if both the outputs of M_{1} and M_{2} is "YES".

If at least one of M_{1} or M_{2} is NO it rejects „ $\mathrm{w}^{\text {é }}$ and never halts.
Thus M_{3} decides on $L_{1} \cap L_{2}$ that halts if and only if $\quad w \in L_{1}$ and $w \in L_{2}$. Else M_{3} loops forever along with M_{1} or M_{2} or both

Hence the intersection of two recursively enumerable languages is recursively enumerable.

THE HALTING PROBLEM

- The halting problem is the problem of finding if the program/machine halts or loop forever.
- The halting problem is un-decidable over Turing machines.

Description

- Consider the Turing machine, M and a given string ω, the problem is to determine whether M halts by either accepting or rejecting ω, or run forever.
- Example

```
    while (1)
    {
        prinf("Halting problem");
    }
```

- The above code goes to an infinite loop since the argument of while loop is true forever.
- Thus it doesn"t halts.
- Hence Turing problem is the example for undecidability.
- This concept of solving the halting problem being proved as undecidable was done by Turing in 1936.
- The undecidability can be proved by reduction technique.

Representation of the halting set

The halting set is represented as,

$$
h(M, \omega)= \begin{cases}1 & \text { if } M \text { halts on input } \omega \\ 0 & \text { otherwise }\end{cases}
$$

where,
$\mathrm{M} \rightarrow$ Turing machine
$\omega \rightarrow$ Input string

Theorem

Halting problem of Turing machine is unsolvable / undecidable.

Proof

The theorem is proved by the method of proof by contradiction.
Let us assume that Turing machine is solvable / decidable.

Construction of \mathbf{H}_{1}

- Consider, a string describing M and input string, ω for M .
- Let H_{1} generates "halt" if H_{1} determines that the turing machine, M stops after accepting the input, ω.
- Otherwise H_{1} loops forever when, M doesn"t stops on processing ω.

Construction of $\mathbf{H}_{\mathbf{2}}$

H_{2} is constructed with both the inputs being M .
H_{2} determines M and halts if M halts otherwise loops forever.

Construction of H_{3}

Let H_{3} be constructed from the outputs of H_{2}.
If the outputs of H_{2} are HALT, then H_{3} loops forever.
Else, if the output of H_{2} is loop forever, then H_{3} halts.
Thus H_{3} acts contractor to that of H_{2}.

- Let the output of H_{3} be given as input to itself.
- If the input is loop forever, then H_{3} acts contradictory to it, hence halts.
- And if the input is halt, then H_{3} loops by the construction.
- Since the result is incorrect in both the cases, H_{3} doesnot exist.
- Thus H_{2} doesnot exist because of H_{3}.
- Similarly H_{1} doesnot exist, because of H_{2}.

Thus halting problem is undecidable.

PARTIAL SOLVABILITY

Problem types
There are basically three types of problems namely

- Decidable / solvable / recursive
- Undecidable / unsolvable
- Semi decidable / partial solvable / recursively enumerable

Decidable / solvable problems

A problem, P is said to be decidable if there exists a turing machine, TM that decides P.

Thus P is said to be recursive.
Consider a Turing machine, M that halts with either „yes" or „no" after computing the input.

The machine finally terminates after processing
It is given by the function,

$$
\mathrm{F}_{\mathrm{p}}(\omega)=\frac{11}{} \text { if } \mathrm{p}(\omega)
$$

The machine that applies $\mathrm{F}_{\mathrm{p}}(\omega)$ is said to be turing computable.

Undecidable problem

A problem, P is said to be undecidable if there is a Turing machine, TM that doesn " t decides P .

Semi decidable / partial solvable / recursively enumerable

A problem, P is said to be semi decidable, if P is recursively enumerate.
A problem is RE if M terminates with „YES" if it accepts $\omega \in \mathrm{L}$; and doesn"t halt if ω $\notin \mathrm{L}$.

Then the problem is said to be partial solvable / Turing acceptable.

Partial solvability of a machine is defined as,

$$
\mathrm{F}_{\beta}(\omega)=\begin{array}{ll}
1 & \text { if } \mathrm{p}(\omega) \\
\text { lundefined } & \text { if } \neg \mathrm{p}(\omega)
\end{array}
$$

Enumerating a language

Consider a k-tape turing machine. Then the machine M enumerates the language L (such that $\mathrm{L} \subseteq \sum^{*}$) if

- The tape head never moves to the left on the first tape.
- No blank symbol (B) on the first tape is erased or modified.
- For all $\omega \in \mathrm{L}$, where there exists a transition rule, δ_{i} on tape 1 with contents

$$
\omega_{1} \# \omega_{2} \# \omega_{3} \# \ldots \# \omega_{\mathrm{n}} \quad \# \omega \# \quad(\text { for } \mathrm{n} \geq 0)
$$

Where $\omega_{1}, \omega_{2}, \omega_{3}, \ldots . ., \omega_{\mathrm{n}}, \omega$ are distinct elements on L .
If L is finite, then nothing is printed after the $\#$ of the left symbol
That is,

- If L is a finite language then the TM, M either
- Halts normally after all the elements appear on the first tape (elements are processed)
or
- Continue to process and make moves and state changes without scanning/printing other string on the first tape.

If the language, L is finite, the Turing machine runs forever.

Theorem

A language $\mathrm{L} \subseteq \sum^{*}$ is recursively enumerable if and only if L can be enumerated by some TM.

Proof

Let M_{1} be a Turing machine that enumerates L .
And let M_{2} accepts L . M_{2} can be constructed as a k -tape Turing machine $\left[\mathrm{k}\left(\mathrm{M}_{2}\right)>\right.$ $\left.\mathrm{k}\left(\mathrm{M}_{1}\right)\right]$.
M_{2} simulates M_{1} and M_{1} pauses whenever M_{2} scans the „\# ${ }^{\text {ce } \text { symbol. }}$
M_{2} compares its input symbols to that of the symbols before „\#" while, M_{1} is in pause.
If the comparison finds a match of the string, M_{2} accepts L .
Here M_{2} is a semi acceptor TM for L

- Scans the input string, ω
- Runs the transition rules of M_{1}
- If M_{1} outputs ω, then ω is accepted and M_{1} hats

If $\omega \in \mathrm{L}, \mathrm{M}_{1}$ will output ω and M_{2} will eventually accept „${ }^{(\text {e" }}$ and halts.
If $\omega \notin \mathrm{L}$, then M_{1} will never provide an output ω and so M_{2} will never halt.

Thus M_{2} is partially solvable / Turing acceptable for L .

POST CORRESPONDENCE PROBLEM (PCP)

Post correspondence problem, known as PCP is an unsolvable combinatorial problem. This Undecidable problem was formulated by Emil Post in 1946.

A PCP consists of two lists of string over some alphabet Σ; the two lists must be of equal length. Generally $A=w 1, w 2, w 3, \ldots \ldots . . w k$ and $B=x 1, x 2, x 3, \ldots \ldots . x k$ for some integer k. For each i, the pair (wi, xi) is said to be a corresponding pair.

We say this instances of PCP has a solution, if there is a sequence of one or more integers $\mathrm{i} 1, \mathrm{i} 2, \ldots \ldots$. im that, when interpreted as indexes for strings in the A and B lists, yield the same string.
wi1 wi2 \qquad wim $=x i 1$ xi2 \qquad xim . We say the sequence i1, i2, , im is a solution to this instance of PCP

EXAMPLE

1. For $\Sigma=\{a, b\}$ with $A=\left\{a, a b a^{3}, a b\right\}$ and $B=\left\{a^{3}, a b, b\right\}$, Does the $P C P$ with A and B have a solution?

Solution:

The sequence obtained from A and $\mathrm{B}=(2,1,1,3)$ as,

A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{3}$
aba^{3}	a	a	ab
B_{2}	$\mathrm{~B}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{3}$
ab	a^{3}	a^{3}	b

Thus $\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{1} \mathrm{~A}_{3}=\mathrm{B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{1} \mathrm{~B}_{3}=\mathrm{aba}^{3} \mathrm{a}^{3} \mathrm{~b}=\mathrm{aba}^{6} \mathrm{~b}$
The PCP given has a solution $(2,1,1,3)$ with the two lists of elements.
2. Let $\Sigma=\{0,1\}$. Let A and B be the lists of three strings defined as

	A	B
I	w_{i}	x_{i}
1	1	111
2	10111	10
3	10	0

Solution:
Consider the sequence $(2,1,1,3)$

$$
\begin{aligned}
& \mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{1} \mathrm{~A}_{3} \Rightarrow \mathrm{~W}_{2} \mathrm{~W}_{1} \mathrm{~W}_{1} \mathrm{~W}_{3}=101111110 \\
& \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{1} \mathrm{~B}_{3} \Rightarrow \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{1} \mathrm{X}_{3}=101111110
\end{aligned}
$$

Thus the PCP has $(2,1,1,3)$ sequences as solution

The Diagonalization Language $\boldsymbol{L}_{\boldsymbol{d}}$

We define Ld , the diagonalization language, as follows:
Let $w 1, \mathrm{w} 2, \mathrm{w} 3, \ldots$ be an enumeration of all binary strings.
Let M1, M2, M3, . . . be an enumeration of all Turing machines.

Let $\mathrm{Ld}=\{\mathrm{Wi} \mid$ Mi does not accept Wi $\}$.

The language Ld , the diagonalization language, is the set of strings Wi such that Wi is not in $\mathrm{L}(\mathrm{Mi})$. That is, Ld consists of all strings w such that the $\mathrm{TM}(\mathrm{M})$ does not accept when given w as input.

Theorem: Ld is not a recursively enumerable language.

Proof:
Suppose Ld = L(Mi) for some TM Mi.
This gives rise to a contradiction. Consider what Mi will do on an input string wi.

If Mi accepts wi, then by definition wi cannot be in Ld.
If Mi does not accepts wi, then by definition wi is in Ld.
we must conclude there is no Turing machine that can define Ld.
Hence Ld is not a recursively enumerable language.

UNIVERSAL TURING MACHINE

Motive of UTM

A single Turing machine has a capability of performing a function such as addition, multiplication etc.

For computing another function, other appropriate Turing machine is used. To do so, the machine has to be re-written accordingly.

Hence Turing proposed "Stored Program Computer" concept in 1936 that executes the program/instructions using the inputs, stored in the memory.

The instructions and inputs are stored on one or more tapes.

Concept of UTM

The universal Turing machine, T_{u} takes over the program and the input set to process the program.

The program and the inputs are encoded and stored on different tapes of a multi-tapeTuring machine.

The T_{u} thus takes up T, w where T is the special purpose Turing machine that passesthe program in the form of binary string, w is the data set that is to be processed by T .

Input to the \mathbf{T}_{u}

The universal Turing machine, T_{u} is always provided with the code for Transitions, $e(T)$ and code for input, $e(w)$ as

$$
\mathrm{TM}=\mathrm{e}(\mathrm{~T}) \mathrm{e}(\mathrm{w})
$$

For example, if the input data, w="baa", then

$$
e(w)=10001001001
$$

This e(w) will be appended to $e(T)$ of T_{u}.

Construction of T_{u}

As in the figure for universal Turing machine, there are three tapes controlled by a finite control component through heads for each tape.

Tape $-1 \Rightarrow$ Input tape and also serves as output tape. It contain $e(T) e(w)$.
Tape- $2 \Rightarrow$ Tape of the TM/Working tape during the simulation of TM
Tape $-3 \Rightarrow$ State of the TM, current state of the T in encoded form.

Operation of UTM

Theorm :(Lu is Recursively enumerable)
(To prove this Theorem it is necessary to construct a turning machine that accepts
Lu)

- UTM checks the input to verify whether the code for $\mathrm{TM}=<\mathrm{T}, \mathrm{w}>$ is a legitimate for some TM.
- If the input is not accepted, UTM halts with rejecting, w
- Initialize the second tape to have $\mathrm{e}(\mathrm{w})$, that is to have the input, w in encoded form. Place the code of the initial state on the third tape and move the head of the finite state control on the first cell of second tape.
- To simulate a move of the Turing machine, UTM searches for the transition $o^{i} 1 o^{j} 10^{k} 1 o^{1} 1 o^{m}$ on the first tape, with o^{i} (initial state/current state) on tape -3 and 0^{j} (input symbol to be processed) on tape- 2.
- The state transition is done by changing the tape -3 content as o^{k} as in the transition.
- Replace o^{j} by o^{1} on tape-2 to indicate the input change.
- Depending on $\mathrm{o}^{\mathrm{m}}[\mathrm{m}=1 \Rightarrow$ stop, $\mathrm{m}=2 \Rightarrow$ Left, $\mathrm{m}=3 \Rightarrow$ Right $]$, move the head on tape-2 to the position of the next 1 to the left/right/stop accordingly
- If TM has no transition, matching the simulated state and tape symbol, then no transition will be found. This happens when the TM stops also.
- If the TM, T enters halt (accepting state), then UTM accepts the input, w

Thus for every coded pair $<T, \mathrm{w}>$, UTM simulates T on w , if and only if T accepts the input string, w.

Thus U TM simulates M and accepts W.Thus Lu is recursively enumerable

Definition of Universal Language [L_{u}]

The universal language, L_{u} is the set of all binary strings $[\alpha]$, where α represents the ordered pair $<\mathrm{T}, \mathrm{w}>$ where
$\mathrm{T} \rightarrow$ Turing machine
$\mathrm{w} \rightarrow$ any input string accepted by T
It can also be represented as $\alpha=\mathrm{e}(\mathrm{T}) \mathrm{e}(\mathrm{w})$.

Theorem

L_{u} is the recursively enumerable but not recursive .

Proof

From the definition and operations of UTM, we know that L_{u} is recursively enumerable.
L_{u} accepts the string w if it is processed by the TM,T. Else, rejects „w" and the machine doesn"t halts forever.

To prove that L_{u} is not recursive, the proof can be done by contradiction. Let L_{u} is Turing decidable [recursive], and then by definitionacceptable.
L_{u} (complement of L_{u}) is Turing
We can show that $\overline{L_{u}}$ is Turing acceptable, that leads to L_{d} to be Turing acceptable. But we know that L_{d} is not Turing acceptable.

Hence L_{u} is not Turing decidable by proof by contradiction.

Proof on $\overline{L_{u}}$ is during acceptable $\Rightarrow L_{d}$ is Turing acceptable

Suppose "A" is the algorithm that recognizes L_{u}.
Then $\overline{L_{d}}$ is recognizes as follows. Given a string $\quad w \in(0,1)^{*}$ determined easily, the value of I such that $\mathrm{w}=\mathrm{w}_{\mathrm{i}}$.

Integer value, I in binary is the corresponding code for $\mathrm{TM}, \mathrm{T}_{\mathrm{i}}$. Provide $<\mathrm{T}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}>$ to the
algorithm A and accept, w if and only if T_{i} accepts w_{i}.
So the algorithm accepts w if and only if $w=w_{i}$ which is in $L\left(T_{i}\right)$.
This is the algorithm for L_{d}. Hence L_{u} is Recursively Enumerable but not recursive.

TRACTABLE AND INTERACTABLE PROBLEMS

Tractable Problems/Languages

The languages that can be recognized by a Turing machine in finite time and with reasonable space constraint is said to be tractable.

Example: If the language $\mathrm{L}_{1} \in$ Time (f), then L is tractable and is less complex in nature

Example: If $\mathrm{L}_{2} \notin$ Time (f), L2 is complex and cannot be tractable in limited time.
Tractable problems are those that can be solved in polynomial time period.

Intractable Problems

The languages that cannot be recognized by any Turing machine with reasonable space and time constraint is called intractable problems.

These problems cannot be solved in finite polynomial time. Even problems with moderate input size cannot achieve feasible solution

P AND NP PROBLEMS

These refer to how long it takes a program to run. Problems in class P can be solved with algorithms that run in polynomial time.
An algorithm that finds the smallest integer in an array. One way to do this is by iterating over all the integers of the array and keeping track of the smallest number you've seen up to that point. Every time you look at an element, you compare it to the current minimum, and if it's smaller, you update the minimum.
How long does this take? Let's say there are n elements in the array. For every element the algorithm has to perform a constant number of operations. Therefore we can say that the algorithm runs in $\mathrm{O}(\mathrm{n})$ time, or that the runtime is a linear function of how many elements are in the array. So this algorithm runs in linear time.
You can also have algorithms that run in quadratic time $\left(O\left(n^{\wedge} 2\right)\right)$, exponential time $\left(O\left(2^{\wedge} n\right)\right)$, or even logarithmic time $(\mathrm{O}(\log \mathrm{n})$). Binary search (on a balanced tree) runs in logarithmic time because the height of the binary search tree is a logarithmic function of the number of elements in the tree.

If the running time is some polynomial function of the size of the input, for instance if the algorithm runs in linear time or quadratic time or cubic time, then we say the algorithm runs in polynomial time and the problem it solves is in class \mathbf{P}.

NP

There are a lot of programs that don't (necessarily) run in polynomial time on a regular computer, but do run in polynomial time on a nondeterministic Turing machine. These programs solve problems in NP, which stands for nondeterministic polynomial time. A nondeterministic Turing machine can do everything a regular computer can and more. This means all problems in P are also in NP.

An equivalent way to define NP is by pointing to the problems that can be verified in polynomial time. This means there is not necessarily a polynomial-time way to find a solution, but once you have a solution it only takes polynomial time to verify that it is correct.
$\mathrm{P}=\mathrm{NP}$, which means any problem that can be verified in polynomial time can also be solved in polynomial time and vice versa. If they could prove this, it would revolutionize computer science because people would be able to construct faster algorithms for a lot of important problems.

NP-hard

Solve a problem by reducing it to a different problem. Reduce Problem B to Problem A if, given a solution to Problem A, It can easily construct a solution to Problem B. (In this case, "easily" means "in polynomial time.")

If a problem is NP-hard, this means, reduce any problem in NP to that problem. It can solve that problem, I can easily solve any problem in NP. If we could solve an NP-hard problem in polynomial time, this would prove $\mathrm{P}=\mathrm{NP}$.

NP-complete

A problem is $\mathbf{N P}$-complete if the problem is both

- NP-hard, and
- in NP.

A technical point: $\mathrm{O}(\mathrm{n})$ actually means the algorithm runs in asymptotically linear time, which means the time complexity approaches a line as n gets very large. Also, $\mathrm{O}(\mathrm{n})$ is technically an upper bound, so if the algorithm ran in sublinear time you could still say it's $O(n)$, even if that's not the best description of it.
** Note that if the input has many different parameters, like n and k , it might be polynomial in n and exponential in k

