
UNIT – 1 (8 Marks and 16 Marks)

1.Is AI is a science or is it engineering? Or neither or both? 

Explain. (AU-MAY 2012).

Human vs. Machine

Everyone knows that humans and machines are different. Machines are the creation of humans, and

they were created to make their work easier.

 Humans depend more and more  on machines  for  their  day-to-day things.  Machines  have

created a revolution, and no human can think of a life without machines. 

 A machine is only a device consisting of different parts, and is used for performing different

functions. They do not have life, as they are mechanical. On the other hand, humans are made

of flesh and blood; life is just not mechanical for humans.

 Humans have feelings  and emotions,  and they can express these emotions; happiness and

sorrow are part of one’s life. On the other hand, machines have no feelings and emotions.

They just work as per the details fed into their mechanical brain.

  Humans  have  the  capability  to  understand  situations,  and  behave  accordingly.  On  the

contrary, Machines do not have this capability.

 While humans behave according to their consciousness, machines perform as they are taught.

Humans perform activities as per their own intelligence. On the contrary, machines only have

an artificial intelligence.

 It is a man-made intelligence that the machines have. The brilliance of the intelligence of a

machine depends on the intelligence of the humans that created it.

 Another striking difference that can be seen is that humans can do anything original, and

machines cannot. Machines have limitations to their performance because they need humans

to guide them.
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 Humans can do anything original, and machines cannot.

 Humans  have  the  capability  to  understand  situations,  and  behave  accordingly.  On  the

contrary, machines do not have this capability.

  While humans behave as per their consciousness, machines just perform as they are taught.

2. Explain the schematic of AI’S agent performing action. (Dec-09, 12, 14, May-12).

3. Explain the role of an agent program. (Dec-09,16)

            Following diagram illustrates the agent’s action process, as specified by architecture. This can

also be termed as agent’s structure.

Fig: agent’s action process

  An agent function program is internally implemented as agent function.

    An agent program takes input as the current percept from the sensor and returns an action to

the effectors (actuators).

4. Discuss any 2 uninformed search methods with examples. (Dec-2009), explain

the  following  uninformed  search  strategies.  I)  IDDFS  AND  2)  Bidirectional

search. (May 2010); what is uninformed search and explain depth first  search

with example. (May-2013, Dec 2013 , may 2014; May 2015, Dec 2016)

              An Uninformed search is a group of wide range usage algorithms of the era. These

algorithms are brute force operations, and they don’t have extra information about the search space;

the only information they have is on how to traverse or visit the nodes in the tree. Thus uninformed
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search algorithms are also called blind search algorithms. The search algorithm produces the search

tree without using any domain knowledge, which is the brute force in nature. They are different from

informed search algorithms in a way that you check for a goal when a node is generated or expanded,

and they don’t have any background information on how to approach the goal.

 TYPES OF UNINFORMED SEARCH ALGORITHMS

 Breadth-First Search Algorithms

BFS is a search operation for finding the nodes in a tree. The algorithm works breadth wise and

traverses to find the desired node in a tree. It starts searching operation from the root nodes and

expands the successor nodes at that level before moving ahead and then moves along breadth wise for

further expansion.

 It occupies a lot of memory space, and time to execute when the solution is at the bottom or

end of the tree and uses the FIFO queue.

 Time Complexity of BFS is expressed as T (n) = 1+n2+n3+…….+ nd= O (nd) and;

 Space Complexity of BFS is O (nd).

 The breadth-first search algorithm is complete.

 The optimal solution is possible to obtain from BFS. 

 Depth First Search Algorithms

DFS is one of the recursive algorithms we know. It traverses the graph or a tree depth-wise. Thus it is

known to be a depth-first search algorithm as it derives its name from the way it functions. The DFS

uses the stack for its implementation. The process of search is similar to BFS. The only difference lies

in the expansion of nodes which is depth-wise in this case.
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 Unlike the BFS, the DFS requires very less space in the memory because of the way it stores

the nodes stack only on the path it explores depth-wise.

 In comparison to BFS, the execution time is also less if the expansion of nodes is correct. If

the path is not correct, then the recursion continues, and there is no guarantee that one may

find the solution. This may result in an infinite loop formation.

 The DFS is complete only with finite state space.

 Time Complexity is expressed as T(n) = 1+ n2+ n3+………+ nm=O(nm).

 The Space Complexity is expressed as O (bm).

 The DFS search algorithm is not optimal, and it may generate large steps and possibly high

cost to find the solution.

 Depth Limited Search Algorithm

The DLS algorithm is one of the uninformed strategies. A depth limited search is close to DFS to

some extent. It can find the solution to the demerit of DFS. The nodes at the depth may behave as if

no successor exists at the depth. Depth-limited search can be halted in two cases:

o SFV: The Standard failure value which tells that there is no solution to the problem.

o CFV: The Cutoff failure value tells that there is no solution within the given depth.

 The DLS is efficient in memory space utilization.

 Time Complexity is expressed as O(bℓ).

 Space Complexity is expressed as O(b×ℓ).

 It has the demerit of incompleteness. It is complete only if the solution is above the depth

limit.
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 Uniform-cost Search Algorithm

The UCS algorithm is used for visiting the weighted tree. The main goal of the uniform cost search is

to fetch a goal node and find the true path, including the cumulative cost. The following are the

properties of the UCS algorithm:

 The expansion takes place on the basis of cost from the root. The UCS is implemented using a

priority queue.

 The UCS does not care for the number of steps, and so it may end up an infinite loop.

 The uniform-cost search algorithm is known to be complete.

 Time Complexity can be expressed as O(b1 + [C*/ε])/

 Space Complexity is expressed as O(b1 + [C*/ε]).

 We can say that UCs is the optimal algorithm as it chooses the path with the lowest cost only.
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 Iterative deepening depth-first Search

This algorithm is a combination of BFS and DFS searching techniques. It is iterative in nature. The

best depth is found using it. The algorithm is set to search only at a certain depth. The depth keeps

increasing at each recursive step until it finds the goal node.

 The power of BFS and DFS combination is observed in this algorithm.

 When the search space is large, it proves itself, and the depth is not known.

 This algorithm has one demerit, and it is that it iterates all the previous steps.

 The algorithm is known to be complete only if the branching factor is known r finite.

 Time Complexity is expressed as O(bd).

 Space Complexity is expressed as O(bd).

 This algorithm is optimal.

 Bidirectional Search Algorithm

The Two way or Bidirectional search algorithm executes in a way that t has to run two searches

simultaneously one in a forward direction and the other in the backward direction. The search will

stop when the two simultaneous searches intersect each other to find the goal node. It is free to use

any search algorithm discussed above, like BFS, DFS, etc.

 Bidirectional search is quick and occupies less memory.

 The implementation is difficult, and the goal node should be known in advance to execute it.

 The Bidirectional Search algorithm is found to be complete and optimal.

 Time Complexity is expressed as O(bd).

 Space Complexity is expressed as O(bd).
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5. What is game and applications of game theory? (May-03)

    Game:

       The term game means a sort of conflict in which n individuals or groups participate

Game theory denotes games of strategy. Games are integral attribute of human beings. Games engage

the intellectual faculties of humans. If computers are to mimic people they should be able to play

games.

Applications of Game Theory

The following are just a few examples of game theory applications:

 Stock trades and the investors’ reactions and decisions against stock market developments and

the behaviors and decisions of other investors

 OPEC member countries’ decision to change the amount of oil extraction and sale and their

compliance or non-compliance with quota arrangements

 Corporate  behavior  regarding  product  pricing  in  monopoly  or  multilateral  competition

markets

 Animal  interaction  with  one  another  in  social  life  (hunting  or  sharing  achievements  or

supporting each other)

6. Explain the Mini-Max algorithm and how it is work for game tic-tac-toe. (dec-

03,04, May -09,10, 17 , 19)

 Mini-max  algorithm is  a  recursive  or  backtracking  algorithm which  is  used  in  decision-

making and game theory. It provides an optimal move for the player assuming that opponent is

also playing optimally.

 Mini-Max algorithm uses recursion to search through the game-tree.
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 Min-Max algorithm is mostly used for game playing in AI. Such as Chess, Checkers, tic-tac-

toe, go, and various tow-players game. This Algorithm computes the minimax decision for the

current state.

 In this algorithm two players play the game, one is called MAX and other is called MIN.

 Both the players fight it as the opponent player gets the minimum benefit while they get the

maximum benefit.

 Both Players of the game are opponent of each other, where MAX will select the maximized

value and MIN will select the minimized value.

 The minimax algorithm performs a depth-first  search algorithm for the exploration of the

complete game tree.

 The minimax algorithm proceeds all  the way down to the terminal node of the tree,  then

backtrack the tree as the recursion.

Pseudo-code for MinMax Algorithm:

function minimax(node, depth, maximizingPlayer) is  

if depth ==0 or node is a terminal node then  

return static evaluation of node  

  

if MaximizingPlayer then      // for Maximizer Player  

maxEva= -infinity            

 for each child of node do  

 eva= minimax(child, depth-1, false)  

maxEva= max(maxEva,eva)        //gives Maximum of the values  

return maxEva  

  

else                         // for Minimizer player  

 minEva= +infinity   

 for each child of node do  

 eva= minimax(child, depth-1, true)  

 minEva= min(minEva, eva)         //gives minimum of the values  

 return minEva  

Working of Min-Max Algorithm:

o The working of the minimax algorithm can be easily described using an example. Below we

have taken an example of game-tree which is representing the two-player game.
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o In this example, there are two players one is called Maximizer and other is called Minimizer.

o Maximizer will try to get the Maximum possible score, and Minimizer will try to get the

minimum possible score.

o This algorithm applies DFS, so in this game-tree, we have to go all the way through the leaves

to reach the terminal nodes.

o At the terminal  node,  the terminal  values  are  given so we will  compare  those value  and

backtrack the  tree  until  the initial  state  occurs.  Following are  the  main steps  involved in

solving the two-player game tree:

Step-1: In the first step, the algorithm generates the entire game-tree and applies the utility function

to get the utility values for the terminal states. In the below tree diagram, let's take A is the initial state

of the tree. Suppose maximizer takes first turn which has worst-case initial value =- infinity, and

minimizer will take next turn which has worst-case initial value = +infinity. 

Step 2: Now, first we find the utilities value for the Maximizer, its initial value is -∞, so we will

compare each value in terminal state with initial value of Maximizer and determines the higher nodes

values. It will find the maximum among the all.

o For node D         max(-1,- -∞) => max(-1,4)= 4

o For Node E         max(2, -∞) => max(2, 6)= 6

o For Node F         max(-3, -∞) => max(-3,-5) = -3

o For node G         max(0, -∞) = max(0, 7) = 7
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Step 3: In the next step, it's a turn for minimizer, so it will compare all nodes value with +∞, and will

find the 3rd layer node values.

o For node B= min(4,6) = 4

o For node C= min (-3, 7) = -3

Step 4: Now it's a turn for Maximizer, and it will again choose the maximum of all nodes value and

find the maximum value for the root node. In this game tree, there are only 4 layers, hence we reach

immediately to the root node, but in real games, there will be more than 4 layers.

o For node A max(4, -3)= 4
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Properties  of  Mini-Max

algorithm:

o Complete- Min-Max algorithm is

Complete. It will definitely find a

solution  (if  exist),  in  the  finite

search tree.

o Optimal- Min-Max  algorithm  is

optimal  if  both  opponents  are

playing optimally.

o Time complexity- As it performs

DFS  for  the  game-tree,  so  the

time  complexity  of  Min-Max

algorithm is O(bm),  where b is branching factor of the game-tree,  and m is the maximum

depth of the tree.

o Space Complexity- Space complexity of Mini-max algorithm is also similar to DFS which

is O(bm).

Limitation of the minimax Algorithm:

The main drawback of the minimax algorithm is that it gets really slow for complex games such as

Chess, go, etc. This type of games has a huge branching factor, and the player has lots of choices to

decide. This limitation of the minimax algorithm can be improved from alpha-beta pruning. 

Des cr ib ing  Minimax

The key to the Minimax algorithm is  a back and forth between the two players,  where

the player whose "turn it is" desires to pick the move with the maximum score. In turn,

the  scores  for  each  of  the  available  moves  are  determined  by  the  opposing  player

deciding which  of  its  available  moves  has  the  minimum score.  And  the  scores  for  the

opposing  players  moves  are  again  determined  by  the  turn-taking  player  trying  to

maximize its score and so on all the way down the move tree to an end state.

A description  for  the  algorithm,  assuming  X  is  the  "turn  taking  player,"  would  look

something like:

 If the game is over, return the score from X's perspective.

 Otherwise get a list of new game states for every possible move

 Create a scores list

 For each of these states add the minimax result of that state to the scores list

 If it's X's turn, return the maximum score from the scores list

 If it's O's turn, return the minimum score from the scores list
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You'll  notice  that  this  algorithm  is  recursive;  it  flips  back  and  forth  between  the

players  until  a  final  score  is  found.  Let’s  walk through the algorithm's  execution with

the  full  move  tree,  and  show  why,  algorithmically,  the  instant  winning  move  will  be

picked:

 It's  X's  turn  in  state  1.  X generates  the  states  2,  3,  and 4  and  calls  minimax  on

those states.

 State 2 pushes the score of +10 to state 1's  score list,  because the game is  in an

end state.

 State  3  and  4  are  not  in  end  states,  so  3  generates  states  5  and  6  and  calls

minimax  on  them,  while  state  4  generates  states  7  and  8  and  calls  minimax  on

them.

 State  5  pushes  a  score  of  -10  onto  state  3's  score  list,  while  the  same  happens

for state 7 which pushes a score of -10 onto state 4's score list.

 State  6  and  8  generate  the  only  available  moves,  which  are  end  states,  and  so

both of them add the score of +10 to the move lists of states 3 and 4.

 Because  it  is  O's  turn  in  both  state  3  and  4,  O  will  seek  to  find  the  minimum

score,  and given the choice between -10 and +10, both states  3 and 4 will  yield

-10.

 Finally  the  score  list  for  states  2,  3,  and 4 are  populated  with  +10,  -10 and -10

respectively,  and  state  1  seeking  to  maximize  the  score  will  chose  the  winning

move with score +10, state 2.

That  is  certainly  a  lot  to  take  in.  And  that  is  why  we  have  a  computer  execute  this

algorithm.
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7. Explain Alpha-Beta Pruning using example. (Dec—04,10, May-10,17)

Alpha-Beta Pruning

o Alpha-beta pruning is  a modified version of the minimax algorithm. It  is an optimization

technique for the minimax algorithm.

o As we have seen in the minimax search algorithm that the number of game states it has to

examine are exponential in depth of the tree. Since we cannot eliminate the exponent, but we

can cut it to half. Hence there is a technique by which without checking each node of the

game tree we can compute the correct minimax decision, and this technique is called pruning.

This  involves  two  threshold  parameter  Alpha  and  beta  for  future  expansion,  so  it  is

called alpha-beta pruning. It is also called as Alpha-Beta Algorithm.

o Alpha-beta pruning can be applied at any depth of a tree, and sometimes it not only prune the

tree leaves but also entire sub-tree.

o The two-parameter can be defined as:

a. Alpha: The best (highest-value) choice we have found so far at any point along the

path of Maximizer. The initial value of alpha is -∞.

b. Beta: The best (lowest-value) choice we have found so far at any point along the path

of Minimizer. The initial value of beta is +∞.

o The  Alpha-beta  pruning  to  a  standard  minimax  algorithm returns  the  same  move  as  the

standard algorithm does, but it removes all the nodes which are not really affecting the final

decision but making algorithm slow. Hence by pruning these nodes, it makes the algorithm

fast.

Condition for Alpha-beta pruning:

The main condition which required for alpha-beta pruning is:    α>=β  

Key points about alpha-beta pruning:

o The Max player will only update the value of alpha.

o The Min player will only update the value of beta.

o While backtracking the tree, the node values will be passed to upper nodes instead of values

of alpha and beta.

o We will only pass the alpha, beta values to the child nodes.

Working of Alpha-Beta Pruning:

Let's take an example of two-player search tree to understand the working of Alpha-beta pruning

Step 1: At the first step the, Max player will start first move from node A where α= -∞ and β= +∞,

these value of alpha and beta passed down to node B where again α= -∞ and β= +∞, and Node B

passes the same value to its child D.
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Step 2: At Node D, the value of α will be calculated as its turn for Max. The value of α is compared

with firstly 2 and then 3, and the max (2, 3) = 3 will be the value of α at node D and node value will

also 3.

Step 3: Now algorithms backtrack to node B, where the value of β will change as this is a turn of

Min, Now β= +∞ will compare with the available subsequent nodes value, i.e. min (∞, 3) = 3, hence

at node B now α= -∞, and β= 3. In the next step, algorithm traverse the next successor of Node B

which is node E, and the values of α= -∞, and β= 3 will also be passed.

Step 4: At node E, Max will take its turn, and the value of alpha will change. The current value of

alpha will be compared with 5, so max (-∞, 5) = 5, hence at node E α= 5 and β= 3, where α>=β, so

the right successor of E will be pruned, and algorithm will not traverse it, and the value at node E will

be 5.

Step 5: At next step, algorithm again backtrack the tree, from node B to node A. At node A, the value

of alpha will be changed the maximum available value is 3 as max (-∞, 3)= 3, and β= +∞, these two

values now passes to right successor of A which is Node C.

At node C, α=3 and β= +∞, and the same values will be passed on to node F.

Step 6: At node F, again the value of α will be compared with left child which is 0, and max(3,0)= 3,

and then compared with right child which is 1, and max(3,1)= 3 still α remains 3, but the node value

of F will become 1.

Step 7: Node F returns the node value 1 to node C, at C α= 3 and β= +∞, here the value of beta will

be changed, it will compare with 1 so min (∞, 1) = 1. Now at C, α=3 and β= 1, and again it satisfies

the condition α>=β, so the next child of C which is G will be pruned, and the algorithm will not

compute the entire sub-tree G.

Step 8: C now returns the value of 1 to A here the best value for A is max (3, 1) = 3. Following is the 

final game tree which is the showing the nodes which are computed and nodes which has never 

computed. Hence the optimal value for the maximizer is 3 for this example.
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Move Ordering in Alpha-Beta pruning:

The effectiveness  of  alpha-beta pruning is  highly dependent  on the order in  which each node is

examined. Move order is an important aspect of alpha-beta pruning. It can be of two types:

o Worst  ordering: In  some cases,  alpha-beta  pruning algorithm does  not  prune any of  the

leaves of the tree, and works exactly as minimax algorithm. In this case, it also consumes

more time because of alpha-beta factors, such a move of pruning is called worst ordering. In

this case, the best move occurs on the right side of the tree. The time complexity for such an

order is O(bm).

o Ideal  ordering: The  ideal  ordering  for  alpha-beta  pruning  occurs  when  lots  of  pruning

happens in the tree, and best moves occur at the left side of the tree. We apply DFS hence it

first search left of the tree and go deep twice as minimax algorithm in the same amount of

time. Complexity in ideal ordering is O (bm/2).

8. Explain heuristic search with an example. Explain A* search and give

the proof of optimality of A*.

Informed Search Algorithms

 Informed search algorithm contains an array of knowledge such as how far we are from the

goal, path cost, how to reach to goal node, etc. This knowledge help agents to explore less to the

search space and find more efficiently the goal node.

 The informed search algorithm is more useful for large search space. Informed search algorithm

uses the idea of heuristic, so it is also called Heuristic search.

Heuristics function:    Heuristic is a function which is used in Informed Search, and it finds the most

promising path. It takes the current state of the agent as its input and produces the estimation of how

close agent is from the goal. The heuristic method, however, might not always give the best solution,

but it guaranteed to find a good solution in reasonable time. Heuristic function estimates how close a

state is to the goal. It is represented by h(n), and it calculates the cost of an optimal path between the

pair of states. The value of the heuristic function is always positive.

Admissibility of the heuristic function is given as:

h (n) <= h*(n)
          Here h (n) is heuristic cost, and h*(n) is the estimated cost. Hence heuristic cost should be

less than or equal to the estimated cost.

Pure Heuristic Search:

      Pure heuristic search is the simplest form of heuristic search algorithms. It expands nodes based

on their heuristic value h(n). It maintains two lists, OPEN and CLOSED list. In the CLOSED list, it

places those nodes which have already expanded and in the OPEN list, it places nodes which have yet

not been expanded. On each iteration, each node n with the lowest heuristic value is expanded and

generates all its successors and n is placed to the closed list. The algorithm continues unit a goal state

is found.
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In the informed search we will discuss two main algorithms which are given below:

o Best First Search Algorithm(Greedy search)

o A* Search Algorithm

 Best-first Search Algorithm (Greedy Search):  

          Greedy best-first search algorithm always selects the path which appears best at that moment. It

is  the  combination  of  depth-first  search  and breadth-first  search  algorithms.  It  uses  the  heuristic

function and search. Best-first search allows us to take the advantages of both algorithms. With the

help of best-first search, at each step, we can choose the most promising node. In the best first search

algorithm, we expand the node which is closest to the goal node and the closest cost is estimated by

heuristic function, i.e.

                                        f (n)= g(n).   

           Where, h(n)= estimated cost from node n to the goal.

The greedy best first algorithm is implemented by the priority queue.

Best first search algorithm:

o Step 1: Place the starting node into the OPEN list.

o Step 2: If the OPEN list is empty, Stop and return failure.

o Step 3: Remove the node n, from the OPEN list which has the lowest value of h(n), and

places it in the CLOSED list.

o Step 4: Expand the node n, and generate the successors of node n.

o Step 5: Check each successor of node n, and find whether any node is a goal node or not. If

any successor node is goal node, then return success and terminate the search, else proceed to

Step 6.

o Step 6: For  each successor  node,  algorithm checks for  evaluation function f(n),  and then

check if the node has been in either OPEN or CLOSED list. If the node has not been in both

list, then add it to the OPEN list.

o Step 7: Return to Step 2.

Advantages:

o Best first search can switch between BFS and DFS by gaining the advantages of both the

algorithms.

o This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:

o It can behave as an unguided depth-first search in the worst case scenario.

o It can get stuck in a loop as DFS.

o This algorithm is not optimal.

Example:
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o Consider the below search problem, and we will traverse it using greedy best-first search. At

each iteration, each node is expanded using evaluation function f(n)=h(n) , which is given in

the below table.

In this search example, we are using two lists which are OPEN and CLOSED Lists. Following are

the iteration for traversing the above example.

Expand the nodes of S and put in the CLOSED list

Initialization: Open [A, B], Closed [S]

Iteration 1: Open [A], Closed [S, B]
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Iteration2: Open[E,F,A],Closed[S,B]

                 : Open [E, A], Closed [S, B, F]

Iteration 3: Open [I, G, E, A], Closed [S, B, F]

                  : Open [I, E, A], Closed [S, B, F, G]

Hence the final solution path will be: S----> B----->F----> G

Time Space Complexity: The worst case space complexity of Greedy
best first search is O(bm). Where, m is the maximum depth of the
search space.

Complete: Greedy best-first search is also incomplete, even if the given state space is finite.

Optimal: Greedy best first search algorithm is not optimal.

2.) A* Search Algorithm:

      A* search is the most commonly known form of best-first search. It uses heuristic function h(n),

and cost to reach the node n from the start state g(n). It has combined features of UCS and greedy

best-first search, by which it solve the problem efficiently. A* search algorithm finds the shortest path

through the search space using the heuristic function. This search algorithm expands less search tree

and provides  optimal  result  faster.  A* algorithm is  similar  to  UCS except  that  it  uses  g(n)+h(n)

instead of g(n). In A* search algorithm, we use search heuristic as well as the cost to reach the node.

Hence we can combine both costs as following, and this sum is called as a fitness number.

Complexity: The worst case time complexity of Greedy best first search is O(bm).

Algorithm of A* search:

Step1: Place the starting node in the OPEN list.

Step 2: Check if the OPEN list is empty or not, if the list is empty then return failure and stops.

Step 3: Select the node from the OPEN list which has the smallest value of evaluation function (g+h),

if node n is goal node then return success and stop, otherwise

Step 4: Expand node n and generate all of its successors, and put n into the closed list. For each

successor  n',  check  whether  n'  is  already  in  the  OPEN  or  CLOSED  list,  if  not  then  compute

evaluation function for n' and place into Open list.
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Step 5: Else if node n' is already in OPEN and CLOSED, then it should be attached to the back

pointer which reflects the lowest g(n') value.

Step 6: Return to Step 2.

Advantages:

o A* search algorithm is the best algorithm than other search algorithms.

o A* search algorithm is optimal and complete.

o This algorithm can solve very complex problems.

Disadvantages:

o It  does  not  always  produce  the  shortest  path  as  it  mostly  based  on  heuristics  and

approximation.

o A* search algorithm has some complexity issues.

o The main drawback of  A* is  memory requirement as  it  keeps  all  generated nodes in  the

memory, so it is not practical for various large-scale problems.

Points to remember:

o A* algorithm returns the path which occurred first, and it does not search for all remaining

paths.

o The efficiency of A* algorithm depends on the quality of heuristic.

o A* algorithm expands all nodes which satisfy the condition f(n)<="" li="">

Complete: A* algorithm is complete as long as:

o Branching factor is finite.

o Cost at every action is fixed.

Optimal: A* search algorithm is optimal if it follows below two conditions:

o Admissible: the first condition requires for optimality is that h(n) should be an admissible

heuristic for A* tree search. An admissible heuristic is optimistic in nature.

o Consistency: Second required condition is consistency for only A* graph-search.

If the heuristic function is admissible, then A* tree search will always find the least cost path.

Time Complexity: The time complexity of A* search algorithm depends on heuristic function, and

the number of nodes expanded is exponential to the depth of solution d. So the time complexity is

O(b^d), where b is the branching factor.

Space Complexity: The space complexity of A* search algorithm is O(b^d)

9. Explain  the  approaches  for  solving  tree  structured  constraints

satisfaction problem with suitable examples.
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Constraint Satisfaction Problems in Artificial Intelligence

        This section examines the constraint optimization methodology, another form or real concern

method. By its name, constraints fulfillment implies that such an issue must be solved while adhering

to a set of restrictions or guidelines. Whenever a problem is actually variables comply with stringent

conditions of principles, it is said to have been addressed using the solving multi - objective method.

Wow what a method results in a study sought to achieve of the intricacy and organization of both the

issue.

Three factors affect restriction compliance, particularly regarding

o It refers to a group of parameters, or X.

o D: The variables  are contained within a  collection several  domain.  Every variables  has  a

distinct scope.

o C: It is a set of restrictions that the collection of parameters must abide by.

        In constraint satisfaction, domains are the areas wherein parameters were located after the

restrictions that are particular to the task. Those three components make up a constraint satisfaction

technique  in  its  entirety.  The  pair  "scope,  rel"  makes  up  the  number  of  something  like  the

requirement. The scope is a tuple of variables that contribute to the restriction, as well as rel is indeed

a relationship that contains a list of possible solutions for the parameters should assume in order to

meet the restrictions of something like the issue.

Issues with Contains a certain amount Solved

For a constraint satisfaction problem (CSP), the following conditions must be met:

o States area

o Fundamental idea while behind remedy.

The definition of a state in phase space involves giving values to any or all of the parameters, like as

X1 = v1, X2 = v2, etc.

There are 3 methods to economically beneficial to something like a parameter:

1. Consistent or Legal Assignment: A task is referred to as consistent or legal if it complies with

all laws and regulations.

2. Complete Assignment: An assignment in which each variable has a number associated to it

and that the CSP solution is continuous. One such task is referred to as a completed task.

3. A partial assignment is one that just gives some of the variables values. Projects of this nature

are referred to as incomplete assignment.

Domain Categories within CSP

The parameters utilize one of the two types of domains listed below:

o Discrete Domain: This limitless area allows for the existence of a single state with numerous

variables. For instance, every parameter may receive a endless number of beginning states.

o It is a finite domain with continuous phases that really can describe just one area for just one

particular variable. Another name for it is constant area.
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Types of Constraints in CSP

Basically, there are three different categories of limitations in regard towards the parameters:

o Unary restrictions are the easiest kind of restrictions because they only limit the value of one

variable.

o Binary resource limits: These restrictions connect two parameters. A value between x1 and x3

can be found in a variable named x2.

o Global Resource limits: This kind of restriction includes a unrestricted amount of variables.

The main kinds of restrictions are resolved using certain kinds of resolution methodologies:

o In linear programming, when every parameter carrying an integer value only occurs in linear

equation, linear constraints are frequently utilized.

o Non-linear Constraints: With non-linear programming, when each variable (an integer value)

exists in a non-linear form, several types of restrictions were utilized.

UNIT – 2 (8 Marks and 16 Marks)

1. How to  handle  uncertain  knowledge  with  example?  And  How  to  represent

knowledge in an uncertain domain? (Dec- 2013) and Define uncertain knowledge,

prior probability and conditional probability. State the Baye’s theorem. How it is

useful for decision making under uncertainty? (May- 2014)    

PROBABILISTIC REASONING 

Uncertainty  :  

Till now, we have learned knowledge representation using first-order logic and propositional logic

with certainty, which means we were sure about the predicates. With this knowledge representation,

we might write A→B, which means if A is true then B is true, but consider a situation where we are

not sure about whether A is true or not then we cannot express this statement, this situation is called

uncertainty. So to represent uncertain knowledge, where we are not sure about the predicates, we need

uncertain reasoning or probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to occur in the real world.

1. Information occurred from unreliable sources.

2. Experimental Errors

3. Equipment fault

4. Temperature variation

5. Climate change.
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Probabilistic reasoning:

Probabilistic  reasoning  is  a  way  of  knowledge  representation  where  we  apply  the  concept  of

probability  to  indicate  the  uncertainty  in  knowledge.  In  probabilistic  reasoning,  we  combine

probability theory with logic to handle the uncertainty.

 We  use  probability  in  probabilistic  reasoning  because  it  provides  a  way  to  handle  the

uncertainty that is the result of someone's laziness and ignorance.

 In  the  real  world,  there  are  lots  of  scenarios,  where  the  certainty  of  something  is  not

confirmed, such as "It will rain today," "behavior of someone for some situations," "A match

between two teams or two players." 

 These are probable sentences for which we can assume that it will happen but not sure about

it, so here we use probabilistic reasoning.

Need of probabilistic reasoning in AI:

o When there are unpredictable outcomes.

o When specifications or possibilities of predicates becomes too large to handle.

o When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge:

o Bayes' rule

o Bayesian Statistics

As probabilistic reasoning uses probability and related terms, so before understanding probabilistic

reasoning, let's understand some common terms:

Probability: Probability  can be defined as  a  chance that  an uncertain  event  will  occur.  It  is  the

numerical measure of the likelihood that an event will occur. The value of probability always remains

between 0 and 1 that represent ideal uncertainties.

            0 ≤ P(A) ≤ 1,   where P(A) is the probability of an event A.  

P(A) = 0,  indicates total uncertainty in an event A.   

            P(A) =1, indicates total certainty in an event A.    

We can find the probability of an uncertain event by using the below formula.

o P(¬A) = probability of a not happening event.

o P(¬A) + P(A) = 1.

Event: Each possible outcome of a variable is called an event.

Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects in the real world.

Prior probability: The prior probability of an event is probability computed before observing new

information.
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Posterior Probability: The probability that is calculated after all evidence or information has taken

into account. It is a combination of prior probability and new information.

Conditional probability:

Conditional  probability  is  a  probability  of  occurring  an  event  when  another  event  has  already

happened.

     Let's  suppose,  we want  to  calculate  the  event  A when event  B has  already  occurred,  "the

probability of A under the conditions of B", it can be written as:

               Where P (A/ B) = Joint probability of a and B

                           P (B) = Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be given as:

It can be explained by using the below Venn diagram, where B is occurred event, so sample space

will be reduced to set B, and now we can only calculate event A when event B is already occurred by

dividing the probability of P(A⋀B) by P( B ).

Bayes' theorem in Artificial intelligence

Bayes' theorem:

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which determines

the probability of an event with uncertain knowledge. In probability theory, it relates the conditional

probability and marginal probabilities of two random events. Baye’s theorem was named after the

British mathematician Thomas Bayes. The Bayesian inference is an application of Baye’s theorem,

which is fundamental to Bayesian statistics. It is a way to calculate the value of P(B|A) with the

knowledge of P(A|B).

 Bayes'  theorem  allows  updating  the  probability  prediction  of  an  event  by  observing  new

information of the real world.

 Example: If cancer corresponds to one's age then by using Bayes' theorem, we can determine the

probability of cancer more accurately with the help of age.

 Bayes' theorem can be derived using product rule and conditional probability of event A with

known event B:  As from product rule we can write:
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The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic of most

modern AI systems for probabilistic inference.

It shows the simple relationship between joint and conditional probabilities. Here,

 P (A|B) is known as posterior, which we need to calculate, and it will be read as Probability

of hypothesis A when we have occurred an evidence B.

 P (B|A) is  called  the  likelihood,  in  which  we  consider  that  hypothesis  is  true,  then  we

calculate the probability of evidence.

 P(A) is  called  the prior  probability,  probability  of  hypothesis  before  considering  the

evidence

 P (B) is called marginal probability, pure probability of  evidence.

In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes' rule can be

written as:

Where A1, A2, A3,........, An is a set of mutually exclusive and exhaustive events.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). This is

very useful in cases where we have a good probability of these three terms and want to determine the

fourth one. Suppose we want to perceive the effect of some unknown cause, and want to compute that

cause, then the Bayes' rule becomes:
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Application of Bayes' theorem:

o It is used to calculate the next step of the robot when the already executed step is given.

o Bayes' theorem is helpful in weather forecasting.

o It can solve the Monty Hall problem.

2. Discuss about Bayesian theory and Bayesian network. (Dec 2017)

Bayesian network

o "A Bayesian network is a probabilistic graphical model which represents a set of variables and

their conditional dependencies using a directed acyclic graph."

o It is also called a Bayes network, belief network, decision network, or Bayesian model.

o Bayesian  networks  are  probabilistic,  because  these  networks  are  built  from a probability

distribution, and also use probability theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to represent the relationship between multiple

events,  we need  a  Bayesian  network.  It  can  also  be  used  in  various  tasks  including prediction,

anomaly  detection,  diagnostics,  automated  insight,  reasoning,  time  series  prediction,

and decision making under uncertainty.

 Bayesian Network can be used for building models from data and experts opinions, and it consists

of two parts:

o Directed Acyclic Graph

o Table of conditional probabilities.

The  generalized  form  of  Bayesian  network  that  represents  and  solve  decision  problems  under

uncertain knowledge is known as an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

o   Each node corresponds to the random variables, and a variable can be continuous or discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities between

random variables.  These directed links  or  arrows connect  the pair  of  nodes in  the graph.

These  links  represent  that  one  node directly  influence  the  other  node,  and if  there  is  no

directed link that means that nodes are independent with each other

o In the above diagram, A, B, C, and D are random variables represented by the nodes of

the network graph.

o If we are considering node B, which is connected with node A by a directed arrow,

then node A is called the parent of Node B.

o Node C is independent of node A.

The Bayesian network has mainly two components:

o Causal Component

o Actual numbers
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Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), which

determines the effect  of the parent on that  node.  Bayesian network is  based on Joint  probability

distribution and conditional probability. So let's first understand the joint probability distribution:

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, x2, x3..

xn, are known as Joint probability distribution.

P[x1,  x2,  x3,.....,  xn],  it  can  be  written  as  the  following  way  in  terms  of  the  joint  probability

distribution.

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

              P (Xi|Xi-1,........., X1) = P(Xi |Parents(Xi ))

3. Explain about Dempster shafer theory. (May- 2017)

Dempster – Shafer Theory (DST)

 

o DST is a mathematical theory of evidence based on belief functions and plausible reasoning.

It is used to combine separate pieces of information (evidence) to calculate the probability of

an event.

o DST  offers  an  alternative  to  traditional  probabilistic  theory  for  the  mathematical

representation of uncertainty.

o DST can be regarded as, a more general approach to represent uncertainty than the Bayesian

approach. Bayesian methods are sometimes inappropriate

Example:

 Let A represent  the  proposition "Moore  is  attractive".  Then  the  axioms  of  probability  insist

that P(A) + P(¬A) = 1. Now suppose that Andrew does not even know who "Moore" is, then Also, it

is not fair  to say that he disbelieves the proposition.  It  would therefore be meaningful to denote

Andrew's belief B of B(A) and B(¬A) as both being 0.

 

Dempster-Shafer Model
The idea is    to    allocate   a number between 0 and 1 to indicate a degree of belief on a proposal as

in the probability framework. However,  it  is  not  considered a probability but  a belief  mass.  The

distribution of masses is called basic belief assignment.

            In other words, in this formalism a degree of belief (referred as  mass) is represented as

a belief function rather than a Bayesian probability distribution.

Example: Belief assignment 
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Suppose a system has five members, say five independent states, and exactly one of which is actual.

If the original set is called S, | S | = 5, then the set of all subsets (the power set) is called 2S. If each

possible  subset  as  a  binary  vector  (describing  any  member  is  present  or  not  by  writing 1 or 0 ),

then 25 subsets are possible, ranging from the empty subset ( 0, 0, 0, 0, 0 ) to the "everything" subset (

1, 1, 1, 1, 1 ).

 

The "empty" subset represents a "contradiction", which is not true in any state, and is thus assigned a

mass of one; The remaining masses are normalized so that their total is 1. The "everything" subset is

labeled as "unknown"; it represents the state where all elements are present one , in the sense that you

cannot tell which is actual.

 

Belief and Plausibility

 

Shafer's framework allows for belief about propositions to be represented as intervals, bounded by

two values, belief (or support) and plausibility:

                                 belief ≤ plausibility

Belief in a hypothesis is constituted by the sum of the masses of all sets enclosed by it (i.e. the sum of

the masses of all subsets of the hypothesis). It is the amount of belief that directly supports a given

hypothesis at least in part, forming a lower bound.

Plausibility is 1 minus the sum of the masses of all sets whose intersection with the hypothesis is

empty. It is an upper bound on the possibility that the hypothesis could possibly happen, up to that

value, because there is only so much evidence that contradicts that hypothesis.

 

Example:

A proposition say  "the cat in the box is dead." Suppose we have belief of 0.5 and plausibility of

0.8 for the proposition.

For example,

 Suppose we have a belief of 0.5 for a proposition, say "the cat in the box is dead." This means that

we have evidence that allows us to state strongly that the proposition is true with a confidence of 0.5.

However, the evidence contrary to that hypothesis (i.e. "the cat is alive") only has a confidence of 0.2.

The remaining mass of 0.3 (the gap between the 0.5 supporting evidence on the one hand, and the 0.2

contrary evidence on the other) is "indeterminate," meaning that the cat could either be dead or alive.

This interval represents the level of uncertainty based on the evidence in the system.
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The "neither"  hypothesis  is  set  to  zero by definition (it  corresponds to  "no solution").  The

orthogonal hypotheses "Alive" and "Dead" have probabilities of 0.2 and 0.5,  respectively.

This could correspond to "Live/Dead Cat Detector" signals, which have respective reliabilities

of 0.2 and 0.5. 

Finally, the all-encompassing "Either" hypothesis (which simply acknowledges there is a cat in

the box) picks up the slack so that the sum of the masses is 1. The belief for the "Alive" and

"Dead" hypotheses matches their corresponding masses because they have no subsets; belief

for "Either" consists of the sum of all three masses (Either, Alive, and Dead) because "Alive"

and "Dead" are each subsets of "Either". 

The "Alive" plausibility is 1 − m (Dead): 0.5 and the "Dead" plausibility is 1 − m (Alive): 0.8.

In other  way,  the  "Alive"  plausibility  is m(Alive)  + m(Either)  and the  "Dead"  plausibility

is m(Dead) + m(Either). 

Finally,  the  "Either"  plausibility  sums m(Alive) + m(Dead) + m(Either).  The  universal

hypothesis ("Either") will always have 100% belief and plausibility—it acts as a checksum of

sorts.

Plausibility  in  K: It  is  the  sum  of  masses  of  set  that  intersects  with  K. 

i.e; Pl(K) = m(a) + m(b) + m(c) + m(a, b) + m(b, c) + m(a, c) + m(a, b, c) 

Characteristics of Dempster Shafer Theory:         
 It will ignorance part such that probability of all events aggregate to 1.

 Ignorance is reduced in this theory by adding more and more evidences.

 Combination rule is used to combine various types of possibilities.

Advantages:         

 As we add more information, uncertainty interval reduces.

 DST has much lower level of ignorance.

 Diagnose hierarchies can be represented using this.

 Person dealing with such problems is free to think about evidences.

Disadvantages:         

 In this, computation effort is high, as we have to deal with 2n of sets.
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4. Explain about the exact inference in Bayesian networks. (May- 2015)
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UNIT – 3 (8 Marks and 16 Marks)

1. Explain the types of learning in machine learning.

Types of Machine Learning

      Machine learning is a subset of AI, which enables the machine to automatically learn from data,

improve performance from past experiences, and make predictions.  Machine learning contains a set

of algorithms that work on a huge amount of data. Data is fed to these algorithms to train them, and

on the basis of training, they build the model & perform a specific task.

These  ML algorithms  help  to  solve  different  business  problems  like  Regression,  Classification,

Forecasting, Clustering, and Associations, etc.

Based on the methods and way of learning, machine learning is divided into mainly four types, which

are:

1. Supervised Machine Learning

2. Unsupervised Machine Learning

3. Semi-Supervised Machine Learning

4. Reinforcement Learning

Supervised Machine Learning

               Supervised machine learning is based on supervision. It means in the supervised learning

technique, we train the machines using the "labelled" dataset, and based on the training, the machine

predicts the output. Here, the labelled data specifies that some of the inputs are already mapped to the

output. More preciously, we can say; first, we train the machine with the input and corresponding

output, and then we ask the machine to predict the output using the test dataset.
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    Example: Suppose we have an input dataset of cats and dog images. So, first, we will provide

the training to the machine to understand the images, such as the shape & size of the tail of cat and

dog, Shape of eyes, colour, height (dogs are taller, cats are smaller), etc. After completion of training,

we input the picture of a cat and ask the machine to identify the object and predict the output. Now,

the machine is well trained, so it will check all the features of the object, such as height, shape, color,

eyes, ears, tail, etc., and find that it's a cat. So, it will put it in the Cat category. This is the process of

how the machine identifies the objects in Supervised Learning.

     The main goal of the supervised learning technique is to map the input variable(x) with the output

variable(y). Some  real-world  applications  of  supervised  learning  are Risk  Assessment,  Fraud

Detection, Spam filtering, etc.

Supervised machine learning can be classified into two types  of  problems,  which are given

below:

o Classification

o Regression

a) Classification

Classification algorithms are used to solve the classification problems in which the output variable is

categorical, such as "Yes" or No, Male or Female, Red or Blue, etc. The classification algorithms

predict the categories present in the dataset. Some real-world examples of classification algorithms

are Spam Detection, Email filtering, etc.

Some popular classification algorithms are given below:

o Random Forest Algorithm

o Decision Tree Algorithm

o Logistic Regression Algorithm

o Support Vector Machine Algorithm

b) Regression

Regression algorithms are used to solve regression problems in which there is a linear relationship

between input and output variables. These are used to predict continuous output variables, such as

market trends, weather prediction, etc.

Some popular Regression algorithms are given below:

o Simple Linear Regression Algorithm

o Multivariate Regression Algorithm

o Decision Tree Algorithm

o Lasso Regression

Advantages:

o Since supervised learning work with the labelled dataset so we can have an exact idea about

the classes of objects.

o These algorithms are helpful in predicting the output on the basis of prior experience.
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Disadvantages:

o These algorithms are not able to solve complex tasks.

o It may predict the wrong output if the test data is different from the training data.

o It requires lots of computational time to train the algorithm.

Applications of Supervised Learning

Some common applications of Supervised Learning are given below:

oImageSegmentation

oMedicalDiagnosis

oFraud Detection 

oSpam detection Speech Recognition 

2. Unsupervised Machine Learning

                  Unsupervised learning is different from the Supervised learning technique; as its name

suggests, there is no need for supervision. It means, in unsupervised machine learning, the machine is

trained using the unlabeled dataset, and the machine predicts the output without any supervision. In

unsupervised learning, the models are trained with the data that is neither classified nor labelled, and

the model acts on that data without any supervision.

     Unsupervised Learning can be further classified into two types, which are given below:

o Clustering

o Association

Advantages:

o These algorithms can be used for complicated tasks compared to the supervised ones because

these algorithms work on the unlabeled dataset.

o Unsupervised algorithms are preferable for various tasks as getting the unlabeled dataset is

easier as compared to the labelled dataset.

Disadvantages:

o The output of an unsupervised algorithm can be less accurate as the dataset is not labelled, and

algorithms are not trained with the exact output in prior.

o Working with Unsupervised learning is more difficult as it works with the unlabelled dataset

that does not map with the output.

Applications of Unsupervised Learning

Network Analysis

Recommendation Systems

2. Explain  in  details  about  regression  models-  linear regression

models?
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Linear Regression in Machine Learning

 Linear regression is one of the easiest and most popular Machine Learning algorithms. It is a

statistical method that is used for predictive analysis. Linear regression makes predictions for

continuous/real or numeric variables such as sales, salary, age, product price, etc.

 Linear regression algorithm shows a linear relationship between a dependent (y) and one or

more  independent  (y)  variables,  hence  called  as  linear  regression.  Since  linear  regression

shows the linear relationship, which means it finds how the value of the dependent variable is

changing according to the value of the independent variable.

 The  linear  regression  model  provides  a  sloped  straight  line  representing  the  relationship

between the variables. Consider the below image:

y= a0+a1x+ ε
Here,

Y= Dependent Variable (Target Variable)

X= Independent Variable (predictor Variable)

a0= intercept of the line (Gives an additional degree of freedom)

a1 = Linear regression coefficient (scale factor to each input value).

ε = random error

      The values for x and y variables are training datasets for Linear Regression model representation.

Types of Linear Regression

Linear regression can be further divided into two types of the algorithm:
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o SimpleLinearRegression  :

If a single independent variable is used to predict the value of a numerical dependent variable,

then such a Linear Regression algorithm is called Simple Linear Regression.

o MultipleLinearregression  :

If more than one independent variable is used to predict the value of a numerical dependent

variable, then such a Linear Regression algorithm is called Multiple Linear Regression.

Linear Regression Line

A linear line showing the relationship between the dependent and independent variables is called

a regression line. A regression line can show two types of relationship:

o PositiveLinearRelationship:

If the dependent variable increases on the Y-axis and independent variable increases on X-

axis, then such a relationship is termed as a Positive linear relationship.

o NegativeLinearRelationship:

If the dependent variable decreases on the Y-axis and independent variable increases on the X-

axis, then such a relationship is called a negative linear relationship.

Finding the best fit line:

When working with linear regression, our main goal is to find the best fit line that means the error

between predicted values and actual values should be minimized. The best fit line will have the least

error. The different values for weights or the coefficient of lines (a0,  a1) gives a different line of

regression, so we need to calculate the best values for a0 and a1 to find the best fit line, so to calculate

this we use cost function.

Cost function-

o The different  values  for  weights  or  coefficient  of  lines  (a0,  a1)  gives  the different  line  of

regression, and the cost function is used to estimate the values of the coefficient for the best fit

line.

o Cost  function  optimizes  the  regression  coefficients  or  weights.  It  measures  how a  linear

regression model is performing.

o We can use the cost function to find the accuracy of the mapping function, which maps the

input variable to the output variable.  This mapping function is  also known as Hypothesis

function.

For Linear Regression, we use the Mean Squared Error (MSE) cost function, which is the average

of squared error occurred between the predicted values and actual values. It can be written as:
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Where,

N=Total number of observation

Yi = Actual value

(a1xi+a0)= Predicted value.

Residuals: The  distance  between  the  actual  value  and predicted  values  is  called  residual.  If  the

observed points are far from the regression line, then the residual will be high, and so cost function

will high. If the scatter points are close to the regression line, then the residual will be small and

hence the cost function.

Gradient Descent:

o Gradient descent is used to minimize the MSE by calculating the gradient of the cost function.

o A regression model uses gradient descent to update the coefficients of the line by reducing the

cost function.

o It is done by a random selection of values of coefficient and then iteratively update the values

to reach the minimum cost function.

Model Performance:

The Goodness of fit determines how the line of regression fits the set of observations. The process of

finding the best model out of various models is called optimization. 

3. Explain in details about regression models- linear classification

models.

Logistic Regression in Machine Learning

o Logistic regression is one of the most popular Machine Learning algorithms, which comes

under the Supervised Learning technique. It is used for predicting the categorical dependent

variable using a given set of independent variables.

o Logistic  regression  predicts  the  output  of  a  categorical  dependent  variable.  Therefore  the

outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or

False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values

which lie between 0 and 1.

o Logistic Regression is much similar to the Linear Regression except that how they are used.

Linear Regression is used for solving Regression problems, whereas Logistic regression is

used for solving the classification problems.

o In  Logistic  regression,  instead  of  fitting  a  regression  line,  we  fit  an  "S"  shaped  logistic

function, which predicts two maximum values (0 or 1).
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o The curve from the logistic function indicates the likelihood of something such as whether the

cells are cancerous or not, a mouse is obese or not based on its weight, etc.

o Logistic Regression is a significant machine learning algorithm because it has the ability to

provide probabilities and classify new data using continuous and discrete datasets.

o Logistic Regression can be used to classify the observations using different types of data and

can easily determine the most effective variables used for the classification. The below image

is showing the logistic function:

Logistic Function (Sigmoid Function):

o The  sigmoid  function  is  a  mathematical  function  used  to  map  the  predicted  values  to

probabilities.

o It maps any real value into another value within a range of 0 and 1.

o The value of the logistic regression must be between 0 and 1, which cannot go beyond this

limit, so it forms a curve like the "S" form. The S-form curve is called the Sigmoid function or

the logistic function.

o In logistic regression, we use the concept of the threshold value, which defines the probability

of either 0 or 1. Such as values above the threshold value tends to 1, and a value below the

threshold values tends to 0.

Assumptions for Logistic Regression:

o The dependent variable must be categorical in nature.

o The independent variable should not have multi-collinearity.

Logistic Regression Equation:

The  Logistic  regression  equation  can  be  obtained  from  the  Linear  Regression  equation.  The

mathematical steps to get Logistic Regression equations are given below:

o We know the equation of the straight line can be written as:

o In Logistic  Regression y can be between 0 and 1 only,  so for  this  let's  divide the above

equation by (1-y):
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o But we need range between -[infinity] to +[infinity], then take logarithm of the equation it will

become:

The above equation is the final equation for Logistic Regression.

Type of Logistic Regression:

Logistic Regression can be classified into three types:

o Binomial: In  binomial  Logistic  regression,  there  can  be  only  two  possible  types  of  the

dependent variables, such as 0 or 1, Pass or Fail, etc.

o Multinomial: In multinomial Logistic regression, there can be 3 or more possible unordered

types of the dependent variable, such as "cat", "dogs", or "sheep"

o Ordinal: In ordinal Logistic regression,  there can be 3 or more possible ordered types of

dependent variables, such as "low", "Medium", or "High".

4. Explain in detail about support vector machine?

Support Vector Machine Algorithm

 Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms,

which is used for Classification as well as Regression problems. However, primarily, it is used

for Classification problems in Machine Learning.

 The goal  of  the  SVM algorithm is  to  create  the  best  line  or  decision  boundary  that  can

segregate n-dimensional space into classes so that we can easily put the new data point in the

correct category in the future. This best decision boundary is called a hyperplane.

 SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme

cases are called as support vectors, and hence algorithm is termed as Support Vector Machine.

Consider the below diagram in which there are two different categories that are classified using a

decision boundary or hyperplane:
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Example: SVM can  be  understood  with  the  example  that  we  have  used  in  the  KNN classifier.

Suppose we see a strange cat that also has some features of dogs, so if we want a model that can

accurately identify whether it is a cat or dog, so such a model can be created by using the SVM

algorithm. We will first train our model with lots of images of cats and dogs so that it can learn about

different features of cats and dogs, and then we test it with this strange creature. So as support vector

creates a decision boundary between these two data (cat and dog) and choose extreme cases (support

vectors), it will see the extreme case of cat and dog. 

SVM algorithm can be used for Face detection, image classification, text categorization, etc.

Types of SVM

SVM can be of two types:

o Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can be

classified into two classes by using a single straight line, then such data is termed as linearly

separable data, and classifier is used called as Linear SVM classifier.

o Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a

dataset cannot be classified by using a straight line, then such data is termed as non-linear data

and classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane:     
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 There can be multiple  lines/decision boundaries  to segregate the classes  in n-dimensional

space, but we need to find out the best decision boundary that helps to classify the data points.

This best boundary is known as the hyperplane of SVM.

 The dimensions of the hyperplane depend on the features present in the dataset, which means

if there are 2 features (as shown in image), then hyperplane will be a straight line. And if there

are 3 features, then hyperplane will be a 2-dimension plane.

Support Vectors:

The data points or vectors that are the closest to the hyperplane and which affect the position of the

hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence called a

Support vector.

How does SVM works?

Linear SVM:

        The working of the SVM algorithm can be understood by using
an example. Suppose we have a dataset that has two tags (green
and blue), and the dataset has two features x1 and x2. We want a
classifier that can classify the pair(x1, x2) of coordinates in either
green or blue. Consider the below image:
         Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary

or region is called as a hyperplane. SVM algorithm finds the closest point of the lines from both the

classes. These points are called support vectors. The distance between the vectors and the hyperplane

is  called  as margin.  And  the  goal  of  SVM  is  to  maximize  this  margin.  The hyperplane with

maximum margin is called the optimal hyperplane.

Non-Linear SVM:

If data is linearly arranged, then we can separate it by using a straight line, but for non-linear data, we

cannot draw a single straight line. Consider the below image:
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So to separate these data points, we need to add one more dimension. For linear data, we have used

two dimensions x and y, so for non-linear data, we will add a third dimension z. It can be calculated

as:

z=x2 +y2

By adding the third dimension, the sample space will become as below image:

So now, SVM will  divide the datasets into classes in the following
way.  Since  we are  in  3-d  Space,  hence  it  is  looking  like  a  plane
parallel to the x-axis. If we convert it in 2d space with z=1, then it
will become as:

Downloaded from STUCOR APP

lOMoARcPSD|26586732



5. Explain in detail about decision tree and random forest?

Decision Tree Classification Algorithm

o Decision Tree is a Supervised learning technique that can be used for both classification and

Regression problems,  but  mostly  it  is  preferred  for  solving  Classification  problems.  It  is  a  tree-

structured classifier, where internal nodes represent the features of a dataset, branches represent the

decision rules and each leaf node represents the outcome.

o In a Decision tree, there are two nodes, which are 

    Decision Node and Leaf Node

o Decision nodes are used to make any decision and have multiple branches, whereas Leaf nodes are

the output of those decisions and do not contain any further branches.

o The decisions  or  the  test  are  performed on the  basis  of  features  of  the  given dataset.  It  is  a

graphical representation for getting all the possible solutions to a problem/decision based on given

conditions.

o It is called a decision tree because, similar to a tree, it starts with the root node, which expands on

further  branches  and constructs  a  tree-like structure.  In  order  to  build  a  tree,  we use  the CART

algorithm, which stands for Classification and Regression Tree algorithm.

o A decision tree simply asks a question, and based on the answer (Yes/No), it further split the tree

into subtrees. Below diagram explains the general structure of a decision tree:
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There  are  various  algorithms in Machine  learning,  so choosing the  best  algorithm for  the  given

dataset and problem is the main point to remember while creating a machine learning model. Below

are the two reasons for using the Decision tree:

o Decision Trees usually mimic human thinking ability while making a decision, so it is easy to

understand.

o The logic  behind the  decision  tree  can  be easily  understood because  it  shows a  tree-like

structure.

Decision Tree Terminologies

 Root Node: Root node is from where the decision tree starts. It represents the entire dataset,

which further gets divided into two or more homogeneous sets.

 Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further

after getting a leaf node.

 Splitting: Splitting  is  the  process  of  dividing  the  decision  node/root  node  into  sub-nodes

according to the given conditions.

 Branch/Sub Tree: A tree formed by splitting the tree.

 Pruning: Pruning is the process of removing the unwanted branches from the tree.

 Parent/Child node: The root node of the tree is called the parent node, and other nodes are

called the child nodes.

How does the Decision Tree algorithm Work?
            In a decision tree, for predicting the class of the given dataset, the algorithm starts from the

root  node of  the tree.  This algorithm compares  the values  of  root  attribute with the record (real

dataset) attribute and, based on the comparison, follows the branch and jumps to the next node. For

the next node, the algorithm again compares the attribute value with the other sub-nodes and move

further. It continues the process until it reaches the leaf node of the tree. The complete process can be

better understood using the below algorithm:

Step-1: Begin the tree with the root node, says S, which contains the complete dataset.

Step-2: Find the best attribute in the dataset using Attribute Selection Measure (ASM).
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Step-3: Divide the S into subsets that contains possible values for the best attributes.

Step-4: Generate the decision tree node, which contains the best attribute.

Step-5: Recursively make new decision trees using the subsets of the dataset created in step -3.

Continue this process until a stage is reached where you cannot further classify the nodes and

called the final node as a leaf node.

Example: Suppose there is a candidate who has a job offer and wants to decide whether he should

accept the offer or Not. So, to solve this problem, the decision tree starts with the root node (Salary

attribute by ASM). The root node splits further into the next decision node (distance from the office)

and one leaf node based on the corresponding labels. The next decision node further gets split into

one decision node (Cab facility) and one leaf node. Finally, the decision node splits into two leaf

nodes (Accepted offers and Declined offer). Consider the below diagram:

Advantages of the Decision Tree

o It is simple to understand as it follows the same process which a human follow while making

any decision in real-life.

o It can be very useful for solving decision-related problems.

o It helps to think about all the possible outcomes for a problem.

o There is less requirement of data cleaning compared to other algorithms.

Disadvantages of the Decision Tree

o The decision tree contains lots of layers, which makes it complex.

o It may have an overfitting issue, which can be resolved using the Random Forest algorithm.

o For more class labels, the computational complexity of the decision tree may increase.

UNIT – 4 (8 Marks and 16 Marks)

1.Explain the various ensemble learning techniques?

       Ensemble methods are techniques that aim at improving the accuracy of results in models by

combining multiple  models  instead  of  using  a  single  model.  The  combined  models  increase  the

accuracy of the results significantly. This has boosted the popularity of ensemble methods in machine

learning.

Categories of Ensemble Methods

       Ensemble methods fall into two broad categories, i.e.,  sequential  ensemble techniques and

parallel ensemble techniques. Sequential ensemble techniques generate base learners in a sequence,

e.g.,  Adaptive  Boosting  (AdaBoost).  The  sequential  generation  of  base  learners  promotes  the

dependence between the base learners. The performance of the model is then improved by assigning

higher weights to previously misrepresented learners.
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 In parallel  ensemble  techniques,  base  learners  are  generated  in  a  parallel  format,

e.g., random  forest.  Parallel  methods  utilize  the  parallel  generation  of  base  learners  to

encourage  independence  between  the  base  learners.  The  independence  of  base  learners

significantly reduces the error due to the application of averages.

 The majority of ensemble techniques apply a single algorithm in base learning, which results

in homogeneity in all base learners. Homogenous base learners refer to base learners of the

same type, with similar qualities. Other methods apply heterogeneous base learners, giving

rise to heterogeneous ensembles. Heterogeneous base learners are learners of distinct types.

Main Types of Ensemble Methods

1. Bagging

 Bagging,  the  short  form  for  bootstrap  aggregating,  is  mainly  applied  in  classification

and regression.  It  increases  the  accuracy of  models  through decision  trees,  which  reduces

variance  to  a  large  extent.  The  reduction  of  variance  increases  accuracy,  eliminating

overfitting, which is a challenge to many predictive models.

 Bagging is classified into two types, i.e., bootstrapping and aggregation. Bootstrapping is a

sampling technique where samples  are derived from the whole population (set)  using the

replacement  procedure.  The  sampling  with  replacement  method  helps  make  the  selection

procedure randomized. The base learning algorithm is run on the samples to complete the

procedure.

 Aggregation in bagging is done to incorporate all possible outcomes of the prediction and

randomize the outcome.  Without  aggregation,  predictions will  not be accurate because all

outcomes are not put into consideration. Therefore, the aggregation is based on the probability

bootstrapping procedures or on the basis of all outcomes of the predictive models.

      Bagging is advantageous since weak base learners are combined to form a single strong learner

that  is  more  stable  than  single  learners.  It  also  eliminates  any  variance,  thereby  reducing  the

overfitting of models. One limitation of bagging is that it is computationally expensive. Thus, it can

lead to more bias in models when the proper procedure of bagging is ignored.

2. Boosting

 Boosting is an ensemble technique that learns from previous predictor mistakes to make better

predictions in the future.  The technique combines several weak base learners to form one

strong learner, thus significantly improving the predictability of models. Boosting works by

arranging weak learners in a sequence, such that weak learners learn from the next learner in

the sequence to create better predictive models.

 Boosting takes many forms, including gradient boosting, Adaptive Boosting (AdaBoost), and

XGBoost (Extreme Gradient Boosting). AdaBoost uses weak learners in the form of decision

trees, which mostly include one split that is popularly known as decision stumps. AdaBoost’s

main decision stump comprises observations carrying similar weights.

 Gradient boosting adds predictors sequentially to the ensemble, where preceding predictors

correct their successors, thereby increasing the model’s accuracy. New predictors are fit to
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counter  the effects  of errors in the previous predictors.  The gradient of descent  helps the

gradient booster identify problems in learners’ predictions and counter them accordingly.

3. Stacking

        Stacking, another ensemble method is often referred to as stacked generalization. This technique

works  by  allowing  a  training  algorithm  to  ensemble  several  other  similar  learning  algorithm

predictions. Stacking has been successfully implemented in regression, density estimations, distance

learning, and classifications. It can also be used to measure the error rate involved during bagging.

Variance Reduction

        Ensemble methods are ideal for reducing the variance in models, thereby increasing the accuracy

of  predictions.  The variance  is  eliminated  when multiple  models  are  combined to  form a  single

prediction that is chosen from all other possible predictions from the combined models. An ensemble

of models combines various models to ensure that the resulting prediction is the best possible, based

on the consideration of all predictions.

Simple Ensemble Techniques

In this section, we will look at a few simple but powerful techniques, namely:

1. Max Voting

2. Averaging

3. Weighted Averaging

2. Explain in detail about k-means algorithm?

K-Means Clustering Algorithm

      K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering

problems in machine learning or data science. In this topic, we will learn what is K-means clustering

algorithm, how the algorithm works, along with the Python implementation of k-means clustering.

What is K-Means Algorithm?

        K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabeled dataset

into different clusters. Here K defines the number of pre-defined clusters that need to be created in the

process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.

 It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a

way that each dataset belongs only one group that has similar properties.

 It allows us to cluster the data into different groups and a convenient way to discover the

categories of groups in the unlabeled dataset on its own without the need for any training.
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 It is a centroid-based algorithm, where each cluster is associated with a centroid. The main

aim of this algorithm is to minimize the sum of distances between the data point and their

corresponding clusters.

 The  algorithm takes  the  unlabeled  dataset  as  input,  divides  the  dataset  into  k-number  of

clusters, and repeats the process until it does not find the best clusters. The value of k should

be predetermined in this algorithm.

The k-means clustering algorithm mainly performs two tasks:

o Determines the best value for K center points or centroids by an iterative process.

o Assigns  each  data  point  to  its  closest  k-center.  Those  data  points  which  are  near  to  the

particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters. The

below diagram explains the working of the K-means Clustering Algorithm:

How does the K-Means Algorithm Work?

The working of the K-Means algorithm is explained in the below steps:

Step-1: Select the number K to decide the number of clusters.

Step-2: Select random K points or centroids. (It can be other from the input dataset).

Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters.

Step-4: Calculate the variance and place a new centroid of each cluster.

Step-5: Repeat the third steps, which mean reassign each datapoint to the new closest centroid of

each cluster.
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Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.

Step-7: The model is ready.

Let's understand the above steps by considering the visual plots:

o Suppose we have two variables M1 and M2. The x-y axis scatter plot of these two variables is

given below: Let's take number k of clusters, i.e., K=2, to identify the dataset and to put them

into different clusters. It means here we will try to group these datasets into two different

clusters.

o We need to choose some random k points or centroid to form the cluster. These points can be

either the points from the dataset or any other point. So, here we are selecting the below two

points as k points, which are not the part of our dataset. Consider the below image:

Now we will assign each data point of the scatter plot to its closest K-point or centroid. We will

compute it by applying some mathematics that we have studied to calculate the distance between two

points. So, we will draw a median between both the centroids. Consider the below image:
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From the above image, it is clear that points left side of the line is near to the K1 or blue centroid, and

points to the right of the line are close to the yellow centroid. Let's color them as blue and yellow for

clear visualization. As we need to find the closest cluster, so we will repeat the process by choosing a

new centroid. To choose the new centroids, we will compute the center of gravity of these centroids,

and will find new centroids as below: Next, we will reassign each datapoint to the new centroid. For

this, we will repeat the same process of finding a median line. 

How to choose the value of "K number of clusters" in K-means Clustering?

        The performance of the K-means clustering algorithm depends upon highly efficient clusters that

it forms. But choosing the optimal number of clusters is a big task. There are some different ways to

find the optimal number of clusters, but here we are discussing the most appropriate method to find

the number of clusters or value of K. The method is given below:

3. Explain details about KNN algorithm?

K-Nearest Neighbor(KNN) Algorithm for Machine Learning

o K-Nearest  Neighbour  is  one  of  the  simplest  Machine  Learning  algorithms  based  on

Supervised Learning technique.

o K-NN algorithm assumes the similarity between the new case/data and available cases and put

the new case into the category that is most similar to the available categories.

o K-NN algorithm stores all the available data and classifies a new data point based on the

similarity. This means when new data appears then it can be easily classified into a well suite

category by using K- NN algorithm.

o K-NN algorithm can be used for Regression as well as for Classification but mostly it is used

for the Classification problems.

o K-NN is a non-parametric algorithm, which means it does not make any assumption on

underlying data.

o It  is  also called a lazy  learner algorithm because it  does  not  learn from the training  set

immediately instead it stores the dataset and at the time of classification, it performs an action

on the dataset.

o KNN algorithm at the training phase just stores the dataset and when it gets new data, then it

classifies that data into a category that is much similar to the new data.

o Example: Suppose, we have an image of a creature that looks similar to cat and dog, but we

want  to  know either  it  is  a  cat  or  dog.  So  for  this  identification,  we  can  use  the  KNN

algorithm, as it works on a similarity measure. Our KNN model will find the similar features

of the new data set to the cats and dogs images and based on the most similar features it will

put it in either cat or dog category.
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Why do we need a K-NN Algorithm?

          Suppose there are two categories, i.e., Category A and Category B, and we have a new data

point x1, so this data point will lie in which of these categories. To solve this type of problem, we

need a K-NN algorithm. With the help of K-NN, we can easily identify the category or class of a

particular dataset. Consider the below diagram:

How does K-NN work?

The K-NN working can be explained on the basis of the below algorithm:

o Step-1: Select the number K of the neighbors

o Step-2: Calculate the Euclidean distance of K number of neighbors

o Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

o Step-4: Among these k neighbors, count the number of the data points in each category.

o Step-5: Assign the new data points to that category for which the number of the neighbor is

maximum.

o Step-6: Our model is ready.

Suppose we have a new data point and we need to put it in the required category. Consider the below

image:
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o Firstly, we will choose the number of neighbors, so we will choose the k=5.

o Next,  we  will  calculate  the Euclidean  distance between  the  data  points.  The  Euclidean

distance is the distance between two points, which we have already studied in geometry. It can

be calculated as:

o By calculating the Euclidean distance we got the nearest neighbors, as three nearest neighbors

in category A and two nearest neighbors in category B. Consider the below image:
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o As we can see the 3 nearest neighbors are from category A, hence this new data point must

belong to category A.

How to select the value of K in the K-NN Algorithm?

Below are some points to remember while selecting the value of K in the K-NN algorithm:

o There is no particular way to determine the best value for "K", so we need to try some values

to find the best out of them. The most preferred value for K is 5.

o A very low value for K such as K=1 or K=2, can be noisy and lead to the effects of outliers in

the model.

o Large values for K are good, but it may find some difficulties.

Advantages of KNN Algorithm:

o It is simple to implement.

o It is robust to the noisy training data

o It can be more effective if the training data is large.

Disadvantages of KNN Algorithm:

o Always needs to determine the value of K which may be complex some time.

o The computation cost is high because of calculating the distance between the data points for

all the training samples.
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4. Explain  in  detail  about  Gaussian  mixture  models  and

expectation maximization?

EM algorithm in GMM
     In statistics, EM (expectation maximization) algorithm handles latent variables, while GMM is the

Gaussian mixture model.

 Gaussian mixture models (GMMs) are a type of machine learning algorithm. They are used to

classify data into different categories based on the probability distribution. Gaussian mixture

models can be used in many different areas, including finance, marketing and so much more. 

 Gaussian Mixture Models (GMMs) give us more flexibility than K-Means. With GMMs we

assume that the data points are Gaussian distributed; this is a less restrictive assumption than

saying they are circular by using the mean. That way, we have two parameters to describe the

shape of the clusters: the mean and the standard deviation! 

 Taking an  example  in  two dimensions,  this  means that  the clusters  can take any kind of

elliptical shape (since we have standard deviation in both the x and y directions). Thus, each

Gaussian distribution is assigned to a single cluster. In order to find the parameters of the

Gaussian for each cluster (e.g the mean and standard deviation) we will use an optimization

algorithm called Expectation–Maximization (EM). Take a look at the graphic below as an

illustration of the Gaussians being fitted to the clusters. Then we can proceed on to the process

of Expectation–Maximization clustering using GMMs.

 Gaussian mixture models (GMM) are a probabilistic concept used to model real-world data

sets. GMMs are a generalization of Gaussian distributions and can be used to represent any

data  set  that  can  be  clustered  into  multiple  Gaussian  distributions.  The Gaussian  mixture

model is a probabilistic model that assumes all the data points are generated from a mix of

Gaussian distributions with unknown parameters.

  A Gaussian mixture model can be used for clustering, which is the task of grouping a set of

data points into clusters. GMMs can be used to find clusters in data sets where the clusters

may not be clearly defined. Additionally, GMMs can be used to estimate the probability that a

new data point belongs to each cluster. Gaussian mixture models are also relatively robust to

outliers, meaning that they can still yield accurate results even if there are some data points

that do not fit neatly into any of the clusters. This makes GMMs a flexible and powerful tool

for clustering data. 

 It can be understood as a probabilistic model where Gaussian distributions are assumed for

each group and they have means and co  variances  which  define  their  parameters.  GMM

consists of two parts – mean vectors (μ) & covariance matrices (Σ). A Gaussian distribution is

defined as a continuous probability distribution that takes on a bell-shaped curve. Another
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name  for  Gaussian  distribution  is  the  normal  distribution.  Here  is  a  picture  of  Gaussian

mixture models:

 GMM has many applications, such as density estimation, clustering, and image segmentation.

For density estimation, GMM can be used to estimate the probability density function of a set

of data points. For clustering, GMM can be used to group together data points that come from

the same Gaussian distribution. And for image segmentation, GMM can be used to partition

an image into different regions.

 Gaussian  mixture  models  can  be  used  for  a  variety  of  use  cases,  including  identifying

customer  segments,  detecting  fraudulent  activity,  and  clustering  images.  In  each  of  these

examples, the Gaussian mixture model is able to identify clusters in the data that may not be

immediately  obvious.  As  a  result,  Gaussian  mixture  models  are  a  powerful  tool  for  data

analysis and should be considered for any clustering task.

Expectation-maximization (EM) method in relation to GMM
              In Gaussian mixture models, an expectation-maximization method is a powerful tool for

estimating the parameters of a Gaussian mixture model (GMM). The expectation is termed E and

maximization is termed M. Expectation is used to find the Gaussian parameters which are used to

represent each component of gaussian mixture models. Maximization is termed M and it is involved

in determining whether new data points can be added or not.

 The  expectation-maximization  method  is  a  two-step  iterative  algorithm  that  alternates

between performing an expectation step, in which we compute expectations for each data

point using current parameter estimates and then maximize these to produce a new gaussian,

followed by a maximization step where we update our gaussian means based on the maximum

likelihood estimate. 

 The  EM method  works  by  first  initializing  the  parameters  of  the  GMM, then  iteratively

improving these estimates. At each iteration, the expectation step calculates the expectation of

the log-likelihood function with respect to the current parameters. This expectation is then

used to maximize the likelihood in the maximization step. The process is then repeated until

convergence.  Here is a picture representing the two-step iterative aspect of the algorithm

The EM algorithm consists of two steps: the E- step and the M-step. Firstly, the model parameters and

the can be randomly initialized. In the E-step, the algorithm tries to guess the value of  based on the

parameters, while in the M-step, the algorithm updates the value of the model parameters based on

the guess of  the E-step. These two steps are repeated until convergence is reached. The algorithm in

GMM is repeat until convergence.

Optimization  uses  the  Expectation  Maximization  algorithm,  which  alternates  between  two

steps: 

                1. E-step: Compute the posterior probability over z given our current model - i.e. how much

do we think each Gaussian generates each datapoint. 
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               2. M-step: Assuming that the data really was generated this way, change the parameters of

each  Gaussian  to  maximize  the  probability  that  it  would  generate  the  data  it  is  currently

responsible for.

   

The K-Means Algorithm: 

1.Assignment step: Assign each data point to the closest cluster 

2. Refitting step: Move each cluster center to the center of gravity of the data assigned to it 

The EM Algorithm: 

      1. E-step: Compute the posterior probability over z given our current model 

      2. M-step: Maximize the probability that it would generate the data it is currently responsible for.

UNIT – 5 (8 Marks and 16 Marks)

1.Explain in detail about Perceptrons and its types?

        Perceptron  is  Machine  Learning  algorithm  for  supervised  learning  of  various  binary

classification tasks. Further, Perceptron is also understood as an Artificial Neuron or neural network

unit that helps to detect certain input data computations in business intelligence. Perceptron model is

also treated as one of the best and simplest types of Artificial Neural networks. However, it is a

supervised learning algorithm of binary classifiers. Hence, we can consider it as a single-layer neural

network with four main parameters, i.e., input values, weights and Bias, net sum, and an activation

function.

Basic Components of Perceptron

     Mr. Frank Rosenblatt invented the perceptron model as a binary classifier which contains three

main components. These are as follows:
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o Input Nodes or Input Layer:

This is the primary component of Perceptron which accepts the initial data into the system for further

processing. Each input node contains a real numerical value.

o Weight and Bias:

Weight  parameter  represents  the  strength  of  the  connection  between  units.  This  is  another  most

important parameter of Perceptron components. Weight is directly proportional to the strength of the

associated input neuron in deciding the output. Further, Bias can be considered as the line of intercept

in a linear equation.

o Activation Function:

These are the final and important components that help to determine whether the neuron will fire or

not. Activation Function can be considered primarily as a step function.

Types of Activation functions:

o Sign function

o Step function, and

o Sigmoid function

Types of Perceptron Models

Based on the layers, Perceptron models are divided into two types. These are as follows:

1. Single-layer Perceptron Model

2. Multi-layer Perceptron model

Single Layer Perceptron Model:  
 This is  one of the easiest  Artificial  neural networks (ANN) types. A single-layered perceptron

model consists feed-forward network and also includes a threshold transfer function inside the model.

The main objective of the single-layer perceptron model is to analyze the linearly separable objects

with binary outcomes.

 In a single layer perceptron model, its algorithms do not contain recorded data, so it begins with

inconstantly allocated input for weight parameters. Further, it sums up all inputs (weight). After adding

all inputs, if the total sum of all inputs is more than a pre-determined value, the model gets activated

and shows the output value as +1.

 If the outcome is same as pre-determined or threshold value, then the performance of this model is

stated  as  satisfied,  and  weight  demand  does  not  change.  However,  this  model  consists  of  a  few

discrepancies triggered when multiple weight inputs values are fed into the model.  Hence,  to find

desired output and minimize errors, some changes should be necessary for the weights input.

Multi-Layered Perceptron Model:  
     A multi-layer perceptron model also has the same model structure but has a greater number of

hidden layers.
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The multi-layer perceptron model is also known as the Backpropagation algorithm, which executes in

two stages as follows:

o Forward Stage: Activation functions start from the input layer in the forward stage and terminate

on the output layer.

o Backward Stage: In the backward stage, weight and bias values are modified as per the model's

requirement. In this stage, the error between actual output and demanded originated backward on the

output layer and ended on the input layer.

Instead of linear, activation function can be executed as sigmoid, TanH, ReLU, etc., for deployment.

A multi-layer perceptron model has greater processing power and can process linear and non-linear

patterns. Further, it can also implement logic gates such as AND, OR, XOR, NAND, NOT, XNOR,

NOR.

Advantages of Multi-Layer Perceptron:
o A multi-layered perceptron model can be used to solve complex non-linear problems.

o It works well with both small and large input data.

o It helps us to obtain quick predictions after the training.

o It helps to obtain the same accuracy ratio with large as well as small data.

Disadvantages of Multi-Layer Perceptron:
o In Multi-layer perceptron, computations are difficult and time-consuming.

o In multi-layer Perceptron, it is difficult to predict how much the dependent variable affects

each independent variable.

o The model functioning depends on the quality of the training.

Perceptron Function
Perceptron function ''f(x)''  can be achieved as output  by multiplying the input  'x'  with the learned

weight coefficient 'w'.

                 Mathematically, we can express it as follows:

                                     f(x)=1; if w.x+b>0   ;    otherwise, f(x)=0
                        'w' represents real-valued weights vector

                         'b' represents the bias

                         'x' represents a vector of input x values.

Characteristics of Perceptron
The perceptron model has the following characteristics.

1. Perceptron is a machine learning algorithm for supervised learning of binary classifiers.

2. In Perceptron, the weight coefficient is automatically learned.

3. Initially,  weights are multiplied with input features, and the decision is  made whether the

neuron is fired or not.

4. The activation function applies a step rule to check whether the weight function is greater than

zero.

5. The linear  decision  boundary  is  drawn,  enabling  the  distinction  between the  two linearly

separable classes +1 and -1.

6. If the added sum of all input values is more than the threshold value, it must have an output

signal; otherwise, no output will be shown.
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2.Explain about ReLu, Hyperparameter tuning,  Normalization,

Regularization, Dropout?

i) Hyperparameter Tuning in Deep Learning  
                  The first hyperparameter to tune is the number of neurons in each hidden layer. In this

case, the number of neurons in every layer is set to be the same. It also can be made different. The

number of neurons should be adjusted to the solution complexity. The task with a more complex level

to predict needs more neurons. The number of neurons range is set to be from 10 to 100.

 An activation function is a parameter in each layer. Input data are fed to the input layer,

followed by hidden layers, and the final output layer. The output layer contains the output

value. The input values moving from a layer to another layer keep changing according to the

activation function. 

 The activation function decides how to compute the input values of a layer into output values.

The output values of a layer are then passed to the next layer as input values again. The next

layer  then  computes  the  values  into  output  values  for  another  layer  again.  There  are  9

activation functions to tune in to this demonstration.  Each activation function has its own

formula (and graph) to compute the input values. It will not be discussed in this article.

 The layers of a neural network are compiled and an optimizer is assigned. The optimizer is

responsible to change the learning rate and weights of neurons in the neural network to reach

the  minimum loss  function.  Optimizer  is  very  important  to  achieve  the  possible  highest

accuracy or  minimum loss.  There  are  7  optimizers  to  choose  from.  Each  has  a  different

concept behind it.

 One of the hyperparameters in the optimizer is the learning rate. We will also tune the learning

rate. Learning rate controls the step size for a model to reach the minimum loss function. A

higher learning rate makes the model learn faster, but it may miss the minimum loss function

and only reach the surrounding of it. A lower learning rate gives a better chance to find a

minimum loss function. As a tradeoff lower learning rate needs higher epochs, or more time

and memory capacity resources.

ii) ReLu -   Rectified Linear Unit  

        A Rectified Linear Unit is a form of activation function used commonly in deep learning models.

In essence, the function returns 0 if it receives a negative input, and if it receives a positive value, the

function will return back the same positive value. The function is understood as:

f(x)=max(0,x)

The rectified linear unit, or ReLU, allows for the deep learning model to account for non-linearities

and specific interaction effects. The image above displays the graphic representation of the ReLU
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function. Note that the values for any negative X input result in an output of 0, and only once positive

values are entered does the function begin to slope upward.

How does a Rectified Linear Unit work?

To understand  how a  ReLU  works,  it  is  important  to  understand  the  effects  it  has  on  variable

interaction effects. An interaction effect is when a variable affects a prediction depending on the value

of  associated  variables.  For  example,  comparing  IQ  scores  of  two  different  schools  may  have

interaction effects of IQ and age.  The IQ of a student in high school is better  than the IQ of an

elementary school student, as age and IQ interact with each other regardless of the school. This is

known  as  an  interaction  effect  and  ReLUs  can  be  applied  to  minimize  interaction  effects.  For

example, if A=1 and B=2, and both have the respective associated weights of 2 and 3, the function

would be, f(2A+3B). If A increases, the output will increase as well. However, if B is a large negative

value, the output will be 0.

Benefits  of  using  the  ReLU function 

       Its simplicity leads it to be a  relatively

cheap function to  compute.  As there  is  no

complicated  math,  the  model can  be

trained  and  run  in  a  relatively short  time.

Similarly,  it  converges  faster, meaning the

slope  doesn't  plateau  as  the value  for  X

gets  larger.  This vanishing gradient

problem is  avoided  in  ReLU, unlike

alternative functions such as sigmoid or  tanh.  Lastly,  ReLU is  sparsely activated because for  all

negative inputs, the output is zero. Sparsity is the principle that specific functions only are activated

in concise situations. This is a desirable feature for modern neural networks, as in a sparse network it

is more likely that neurons are appropriately processing valuable parts of a problem. For example, a

model that is processing images of fish may contain a neuron that is specialized to identity fish eyes.

That specific neuron would not be activated if the model was processing images of airplanes instead.

This specified use of neuron functions accounts for network sparsity. 

iii) Regularization :  

 Regularization is one of the most important concepts of machine learning. It is a technique to

prevent  the  model  from  overfitting  by  adding  extra  information  to  it.  Sometimes  the machine

learning model performs well with the training data but does not perform well with the test data. It

means the model is not able to predict the output when deals with unseen data by introducing noise in

the output, and hence the model is called overfitted. This problem can be deal with the help of a

regularization technique.
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 This technique can be used in such a way that it will allow to maintain all variables or features in

the model by reducing the magnitude of the variables. Hence, it maintains accuracy as well as a

generalization of the model. It mainly regularizes or reduces the coefficient of features toward zero.

In simple words, "In regularization technique, we reduce the magnitude of the features by keeping the

same number of features."

How does Regularization Work?

    Regularization works by adding a penalty or complexity term to the complex model. Let's consider

the simple linear regression equation:

y= β0+β1x1+β2x2+β3x3+ +β⋯ nxn +b

In the above equation,  Y represents the value to be predicted X1, X2, …Xn are the features for

Y.β0,β1,…..βn are the weights or magnitude attached to the features, respectively. Here represents the

bias of the model, and b represents the intercept.. Linear regression models try to optimize the β0 and

b to minimize the cost function. The equation for the cost function for the linear model is given

below: 

Now, we will add a loss function and optimize parameter to make the model that can predict the

accurate value of Y. The loss function for the linear regression is called as RSS or Residual sum of

squares.

Techniques of Regularization

There are mainly two types of regularization techniques, which are given below:

o Ridge Regression

o Lasso Regression

Ridge Regression
o Ridge regression is one of the types of linear regression in which a small amount of bias is

introduced so that we can get better long-term predictions.

o Ridge regression is a regularization technique, which is used to reduce the complexity of the

model. It is also called as L2 regularization.

o In this technique, the cost function is altered by adding the penalty term to it. The amount of

bias  added  to  the  model  is  called Ridge  Regression  penalty.  We  can  calculate  it  by

multiplying with the lambda to the squared weight of each individual feature.

o The equation for the cost function in ridge regression will be:
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o In the above equation, the penalty term regularizes the coefficients of the model, and hence

ridge regression reduces the amplitudes of the coefficients that decreases the complexity of

the model.

o As we can see from the above equation, if the values of λ tend to zero, the equation becomes

the cost function of the linear regression model. Hence, for the minimum value of λ, the

model will resemble the linear regression model.

o A general linear or polynomial regression will fail if there is high collinearity between the

independent variables, so to solve such problems, Ridge regression can be used.

o It helps to solve the problems if we have more parameters than samples.

Lasso Regression:
o Lasso regression is another regularization technique to reduce the complexity of the model. It

stands for Least Absolute and Selection Operator.

o It is similar to the Ridge Regression except that the penalty term contains only the absolute

weights instead of a square of weights.

o Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge Regression

can only shrink it near to 0.

o It is also called as L1 regularization. The equation for the cost function of Lasso regression

will be:

o Some of the features in this technique are completely neglected for model evaluation.

o Hence, the Lasso regression can help us to reduce the overfitting in the model as well as the

feature selection.

Key Difference between Ridge Regression and Lasso Regression

o Ridge regression is mostly used to reduce the overfitting in the model, and it includes all the

features  present  in  the  model.  It  reduces  the  complexity  of  the  model  by  shrinking  the

coefficients.

o Lasso regression helps to reduce the overfitting in the model as well as feature selection.

3.Explain about Error Backpropagation?
           Backpropagation, or backward propagation of errors, is an algorithm that is designed to test for

errors  working back from output  nodes  to  input  nodes.  It  is  an important  mathematical  tool  for

improving  the  accuracy  of  predictions  in data  mining and machine  learning.  Essentially,

backpropagation is an algorithm used to calculate derivatives quickly.
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There are two leading types of backpropagation networks:

1. Static backpropagation:   
Static  backpropagation is  a network developed to map static  inputs for static  outputs.  Static

backpropagation  networks  can  solve  static  classification  problems,  such as  optical  character

recognition (OCR).

2. Recurrent backpropagation.     

     The  recurrent  backpropagation  network  is  used  for  fixed-point  learning.  Recurrent

backpropagation activation feeds forward until it reaches a fixed value.

What is a backpropagation algorithm in a neural network?

Artificial neural networks use backpropagation as a learning algorithm to compute a gradient descent

with respect to weight values for the various inputs. By comparing desired outputs to achieved system

outputs, the systems are tuned by adjusting connection weights to narrow the difference between the

two as much as possible. The algorithm gets its name because the weights are updated backward,

from output to input.

Advantages
 It does not have any parameters to tune except for the number of inputs.

 It  is  highly  adaptable  and  efficient  and  does  not  require  any  prior  knowledge  about  the

network.

 It is a standard process that usually works well.

 It is user-friendly, fast and easy to program.

 Users do not need to learn any special functions.

DISADVANTAGES 
It prefers a matrix-based approach over a mini-batch approach.

 Data mining is sensitive to noise and irregularities.

 Performance is highly dependent on input data.

 Training is time- and resource-intensive.

Features of Backpropagation:
1. it is the gradient descent method as used in the case of simple perceptron network with the

differentiable unit.

2. it  is  different  from other  networks  in  respect  to  the  process  by  which  the  weights  are

calculated during the learning period of the network.

3. training is done in the three stages : 

 the feed-forward of input training pattern

 the calculation and backpropagation of the error

 updation of the weight
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Working of Backpropagation:
     Neural networks use supervised learning to generate output vectors from input vectors that the

network operates on. It Compares generated output to the desired output and generates an error

report  if  the  result  does  not  match  the  generated  output  vector.  Then  it  adjusts  the  weights

according to the bug report to get your desired output.

Backpropagation Algorithm:
Step 1: Inputs X, arrive through the preconnected path.

Step 2: The input is modeled using true weights W. Weights are usually chosen randomly.

Step 3: Calculate the output of each neuron from the input layer to the hidden layer to the output

layer.

Step 4: Calculate the error in the outputs

                    Backpropagation Error= Actual Output – Desired Output

Step 5: From the output layer, go back to the hidden layer to adjust the weights to reduce the error.

Step 6: Repeat the process until the desired output is achieved.

Fig: Error backpropagation

 x = inputs training vector x=(x1,x2,…………xn).

 t = target vector t=(t1,t2……………tn).

 δk = error at output unit.

 δj  = error at hidden layer.

 α = learning rate.

 V0j = bias of hidden unit j.

Training Algorithm :

Step 1: Initialize weight to small random values.
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Step 2: While the steps stopping condition is to be false do step 3 to 10.

Step 3: For each training pair do step 4 to 9 (Feed-Forward).

Step 4: Each input unit receives the signal unit and transmits the signal x i signal to all the units.

Step 5: Each hidden unit Zj (z=1 to a) sums its weighted input signal to calculate its net input  

zinj = v0j + Σxivij     ( i=1 to n)
           Applying activation function zj = f(zinj) and sends this signals to all units in the layer about

i.e output units

           For each output l=unit yk = (k=1 to m) sums its weighted input signals.

                     yink = w0k + Σ ziwjk    (j=1 to a)

           and applies its activation function to calculate the output signals.

                     yk = f(yink)

Backpropagation Error :

Step 6: Each output unit yk (k=1 to n)  receives a target pattern corresponding to an input pattern

then error is calculated as:

                   δk = ( tk – yk ) + yink 

Step 7: Each hidden unit Zj (j=1 to a) sums its input from all units in the layer above 

                  δinj = Σ δj wjk 

              The error information term is calculated as :

                  δj = δinj + zinj

Updation of weight and bias :

Step 8: Each output unit yk (k=1 to m) updates its bias and weight (j=1 to a). The weight correction

term is given by :

                                        Δ wjk = α δk zj

                   and the bias correction term is given by  Δwk = α δk.

                   therefore    wjk(new) = wjk(old) + Δ wjk

                                          w0k(new) = wok(old) + Δ wok

                  for  each hidden unit  zj (j=1  to  a)  update  its  bias  and  weights  (i=0 to  n)  the  weight

connection term 

                                 Δ vij = α δj xi

                and the bias connection on term 

                                 Δ v0j = α δj

              Therefore vij(new) = vij(old) +   Δvij

                                   v0j(new) = v0j(old) +  Δv0j

Step 9: Test  the  stopping condition.  The stopping condition  can  be  the  minimization  of  error,

number of epochs.

4.Explain detail about activation functions?

ACTIVATION FUNCTIONS
                   The activation function decides whether a neuron should be activated or not by

calculating the weighted sum and further adding bias to it. The purpose of the activation function

is to introduce non-linearity into the output of a neuron. 
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 In a neural network, we would update the weights and biases of the neurons on the basis of

the error at the output. This process is known as back-propagation  . Activation functions make

the back-propagation possible since the gradients are supplied along with the error to update

the weights and biases. 

 A neural  network  without  an  activation  function  is  essentially  just  a  linear  regression

model.  The  activation  function  does  the  non-linear  transformation  to  the  input  making  it

capable to learn and perform more complex tasks. 

Calculation at Output layer

              z(2) = (W(2) * [W(1)X + b(1)]) + b(2)

              z(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)]

Let,

              [W(2) * W(1)] = W

              [W(2)*b(1) + b(2)] = b

               Final output : z(2) = W*X + b

               which is again a linear function

Variants of Activation Function         

Linear Function         

 Equation :   Linear function has the equation similar to as of a straight line i.e.  y = x

 No matter how many layers we have, if all are linear in nature, the final activation function

of last layer is nothing but just a linear function of the input of first layer.

 Range :    -inf to +inf

 Uses:    Linear activation function is used at just one place i.e. output layer.

 Issues: If we will differentiate linear function to bring non-linearity, result will no more

depend  on input  “x” and  function  will  become  constant,  it  won’t  introduce  any  ground-

breaking behavior to our algorithm.

For example: Calculation of price of a house is a regression problem. House price may have any

big/small value, so we can apply linear activation at output layer. Even in this case neural net must

have any non-linear function at hidden layers. 

Sigmoid Function         
 It is a function which is plotted as ‘S’ shaped graph.

 Equation : A = 1/(1 + e-x)
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 Nature: Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. This

means, small changes in x would also bring about large changes in the value of Y.

 Value Range : 0 to 1

 Uses: Usually used in output layer of a binary classification, where result is either 0 or 1,

as value for sigmoid function lies between 0 and 1 only so, result can be predicted easily to

be 1 if value is greater than 0.5 and 0 otherwise.

Tanh Function         

 The activation that works almost always better than sigmoid function is Tanh function also

knows as Tangent Hyperbolic function.  It’s actually mathematically shifted version of the

sigmoid function. Both are similar and can be derived from each other.

 Equation :-

 Value Range :- -1 to +1

 Nature :- non-linear

 Uses: - Usually used in hidden layers of a neural network as its values lies between  -1 to

1 hence  the  mean  for  the  hidden  layer  comes  out  be  0  or  very  close  to  it,  hence  helps

in centering the data by bringing mean close to 0. This makes learning for the next layer much

easier.
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RELU Function         
 It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly

implemented in hidden layers of neural network.

 Equation: - A(x) = max (0, x). It gives an output x if x is positive and 0 otherwise.

 Value Range :- [0, inf)

 Nature:  - non-linear,  which  means  we  can  easily  backpropagate  the  errors  and  have

multiple layers of neurons being activated by the ReLU function.

 Uses: - ReLu is less computationally expensive than tanh and sigmoid because it involves

simpler  mathematical  operations.  At  a  time  only  a  few neurons  are  activated  making  the

network sparse making it efficient and easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.

Softmax Function
         The softmax function is also a type of sigmoid function but is handy when we are trying to

handle multi- class classification problems.

 Nature :- non-linear
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 Uses:  - Usually used when trying to  handle multiple  classes.  The softmax function was

commonly found in the output layer of image classification problems. The softmax function

would squeeze the outputs for each class between 0 and 1 and would also divide by the sum of

the  outputs. 

 Output: - The softmax function is ideally used in the output layer of the classifier where

we are actually trying to attain the probabilities to define the class of each input.

 The basic rule of thumb is if you really don’t know what activation function to use, then

simply use RELU as it is a general activation function in hidden layers and is used in most

cases these days.

 If your output is for binary classification then, sigmoid function is very natural choice for

output layer.

 If your output is for multi-class classification then, Softmax is very useful to predict the

probabilities of each classes. 

5.Explain in detail about gradient descent optimization?
Gradient descent optimization

 Gradient descent is an optimization algorithm in gadget mastering used to limit a feature with the

aid of iteratively moving towards the minimal fee of characteristic.

 We essentially use this algorithm when we have to locate the least possible values which could

fulfill a given free function. In gadget getting to know, greater regularly that not we try to limit loss

features (like mean squared error). By minimizing the loss characteristic, we will improve our model

and gradient descent is one of the most popular algorithms used for this cause.

 The graph above shows how exactly a gradient descent set of rules works.
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 We first take a factor in the value function and begin shifting in steps in the direction of the

minimum factor. The size of the step, or how quickly we ought to converge to the minimum factor is

defined by learning rate. 

 We can cowl more location with better learning fee but at the risk of overshooting the minima. On

the opposite hand, small steps/ smaller gaining knowledge of charges will eat a number of times to

attain the lowest point.

 Now, the direction where in algorithm has to transport is also important. We calculate this by way

of using derivatives.  You need to be familiar  with derivatives from calculus.  A spinoff is largely

calculated because the slope of the graph at any specific factor. We get that with the aid of finding the

tangent line to the graph at that point. The extra sleep the tangent, would suggest that more steps

would be needed to reach minimum point; much less steep might suggest lesser steps are required to

reach the minimum factor.

Fig: Gradient descent optimization

Stochastic gradient descent

  The word stochastic means a system or a process that is linked with a random probability. Hence, in 

stochastic gradient descent, a few samples are selected randomly instead of the whole data set for 

each iteration.

 Stochastic gradient descent is a type of gradient descent that runs one training example per 

iteration. It processes a training epoch for each example within a dataset and updates each 

training example’s parameters one at a time.

 As it requires only one training example at a time, hence it is easier to store in allocated 

memory. However, it shows some computational efficiency losses in comparison to batch 

gradient systems as it shows frequent updates that require more detail and speed.
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 Further, due to frequent updates, it is also treated as a noisy gradient. However, sometimes it 

can be helpful in finding the global minimum and also escaping the local minimum.

Advantages of stochastic gradient descent:
It is easier to allocate in desired memory.

It is relatively fast to compute than batch gradient descent.

It is more efficient for large dataset.

Disadvantages of stochastic gradient descent:
            SGD require a number of hyperparameters such as the regularization parameter and the   

number of iterations.

            SGD is sensitive to feature scaling.
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