Programming in G pUBLISHED IN STUCOR

UNIT I BASICS OF C PROGRAMMING
Introduction to programming paradigms - Structure of C program - C programming: Data Types
— Storage classes - Constants — Enumeration Constants - Keywords — Operators: Precedence and
Associativity - Expressions - Input/Output statements, Assignment statements — Decision making
statements - Switch statement - Looping statements — Pre-processor directives - Compilation

process

1.1 INTRODUCTION TO PROGRAMMING PARADIGMS

Programming paradigms are a way to classify programming languages based on their
features. Languages can be classified into multiple paradigms.

Some paradigms are concerned mainly with implications for the execution model of the
language, such as allowing side effects, or whether the sequence of operations is defined by the

rect YT _-

Common programming paradigms include:

o imperative which allows side effects,

. functional which disallows side effects,

. declarative which does not state the order in which operations execute,

. object-oriented which groups code together with the state the code modifies,

. procedural which groups code into functions,

. logic which has a particular style of execution model coupled to a particular style of

syntax and grammar, and
. symbolic programming which has a particular style of syntax and grammar.
Machine code
e The lowest-level programming paradigms are machine code, which directly represents
the instructions (the contents of program memory) as a sequence of numbers,
and assembly language where the machine instructions are represented by mnemonics
and memory addresses can be given symbolic labels. These are sometimes called first-

and second-generation languages.

Programmingin G pUBLISHED IN STUCOR

Procedural languages
The next advance was the development of procedural languages. These third-

generation languages (the first described as high-level languages) use vocabulary related to the

problem being solved. For example,

. COmmon Business Oriented Language (COBOL) — uses terms
like file, move and copy.

. FORmula TRANslation (FORTRAN) — using mathematical language terminology, it
was developed mainly for scientific and engineering problems.

. ALGOrithmic Language (ALGOL) - focused on being an appropriate language to
define algorithms, while using mathematical language terminology and targeting scientific
and engineering problems just like FORTRAN.

. Programming Language One (PL/I) — a hybrid commercial-scientific general purpose
language supporting pointers.

. Beginners All purpose Symbolic Instruction Code (BASIC) — it was developed to

enable more people to write programs.

C — a general-purpose programming language, initially developed by Dennis
Ritchie between 1969 and 1973 at AT&T Bell Labs.

Features of C Programming Langt
¢ C is a robust language with ?ié‘t“ And operators.
e Programs written in C are efficient and faS#
e C is highly portable, programs once written in C can be run on another machines with
minor or no modification.
e C is basically a collection of C library functions, we can also create our own function and
add it to the C library.
o C is easily extensible.
Advantages of C
e C is the building block for many other programming languages.
e Programs written in C are highly portable.
» Several standard functions are there (like in-built) that can be used to develop programs.
e C programs are basically collections of C library functions, and it’s also easy to add own

functions in to the C library.

Programming in € pyBLISHED IN STUCOR

e The modular structure makes code debugging, maintenance and testing easier.
Disadvantages of C

e C does not provide Object Oriented Programming (OOP) concepts.

e There i1s no concepts of Namespace in C.

e C does not provide binding or wrapping up of data in a single unit.

e C does not provide Constructor and Destructor.
Object-oriented programming

Object-oriented programming (OOP) languages were created, such as Simula, Smalltalk,

C++, C#, Eiffel, PHP, and Java. In these languages, data and methods to manipulate it are kept
as one unit called an object. The only way that another object or user can access the data is via
the object's methods. Thus, the inner workings of an object may be changed without affecting

any code that uses the object.

1.2 STRUCTURE OF C PROGRAM

Documentation section

Link section

Definition section

Global declaration section

main () Function section

| Declaration part ‘
| Executable part |
Subprogram section

Function 1

Function 2

(User defined functions)

Function n

1. Documentation section:
The documentation section consists of a set of comment lines giving the name of the
program, the author and other details, which the programmer would like to use later.

2. Link section: The link section provides instructions to the compiler to link functions

from the system library such as using the #include directive.

Programmingin G pyBLISHED IN STUCOR

3. Definition section: The definition section defines all symbolic constants such using
the #define directive.

4. Global declaration section: There are some variables that are used in more than one
function. Such variables are called global variables and are declared in the global
declaration section that is outside of all the functions. This section also declares all
the user-defined functions.

5. main () function section: Every C program must have one main function section. This
section contains two parts; declaration part and executable part

1. Declaration part: The declaration part declares all the variables used in the
executable part.

ii. Executable part: There is at least one statement in the executable part. These two
parts must appear between the opening and closing braces. Theprogram
execution begins at the opening brace and ends at the closing brace. The closing
brace of the main function is the logical end of the program. All statements in the
declaration and executable part end with a semicolon.

6. Subprogram section: If the program is a multi-function program then the subprogram
section contains all the user-defined functions that are called in the main () function.
User-defined functions are generally placed immediately after the main () function,
although they may appear in any order.

All section, except the main () function section may be absent when they are not required.

1.3 C PROGRAMMING: DATA-TYPES

A data-type in C programming is a set of values and is determined to act on those values.
C provides various types of data-types which allow the programmer to select the appropriate type
for the variable to set its value.

The data-type in a programming language is the collection of data with values having
fixed meaning as well as characteristics. Some of them are integer, floating point, character etc.
Usually, programming languages specify the range values for given data-type.

C Data Types are used to:
. Identify the type of a variable when it declared.
. Identify the type of the return value of a function.

Programming in € pyUBLISHED IN STUCOR

. Identify the type of a parameter expected by a function.
ANSI C provides three types of data types:
1. Primary(Built-in) Data Types:void, int, char, double and float.
2. Derived Data Types:Array, References, and Pointers.
3. User Defined Data Types:Structure, Union, and Enumeration.
Primary Data Types
Every C compiler supports five primary data types:
void As the name suggests it holds no value and is generally used for specifying

the type of function or what it returns. If the function has a void type, it
means that the function will not return any value.

int Used to denote an integer type.
char Used to denote a character type.
float, double Used to denote a floating point type.

int *, float *, char | Used to denote a pointer type.
%

Declaration of Primary Data Tyjy

After taking suitable variab issigned with a data type. This is
how the data types are used along v
Example:
int age;
char letter;
float height, width;
Derived Data Types
C supports three derived data types:

Data Description
Types
Arrays Arrays are sequences of data items having homogeneous values . They have

adjacent memory locations to store values.

References | Function pointers allow referencing functions with a particular signature.

Pointers These are powerful C features which are used to access the memory and deal with

Programming in € pyBLISHED IN STUCOR

their addresses.

User Defined Data Types
C allows the feature called type definition which allows programmers to define their own

identifier that would represent an existing data type. There are three such types:

Data Description
Types
Structure It is a package of variables of different types under a single name . This is done

to handle data efficiently. “struct” keyword is used to define a structure.

These allow storing various data types in the same memory location.
Union Programmers can define a union with different members but only a single
member can contain a value at given time.

of integral constants and each of
eyword is used to define the

Enumeration is a speci
Enum them is assigned wi
enumerated data ty

Let's see the basic data types. Its size is given according to 32 bit architecture.

Data Types
char
signed char
unsigned char 1 byte 0 to 255
short 2 byte —32,768 to 32,767
signed short 2 byte —32,768 to 32,767
unsigned short 2 byte 0 to 65,535
int 2 byte —32,768 to 32,767
signed int 2 byte —32,768 to 32,767
unsigned int 2 byte 0 to 65,535
short int 2 byte —32,768 to 32,767
signed short int 2 byte —32,768 to 32,767

Programming in € pyUBLISHED IN STUCOR

unsigned short int 2 byte 0 to 65,535

long int 4 byte -2,147,483,648 to 2,147,483,647
signed long int 4 byte -2,147,483,648 to 2,147,483,647
unsigned long int 4 byte 0 to 4,294,967,295

float 4 byte

double 8 byte

long double 10 byte

Example for Data Types and Variable Declarations in C

#include <stdio.h>

int main()

{
int a = 4000; // positive integer
float b= 5.2324; // float data typ

char ¢ ='Z'; // char data type
long d =41657; // long positive 1 a type
long e = -21556; // long -ve intg ‘3-%?'“. R .SERI@
int f=-185; // -ve integer data t&pe
short g = 130; // short +ve integer data type

short h = -130; // short -ve integer data type

double 1=4.1234567890; // double float data type

float j = -3.55; // float data type

The storage representation and machine instructions differ from machine to
machine. sizeof operator can use to get the exact size of a type or a variable on a particular
platform.

Example:

#include <stdio.h>

#include <limits.h>

Programming in € pyBLISHED IN STUCOR

int main()

{
printf("Storage size for int is: %d \n", sizeof(int));
printf("Storage size for char is: %d \n", sizeof(char));

return O;

1.4 STORAGE CLASSES
Storage classes are used to define scope and life time of a variable. There are four storage

classes in C programming.

o auto
o extern
o static
o register
Storage Storage) e g
Classes Place | Life-time
auto RAM G4 in function
extern RAM C end of main program, May be
declared anywhere in the program
static RAM Zero Local Till the end of main program, Retains
value between multiple functions call
: : Garbage i :
register Register Local | Within function
Value
1) auto

The auto keyword is applied to all local variables automatically. It is the default
storage class that is why it is known as automatic variable.
#include<stdio.h>
int main()

{

Programming in € pyUBLISHED IN STUCOR

int a=10;
auto int b=10;//same like above
printf("%d %d",a,b);
return O;
}
Qutput:
10 10
2) register

The register variable allocates memory in register than RAM. Its size is same of
register size. It has a faster access than other variables.

It is recommended to use register variable only for quick access such as in counter.

We can’t get the address of register variable.

Example: register int ¢
3) static
The static variable is initi s till the end of the program. It
retains its value between multipl
The static variable has the default by compiler.

Example:

#include<stdio.h>

int func()

{
static int 1=0;//static variable
int j=0;//local variable
i++;
it
printf(""i= %d and j= %d\n", 1, j);

}

int main() {

func();
func();

func();

Programming in € pyUBLISHED IN STUCOR

return O;

}
Output:
i=landj=1
i=2andj=1
i=3andj=1
4) extern
The extern variable is visible to all the programs. It is used if two or more files are
sharing same variable or function .
Example: extern int counter=0;
1.5 CONSTANTS

A constant is a value or va

20, 'a', 3.4, "c programming" etc.
There are different types of consta

List of Constants in C

Constant

Decimal Constant

Real or Floating-point Constant 10.3, 20.2, 450.6 etc.

Octal Constant 021, 033, 046 etc.

Hexadecimal Constant 0x2a, 0x7b, Oxaa etc.

Character Constant 'a', 'b', 'X' etc.

String Constant "c¢", "c program", "c in javatpoint" etc.

2 ways to define constant in C

There are two ways to define constant in C programming.
1. const keyword
2. #define preprocessor

1) C const keyword

The const keyword is used to define constant in C programming.

10

Programming in € pyUBLISHED IN STUCOR

Example: const float PI=3.14;
Now, the value of PI variable can't be changed.
#include<stdio.h>
int main(){
const float PI=3.14;
printf("The value of PI is: %f",PI);

return O;

Output:

The value of PI is: 3.140000
If you try to change the the value of PI, it will render compile time error.
#include<stdio.h>
int main(){

const float PI=3.14;
PI=4.5;

printf("The value of PI is: %f",PI);

return O;

QOutput:
Compile Time Error: Cannot modity a const obj
2) C #define preprocessor

The #define preprocessor directive is used to define constant or micro substitution. It can

use any basic data type.

Syntax:
#define token value

Let's see an example of #define to define a constant.
#include <stdio.h>
#define PI 3.14
main() {
printf("%f",PI);
}

11

Programming in € pyUBLISHED IN STUCOR

Output:
3.140000

Backslash character constant

C supports some character constants having a backslash in front of it. The lists of
backslash characters have a specific meaning which is known to the compiler. They are also
termed as “Escape Sequence”.
Example:
\t is used to give a tab

\n 1s used to give new line

Constants | Meaning ConstantsMeaning
\a beep sound \v vertical tab
\b single quote

\f double quote
\n | backslash

\r

\t

1.6 ENUMERATION CONSTANTS
An enum is a keyword, it is an user defined data type. All properties of integer are
applied on Enumeration data type so size of the enumerator data type is 2 byte . It work like
the Integer.
It is used for creating an user defined data type of integer. Using enum we can create

sequence of integer constant value.

Syntax:
enum tagname {valuel,value2,value3,....};
. In above syntax enum is a keyword. It is a user defined data type.
. In above syntax tagname is our own variable. tagname is any variable name.
. valuel, value2, value3,.... are create set of enum values.

12

Programming in € pyUBLISHED IN STUCOR

User Defined Data
Type

v
enum week {sun, mon, tue, wed, thu, fri, Sat };

I‘l "'

Y

Keyword Value Allocated for

“week”

It is start with 0 (zero) by default and value is incremented by 1 for the sequential

1dentifiers in the list. If constant one value is not initialized then by default sequence will be start

from zero and next to generated value should be previous constant value one.

Example of Enumeration in C: E!l

enum week {sun,mon,tue,wed,thu,

enum week today;

. In above code first line is create user defined data type called week.
. week variable have 7 value which is inside { } braces.
. today variable is declare as week type which can be initialize any data or value among

7 (sun, mon,....).
Example:
#include<stdio.h>
#include<conio.h>
enum abc{x,y,z};
void main()

{
int a;

clrscr();

a=xtytz; //0+1+2
printf(“sum: %d”,a);
getch();

13

Programming in C

1.7 KEYWORDS

PUBLISHED IN STUCOR

A list of 32 keywords in ¢ language is given below:

There are only 32 reserved words (keywords) in C language.

A keyword is a reserved word. You cannot use it as a variable name, constant name etc.

or logical Operation.

Operator is a special symt

. Arithmetic Operators

. Relational Operators

. Logical Operators

. Bitwise Operators

. Assignment Operators

. Ternary or Conditional Operators

14

auto | break case char const continue | default do

double | else enum | extern float for goto if
int long | register | return short signed sizeof | static
struct | switch | typeds oid volatile | while

Programming in € pyBLISHED IN STUCOR

Operator Type

unary operator —» ++ -. Unary operator

4 + - %1% Arithmetic perator
%<0 === Relational operator
Binary operator < &&, | |,! Logical operator
& | <<, >~ " Bitwise operator
_ = 4= .= k= [= U= Assignment operator
Ternary operator —» 2: Tutorizldus.com Ternary or conditional operator

Arithmetic Operators

Given table shows all the
variable A hold 8 and B hold 3.

ed by C Language. Lets suppose

Operata Result
+ 11
- 5
* 24
/ A/B 2
% A%4 0

Relational Operators

Which can be used to check the Condition, it always return true or false. Lets suppose
variable A hold 8 and B hold 3.

Operators | Example (int A=8, B=3) | Result
< A<B False
<= A<=10 True
> A>B True
>= A<=B False
= ==B False

15

Programming in € pyBLISHED IN STUCOR

= Al=(-4) True

Logical Operator
Which can be used to combine more than one Condition?. Suppose you want to
combined two conditions A<B and B>C, then you need to use Logical Operator like (A<B)

&& (B>C). Here && is Logical Operator.

Operator | Example (int A=8, B=3, C=-10) | Result
&& (A<B) && (B>C) False
I (B!=-C) || (A==B) True
! I(B<=-A) True

Truth table of Logical Operator

C1 1C2

=l e T N T

= ||| ™

Assignment operators

Which can be used to 3 ets suppose variable A hold 8

and B hold 3.
Operator | Example (int A=8, B=3) Result

+= A+=B or A=A+B 11
-= A-=3 or A=A+3 5
= A=T or A=A*7 56
/= A/=B or A=A/B 2
Y= A%=5 or A=A%5 3

a=b Value of b will be assigned to a

Increment and Decrement Operator
Increment Operators are used to increased the value of the variable by one

and Decrement Operators are used to decrease the value of the variable by one in C

programs.

16

Programming in € pyUBLISHED IN STUCOR

Both increment and decrement operator are used on a single operand or variable, so it is
called as a unary operator. Unary operators are having higher priority than the other operators
it means unary operators are executed before other operators.

Increment and decrement operators are cannot apply on constant.

The operators are ++, --
Type of Increment Operator
. pre-increment
. post-increment
pre-increment (++ variable)
e In pre-increment first increment the value of variable and then used inside the

expression (initialize into another variable).

111

post-increment (variable ++)

Syntax:

In post-increment first value of variable is used in the expression (initialize into another

variable) and then increment the value of variable.

Syntax:
variable++;

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

nt X,1;

1=10;

X="++i;
printf(“‘Pre-increment\n”);
printf(“x::%d”,x);
printf(“i::%d”,1);

1=10;

X=1t+;

17

Programming in € pyUBLISHED IN STUCOR

printf(“‘Post-increment\n”);
printf(“x::%d”,x);
printf(“i::%d”,1);
}
Output:
Pre-increment
x::10
1::10
Post-increment
x::10
1::11
Type of Decrement Operator
. pre-decrement
. post-decrement
Pre-decrement (-- variable)
In pre-decrement first decrement the value of variable and then used inside the

expression (initialize into another variable).

Syntax:

--variable;

post-decrement (variable --)
In Post-decrement first value of variable is used in the expression (initialize into another

variable) and then decrement the value of variable.

Syntax:

variable--;

Example:
#include<stdio.h>

#include<conio.h>

void main()

{
nt X,1;

1=10;

18

Programming in C

X=--1;
printf(*“Pre-decrement\n”);
printf(“x::%d” x);
printf(“i::%d”,1);

1=10;

X=1--;
printf(“Post-decrement\n”);
printf(“x::%d”,x);
printf(“i::%d”,i);

;
Output:

Pre-decrement

x::9

1::9

Post-decrement
x::10

1::9

Ternary Operator

If any operator is used on three operands or variable is known as Ternary Operator. It can

be represented with ? : . It is also called as conditional operator

PUBLISHED IN STUCOR

Advantage of Ternary Operator

Using ?: reduce the number of line codes and improve the performance of application.

Syntax:

Expression 1? Expression 2: Expression 3;

In the above symbol expression-1 is condition and expression-2 and expression-3 will be
either value or variable or statement or any mathematical expression. If condition will be true

expression-2 will be execute otherwise expression-3 will be executed.

19

Programming in € pyUBLISHED IN STUCOR

True
k"

expi? exp2 ; exp3 .
| A

N -
False

True « | F
? » alse

Print Resuls

¥

111
Conditional Operator flow diagram

find largest number among 3 numbers using ternary operator

#include<stdio.h>

void main()

{

int a,b,c,large;

printf(“Enter any three numbers:”);
scanf(“%d%d%d”,&a,&b,&c);
large=a>b?(a>c?a:c):(b>c?b:c);
printf(“The largest number is:%d”,large);
}

Output:
Enter any three numbers: 12 67 98

The largest number is 98

Special Operators
C supports some special operators

20

Programming in € pyBLISHED IN STUCOR

Operator | Description

sizeof() | Returns the size of an memory location.

& Returns the address of an memory location.

* Pointer to a variable.

Expression evaluation

In C language expression evaluation is mainly dep ends on priority and associativity.
Priority

This represents the evaluation of expression starts from "what" operator.
Associativity

It represents which operator should be evaluated first if an expression is containing

more than one operator with same priority.

Precedence Associativity
1
Left to Right
2
++ incre
-- ment operator Right to Left
& decrement operator
* address of operator
sizeof | pointer
(type) | returns size of a variable
type conversion
3 * multiplication
/ division Left to Right
% remainder
4 + addition :
- subtraction Left to Right
5 << left shift :
. right shift Left to Right
6 < less than
<= less than or equal to :
S oreater than Left to Right
>= greater than or equal to

21

Programming in € pyUBLISHED IN STUCOR

7 == equal to :
= n?) t equal to Left to Right
8 & bitwise AND Left to Right
9 A bitwise EXCLUSIVE OR | Left to Right
10 | bitwise OR Left to Right
11 && logical AND Left to Right
12 I logical OR Left to Right
13 ?: conditional operator Left to Right
14 = assignment
*= assign multiplication
/= assign division
%= assign remainder
+= assign additon
-= assign subtraction Right to Left
= assign bitwise AND
A= assign bitwise XOR
= assign bitwise OR
<< eft shif
>>
15 , Left to Right

Example:

17 - B7/4 " 2+3 - ++a
_—

17 -81472+3 -6

17 -2"2+3 -6

_—

17 -4+3 -6

1.9 INPUT/OUTPUT STATEMENTS
Majority of the programs take data as input, and then after processing the processed data

1s being displayed which is called information. In C programming you can

use scanf() and printf() predefined function to read and print data.

22

Programming in € pyUBLISHED IN STUCOR

Managing Input/Output
I/O operations are useful for a program to interact with users. stdlib is the standard C
library for input-output operations. While dealing with input-output operations in C, there are
two important streams that play their role. These are:
e Standard Input (stdin)
e Standard Output (stdout)

Standard input or stdin is used for taking input from devices such as the keyboard as a
data stream. Standard output or stdout is used for giving output to a device such as a monitor.
For using I/0 functionality, programmers must include stdio header-file within the program.

Reading Character In C
The easiest and simplest of all I/O operations are taking a character as input by reading

that character from standard input (keyboard). getchar() function can be used to read a single

character. This function is alterns

Svntax:

Example:
#include<stdio.h>

void main()

{

char title;

title = getchar();

There is another function to do that task for files: getc which is used to accept a

character from standard input.

Syntax:

int getc(FILE *stream);

Writing Character In C

Similar to getchar() there is another function which is used to write characters, but one at a time.

Syntax:
putchar(var_name);

23

Programming in € pyUBLISHED IN STUCOR

Example:
#include<stdio.h>

void main()

{

char result ='P'";
putchar(result);
putchar("\n");
}
Similarly, there is another function putc which is used for sending a single character to the

standard output.
Syntax:

int putc(int ¢, FILE *stream);

Formatted Input
It refers to an input data w a specific format. This is possible

in C using scanf(). We have alread liar with this function.

Syntax:
scanf("control string", argl, arg2, ..., argn);

Format specifier:

Fo;mat speciﬁ; Type of val;e
%d Integer

%f Float

%lf Double

%c Single character
%os String

%u Unsigned int
%Id Long int

%lf Long double

24

Programming in € pyUBLISHED IN STUCOR

Example:
#include<stdio.h>

void main()

{

int varl= 60;

int varl= 1234;

scanf("%2d %5d", &varl, &var2);
}

Input data items should have to be separated by spaces, tabs or new-line and the
punctuation marks are not counted as separators.
Reading and Writing Strings in C

There are two popular library functions gets() and puts() provides to deal with strings in

C.

gets: The char *gets(char *str) d keeps the string pointed to by

the str and is terminated when the reached. The declaration of gets()
function is:

Syntax:

puts: The function — int puts(const char *str) is used to write a string to stdout but it does not

include null characters. A new line character needs to be appended to the output. The declaration

1S:

Syntax:
int puts(const char *str);

where str is the string to be written in C.

1.10 ASSIGNMENT STATEMENTS

The assignment statement has the following form:

variable = expression/constant/variable;

Its purpose is saving the result of the expression to the right of the assignment operator to

the variable on the left. Here are some rules:

25

Programming in € pyBLISHED IN STUCOR

o If'the type of the expression is identical to that of the variable, the result is saved in the
variable.
o Otherwise, the result is converted to the type of the variable and saved there.

o Ifthe type of the variable is integer while the type of the result is real, the
fractional part, including the decimal point, is removed making it an integer
result.

o Ifthe type of the variable is real while the type of the result is integer, then a
decimal point is appended to the integer making it a real number.

e Once the variable receives a new value, the original one disappears and is no more
available.
Examples of assignment statements,
b =c;/* b is assigned the value of ¢ */
a=09;/* ais assigned the value 9%/
b = c+5; /* b is assigned the value of expr c+5 */
e The expression on the right hand side of the assignment statement can be:

An arithmetic expression;

A relational expression;
A logical expression;
A mixed expression.
For example,
int a;
float b,c ,avg, t;
avg = (b+c) / 2; /*arithmetic expression */
a=Db && c; /*logical expression™*/
a = (b+c) && (b<c); /* mixed expression™®/
1.11 DECISION MAKING STATEMENTS
Decision making statement is depending on the condition block need to be executed or
not which is decided by condition.
If the condition 1s "true" statement block will be executed, if condition is "false" then

statement block will not be executed.

26

Programming in € pyUBLISHED IN STUCOR

In this section we are discuss about if-then (if), if-then-else (if else), and switch statement. In C

language there are three types of decision making statement.

o if
o if-else
e switch

if Statement

if-then is most basic statement of Decision making statement. It tells to program to

execute a certain part of code only if particular condition is true.

Syntax:

if(condition)

{

Statements executed if the condition 1s

if{ condition)
{ 0)

statements; l
h

4
Condition

true

}

If condition
is false

Tuioriald4us.com

e Constructing the body of "if" statement is always optional, Create the body when we
are having multiple statements.
o For a single statement, it is not required to specify the body.
o Ifthe body is not specified, then automatically condition part will be terminated with
next semicolon (;).
Example:
#include<stdio.h>

void main()

{

27

Programming in € pyUBLISHED IN STUCOR

it time=10;

if(time>12)

{

printf(“Good morning”)
}
}
Output:

Good morning
if-else statement
In general it can be used to execute one block of statement among two blocks, in C

language if and else are the keyword in C.

if(condition)

else blocl:

Tutorialdus.com

In the above syntax whenever condition is true all the if block statement are executed
remaining statement of the program by neglecting else block statement. If the condition is false
else block statement remaining statement of the program are executed by neglecting if block
statements.

Example:
#include<stdio.h>

void main()

{

28

Programming in € pyUBLISHED IN STUCOR

int time=10;

if(time>12)

{

printf(“Good morning”)

}

else

{
printf(“good after noon”)
}
}
Output:

Good morning

1.12 SWITCH STATEMENT
A switch statement work with byte, short, char and int primitive data type, it also works

with enumerated types and string.

Syntax:

switch(expression/variable)
{

case valuel:

statements;
break;//optional

case value2:

statements;
break;//optional

default:

statements;

break;//optional
}

29

Programming in € pyBLISHED IN STUCOR

Rules for apply switch
1. With switch statement use only byte, short, int, char data type.
2. You can use any number of case statements within a switch.
3. Value for a case must be same as the variable in switch .

Example:

#include<stdio.h>

void main()

{

Int a;

printf("Please enter a no between 1 and 5: ");

scanf("%d",&a);

switch(a)

{

case 1:

printf("You chose One");

break;

case 2:

printf(""You chose Two");

break;

case 3:

printf("'You chose Three");

break;

case 4:

printf("'You chose Four");

break;

case 5:

printf(""You chose Five.");

break;

default :

printf("Invalid Choice. Enter a no between 1 and 5");

break;

30

Programming in € pyUBLISHED IN STUCOR

Ow-'w-f
=
E

Please enter a no between 1 and 5 3
You choice three
1.13 LOOPING STATEMENTS
Sometimes it is necessary for the program to execute the statement several

times, and C loops execute a block of commands a specified number of times until a condition is
met.
What is Loop?

A computer is the most suitable machine to perform repetitive tasks and can tirelessly do

e has the feature to instruct to do

a task tens of thousands of times.
such repetitive tasks with the help s. The process of repeatedly
executing a collection of stateme itements get executed many
numbers of times based on the co s given in such a logic that the
repetition continues any number e : dition to stop looping those
statements, then this type of loopin8
C supports following types of loe

e while loops

e do while loops

o for loops
while loops

C while loops statement allows to repeatedly run the same block of code until a

condition is met. while loop is a most basic loop in C programming. while loop has one control
condition, and executes as long the condition is true. The condition of the loop is tested before

the body of the loop is executed, hence it is called an entry-controlled loop.

31

Programming in € pyUBLISHED IN STUCOR

Syntax:

while (condition)

{

statement(s);

Increment statement;

}

Example:
#include<stdio.h>

int main ()

{
/* local variable Initialization */
int n = 1,times=5;
/* while loops execution */
while(n <= times)

{

printf(""C while loops: %d\n", 4

n++ ;

C while loops:1
C while loops:2
C while loops:3
C while loops:4
C while loops:5

32

Start

\
\
\ _4."

N
<

~ ~
P NG
_~ Evaluate ™

~.Condition_~
\\.\ _/

\T/

true

s

Execute
Statements

false

Programming in € pyUBLISHED IN STUCOR

Do..while loops:
C do while loops are very similar to the while loops, but it always executes the code
block at least once and furthermore as long as the condition remains true. This is an exit-

controlled loop.

Syntax: .
(Start)
dO Y
{ Execute
Statements
statement(s); l
}while(condition);
Evaluate """"'»—tm o
Q.0|1dilioq,.f-- g
false
Example:
(Stop)
#include<stdio.h> ~—
int main ()
{

/* local variable Initialization */

int n = 1,times=5;

/* do loops execution */
do
{
printf("C do while loops: %d\n", n);
n=n+1;
}while(n <= times);
return 0;
}
Output:
C do while loops:1
C do while loops:2
C do while loops:3

33

Programming in € pyUBLISHED IN STUCOR

C do while loops:4
C do while loops:5
for loops
C for loops is very similar to a while loops in that it continues to process a block of code
until a statement becomes false, and everything is defined in a single line. The for loop is

also entry-controlled loop.

Syntax:
(Start
for (init; condition; increment)) -
{ v
statement(s); Declp
i Counter
} Increment
Counter
A
4
_~Evaluate ™ Execute
_Qonditior)/" Statements
Stop)
Example: ~
#include<stdio.h>
int main ()

/* local variable Initialization */

int n,times=5;;

/* for loops execution */
for(n=1;n<=times;n=n+1)

d
printf("C for loops: %d\n", n);

}

return O;

34

Programming in € pyUBLISHED IN STUCOR

Output:
C for loops:1

C for loops:2
C for loops:3
C for loops:4
C for loops:5
C Loop Control Statements

Loop control statements are used to change the normal sequence of execution of the loop.

Statement Syntax Description

break break; It is used to terminate loop or switch statements.
statement

continue continue; ecution of current loop

statement ol to the loop for the next
goto goto labelName; m execution sequence to some
statement | labelName:

statement;

1.14 PRE-PROCESSOR DIRE
The C preprocessor is a micro processor that is used by compiler to transform your code
before compilation. It is called micro preprocessor because it allows us to add macros.

Preprocessor directives are executed before compilation.

Expanded
— . Code
All preprocessor directives starts with hash # symbol.

Let's see a list of preprocessor directives.

o #include
o #define
o #undef

35

Programming in € pyBLISHED IN STUCOR

o #ifdef
o #ifndef
o #if

o f#else

o f#elif

o #endif
o #error

o #pragma

S.No Pl;ieigzgtciiissor Purpose Syntax
. Used to paste gode of given file into current tinclude <filename>
1 #include file. It is used include system-deﬁned and‘ s lude “filename”
user-defined header files. If included file is
not found, compiler renders err(())r..
Used to define constant or micr
2 #define substitution. It can use any basic data type. fidefine P13.14
3 sundef Used to undefine the constant or macro #define P1 3.14
defined by #deﬁne.__ #undef PI
Checks if macro is defined by #define. If #ifdef MACRO
4 #ifdef yes, it executes the code otherwise #else /Icode
code is executed, if presentl_- #endif
Checks if macro is not defined by #define. | #ifndef MACRO
5 #ifndef If yes, it executes the code otherwise #else | //code
code is executed, if presentm #endif
Evaluates the expression or condition. If .)
N . : #if expression
6 yip condltlf)n 1S trug, 1t executes the cpde . Jeode
otherwise #elseif or #else or #endif code 1s)
#endif
executed.
#if expression
Evaluates the expression or condition if //if code
7 #else condition of #if is false. It can be used with | #else
#if, #elif, #ifdef and #ifndef directives. /lelse code
#endif
Indicates error. The compiler gives fatal #error First include then ¢
8 #error error if #error directive 1s found and skips ompile
further compilation process.
Used to provide additional information to
9 Hpragma the compiler. The #pragma directive is used | #pragma token
by the compiler to offer machine or
operating-system feature.

Programming in € pyBLISHED IN STUCOR

1.15 COMPILATION PROCESS

C is a high level language and it needs a compiler to convert it into an executable code so that the
program can be run on our machine.

How do we compile and run a C program?

Below are the steps we use on an Ubuntu machine with gcc compiler.

We first create a C program using an editor and save the file as filename.c

$ vi filename.c
The diagram on right shows a simple program to add two numbers.

Then compile it using below command.
$ gcc —Wall filename.c —o filename

The option -Wall enables all compiler’s warning messages. This option is recommended to

generate better code.

The option -o is used to specify output file. name. If we So not use this option, then an output file
with name a.out is generated. “l VI “

After compilation executable is generated and we run the generated executable using below
command.
$./filename

What goes inside the compilation

Compiler converts a C program i age four phases for a C program to

become an executable:

1. Pre-processing
2. Compilation
3. Assembly

4. Linking

By executing below command, We get the all intermediate files in the current directory along

with the executable.
$gcc —Wall —save-temps filename.c —o filename

The following screenshot shows all generated intermediate files.

Let us one by one see what these intermediate files contain.

37

Programming in € pyUBLISHED IN STUCOR

Pre-processing

This 1s the first phase through which source code is passed. This phase include:

e Removal of Comments
e Expansion of Macros
e Expansion of the included files.

The preprocessed output is stored in the filename.i. Let’s see what’s inside filename.i:
using $vi filename.i

In the above output, source file is filled with lots and lots of info, but at the end our code
is preserved.
Analysis:

e printf contains now a + b rather than add(a, b) that’s because macros have expanded.
e Comments are stripped off.
o #include<stdio.h> is miss

expanded and included in ¢

Compiling

The next step is to comp

code. So header files has been

an; intermediate compiled output
file filename.s. This file is in asséd t’s see through this file using $vi

filename.s

Assembly

This file contain machine level instructions. At this phase, only existing code is converted into
machine language, the function calls like printf() are not resolved. Let’s view this file using $vi
filename.o
Linking

This is the final phase in which all the linking of function calls with their definitions are
done. Linker knows where all these functions are implemented. Linker does some extra work
also, it adds some extra code to our program which is required when the program starts and ends.
For example, there is a code which is required for setting up the environment like passing
command line arguments. This task can be easily verified by using $size filename.o and $size
filename. Through these commands, we know that how output file increases from an object file

to an executable file. This is because of the extra code that linker adds with our program.

(l'l'.l.l'.'l..lll.l'.ll.lIII.I.'.I.I.Ill....l'..llll'.l.l..Il..lll.l'.ll.lIIl.l.'.l'l.Il'...ll'l.lllll.‘

38

Programming in € pyBLISHED IN STUCOR

UNIT II ARRAYS AND STRINGS
Introduction to Arrays: Declaration, Initialization — One dimensional array — Example Program:
Computing Mean, Median and Mode - Two dimensional arrays — Example Program: Matrix
Operations (Addition, Scaling, Determinant and Transpose) - String operations: length, compare,

concatenate, copy — Selection sort, linear and binary search

INTRODUCTION TO ARRAYS: DECLARATION, INITIALIZATION - ONE
DIMENSIONAL ARRAY

Array in C language is a collection or group of elements (data). All the elements of ¢
array are homogeneous (similar). It has contiguous memory location.

C array is beneficial if you have to store similar elements. Suppose you have to store
marks of 50 students, one way to do this is allotting 50 variables. So it will be typical and hard to

manage. For example we cannot ariables with only 1 or 2 lines of

code.
Another way to do this is 3 access the elements easily. Only
few lines of code is required to acc

Advantage of C Array

e the elements of an array easily.
3) Easy to sort data: To sort the €lements of afre a few lines of code only.

4) Random Access: We can access any element randomly using the array.

Disadvantage of C Array

1) Fixed Size: Whatever size, we define at the time of declaration of array, we can't exceed the
limit. So, it doesn't grow the size dynamically like Linked List.

Declaration of C Array

We can declare an array in the c language in the following way.

data_type array_name[array_size];

Now, let us see the example to declare array.
int marks[5];

Here, int is the data_type, marks is the array name and 5 is the array_size.

39

Programming in € pyUBLISHED IN STUCOR

Initialization of C Array
A simple way to initialize array is by index. Notice that array index starts from 0 and
ends with [SIZE - 1].
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;

‘ 30 ‘ 00 | 70 | 85 | 75 ‘
marks[0] marks[1] marks[2] marks[3] marks[4]

Initialization of Array

Example 1:
#include<stdio.h>

int main(){
int 1=0;

int marks[5];//declaration of array

marks[0]=80;//initialization of array K SHARE - SE
marks[1]=60; 5€£ RVE
marks[2]=70;
marks[3]=85;
marks[4]=75;

//traversal of array
for(i=0;1<5;i++) {
printf("%d \n",marks[i]);
}//end of for loop

return O;

}

Qutput:
80

60

40

Programming in € pyUBLISHED IN STUCOR

70

85

75

C Array: Declaration with Initialization

We can initialize the c array at the time of declaration. Let's see the code.
int marks[5]={20,30,40,50,60};

In such case, there is no requirement to define size. So it can also be written as the following
code.

int marks[]={20,30,40,50,60};

Example 2:

#include<stdio.h>

int main(){

int 1=0;
int marks[5]={20,30,40,50,60};//d
//traversal of array
for(i=0;i<5;1++)

{

printf("%d \n",marks[i]);
}
return 0;
}

QOutput:
20

30
40
50
60

TWO DIMENSIONAL ARRAYS (2 D arrays)

The two dimensional array in C language is represented in the form of rows and

columns, also known as matrix. It is also known as array of arrays or list of arrays.

41

Programmingin G pyBLISHED IN STUCOR

The two dimensional, three dimensional or other dimensional arrays are also known
as multidimensional arrays.
Declaration of two dimensional Array in C

We can declare an array in the ¢ language in the following way.

data_type array_name[sizel][size2];

A simple example to declare two dimensional array is given below.
int twodimen[4][3];
Here, 4 1s the row number and 3 is the column number.
Initialization of 2D Array in C
A way to initialize the two dimensional array at the time of declaration is given below.
int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6} };
Example:
#include<stdio.h>
int main(){
int i=0,j=0;
intarr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6} };
//traversing 2D array
for(i=0;i1<4;1++){
for(j=0:j<3;++){
printf("arr[%d] [%d] = %d \n",1,j,arr[1][j]);
}//end of j
}//end of 1

return O;

42

Programming in € pyBLISHED IN STUCOR

STRING OPERATIONS
What is meant by String?
String in C language is an array of characters that is terminated by \0 (null character).

There are two ways to declare string in ¢ language.

1. By char array
2. By string literal
Let's see the example of declaring nguage.
char ch[10]={Y', 'a', 'V', 'a','t', 'p', ' ' '
As you know well, array index starts from 0, so it will be represented as in the figure

given below.

While declaring string, size is not mandatory. So you can write the above code as given
below:
char ch[]={','a', 'v', 'a,'t", 'p', '0', "1, 'n', 't', \0'};

You can also define string by string literal in C language. For example:
char ch[]="javatpoint";

In such case, \0' will be appended at the end of string by the compiler.

Difference between char array and string literal

43

Programming in € pyUBLISHED IN STUCOR

The only difference is that string literal cannot be changed whereas string declared by
char array can be changed.
Example:
Let's see a simple example to declare and print string. The '%s' is used to print string in c
language.
#include<stdio.h>
#include <string.h>
int main(){
char ch[11]={Y','a', V', 'a",'t', 'p', '0', 'I', 'n', 't', \0'};
char ch2[11]="javatpoint";
printf("Char Array Value is: %s\n", ch);
printf("String Literal Value is: %s\n". ch2);

return O;

}

Output:
Char Array Value is: javatpoint

String Literal Value is: javatpoint
1. String operations: length-strien ¢+ SHARE « §pn
The strlen() function returns the length of the given string. It doesn't count null
character \0'.
Example:
#include<stdio.h>
#include <string.h>
int main(){
char ch[20]={Y', 'a', 'v','a",'t', 'p', '0', 'I', 'n', 't', \0'};
printf("Length of string is: %d",strlen(ch));

return O;

}

Output:
Length of string is: 10

44

Programming in € pyUBLISHED IN STUCOR

2. String operations: compare-strcmp()
The strcmp(first string, second string) function compares two string and returns 0 if
both strings are equal.
Here, we are using gets() function which reads string from the console.
Example:
#include<stdio.h>
#include <string.h>
int main(){
char str1[20],str2[20];
printf("Enter 1st string: ");
gets(strl);//reads string from console
printf("Enter 2nd string: ");
gets(str2);
if(strcmp(strl,str2)==0)
printf(" Strings are equal");
else
printf("Strings are not equal");

return O;

}

Output:
Enter 1st string: hello

Enter 2nd string: hello
Strings are equal
3. String operations: concatenate-strcat()
The strcat(first_string, second string) function concatenates two strings and result is
returned to first string.
Example:
#include<stdio.h>
#include <string.h>
int main(){

char ch[10]={h",'e', "I, 'I', '0', "\0'};

45

Programming in € pyUBLISHED IN STUCOR

char ch2[10]={'c',"\0'};
strcat(ch,ch2);
printf("Value of first string is: %s",ch);

return O;

}

Output:
Value of first string is: helloc

4. String operations: copy-strcpy()

The strcpy(destination, source) function copies the source string in destination.
Example:
#include<stdio.h>

#include <string.h>

int main(){

char ch[20]={Y', 'a', V', 'a",'t, p',
char ch2[20];
strcpy(ch2,ch);
printf("Value of second string is:

return O;

}
QOutput:

Value of second string is: javatpoint

46

Programming in € pyBLISHED IN STUCOR

UNIT III FUNCTIONS AND POINTERS
Introduction to functions: Function prototype, function definition, function call, Built-in
functions (string functions, math functions) — Recursion — Example Program: Computation of
Sine series, Scientific calculator using built-in functions, Binary Search using recursive functions
— Pointers — Pointer operators — Pointer arithmetic — Arrays and pointers — Array of pointers —
Example Program: Sorting of names — Parameter passing: Pass by value, Pass by reference —
Example Program: Swapping of two numbers and changing the value of a variable using pass by

reference

3.1 INTRODUCTION TO FUNCTIONS
C function is a self-contained block of statements that can be executed repeatedly

whenever we need it.

Benefits of using function in C
e The function provides modularit
e The function provides reusable ¢
e In large programs, debugging ang
e The program can be modularized
e Separate function independently cé
There are two types of functions it aﬁﬁ*.
e Built-in(Library) Functions
These functions are provided by the system and stored in the library, therefore it is also
called Library Functions.
e.g. scanf(), printf(), strcpy, strlwr, strcmp, strlen, strcat etc.
To use these functions, you just need to include the appropriate C header files.
e User Defined Functions
These functions are defined by the user at the time of writing the program.
Parts of Function
1. Function Prototype (function declaration)

2. Function Definition

3. Function Call

47

Programming in € pyUBLISHED IN STUCOR

1. Function Prototype
Syntax:

datatype functionname(parameter list)

Example:
int addition();

2. Function Definition

Syntax:

returnType functionName(Function
arguments)

{
//body of the function

}

Example:
int addition()

{

}
3. Calling a function in C

Syntax:

functionName(Function arguments)

Program to illustrate Addition of Two Numbers using User Defined Function
Example:
#include<stdio.h>
/* function declaration */
int addition();
int main()
{
/* local variable definition */

int answer;

48

Programming in € pyUBLISHED IN STUCOR

/* calling a function to get addition value */
answer = addition();
printf("The addition of two numbers is: %d\n",answer);
return O;
}
/* function returning the addition of two numbers */
int addition()
{
/* local variable definition */
int num1 = 10, num2 = 5;
return num1-+num?2;
}

Output:
The addition of two numbers is: 153

3.2 PARAMETER PASSING: P!

When a function gets exec) ecution control is transferred from

calling function. When the exg ; el from calling function to called
function it may carry one or T data valu@s. These data values are called
as parameters.
Parameters are the data values that are passed from calling function to called function.
In C, there are two types of parameters and they are as follows...
e Actual Parameters
e Formal parameters
The actual parameters are the parameters that are specified in calling function.
The formal parameters are the parameters that are declared at called function. When a
function gets executed, the copy of actual parameter values are copied into formal parameters.
In C Programming Language, there are two methods to pass parameters from calling
function to called function and they are as follows...

e (Call by value

49

Programming in € pyUBLISHED IN STUCOR

e (all by reference
Call by Value
In call by value parameter passing method, the copy of actual parameter values are
copied to formal parameters and these formal parameters are used in called function. The
changes made on the formal parameters does not affect the values of actual parameters .
That means, after the execution control comes back to the calling function, the actual parameter
values remains same. For example consider the following pro gram...
Example:
#include <stdio.h>
#include<conio.h>
void main(){
int numl, num?2 ;
void swap(int,int) ; // function de
clrscr() ;
numl =10 ;

num?2 = 20 ;

getch() ;
}

void swap(int a, int b) // called function
{

int temp ;

temp=a;

a=b;

b =temp ;
}

Output:
Before swap: num1 = 10, num2 = 20

After swap: numl = 10, num2 = 20

50

Programming in € pyUBLISHED IN STUCOR

In the above example program, the variables num1 and num?2 are called actual
parameters and the variables a and b are called formal parameters. The value of num1 is copied
into a and the value of num?2 is copied into b. The changes made on variables a and b does not
affect the values of num1 and num2.

Call by Reference

In Call by Reference parameter passing method, the memory location address of the
actual parameters is copied to formal parameters. This address is used to access the memory
locations of the actual parameters in called function. In this method of parameter passing, the
formal parameters must be pointer variables.

That means in call by reference parameter passing method, the address of the actual
parameters is passed to the called function and is received by the formal parameters (pointers).

Whenever we use these formal parameters in called function, they directly access the memory

locations of actual parameters. S e formal parameters effects the

values of actual parameters. For ing program...

Example:
#include <stdio.h>
#include<conio.h>
void main(){

int numl, num?2 ;

void swap(int *,int *) ; // functiot

clrscr() ;
numl =10 ;
num?2 = 20 ;

printf("\nBefore swap: numl = %d, num2 = %d", num1, num?2) ;
swap(&numl, &num?) ; // calling function
printf("\nAfter swap: numl = %d, num2 = %d", num1, num?2);
getch() ;
}

void swap(int *a, int *b) // called function

{

int temp ;

51

Output:

Programming in € pyUBLISHED IN STUCOR

temp = *a ;
kg = *p ;
*b = temp ;

;

Before swap: num1 = 10, num2 = 20
After swap: num1 = 20, num2 = 10

In the above example program, the addresses of variables num1 and num?2 are copied to
pointer variables a and b. The changes made on the pointer variables a and b in called function

effects the values of actual parameters num1 and num?2 in calling function.

3.3 BUILT-IN FUNCTIONS (STRING FUNCTIONS , MATH FUNCTIONS)

g YT

There are many important string functions defined in "string.h" library.

No. Function

1) | strlen(string name)

2) strcpy(destination, source) (%
- e

strcat(first_string,

3) second_string)
4) strcmp(ﬁrs.t_stﬁng, Compares.the first string with second string. If both strings
second_string) are same, it returns 0.
5) strrev(string) Returns reverse string.
6) strlwr(string) Returns string characters in lowercase.
7) strupr(string) Returns string characters in uppercase.
Math Functions

C Programming allows us to perform mathematical operations through the functions
defined in <math.h> header file. The <math.h> header file contains various methods for

performing mathematical operations such as sqrt(), pow(), ceil(), floor() etc.

52

Programming in € pyUBLISHED IN STUCOR

There are various methods in math.h header file. The commonly used functions of math.h

header file are given below.

No. Function Description

Rounds up the given number. It returns the integer value which is

1) | ceil(number) greater than or equal to given number.

Rounds down the given number. It returns the integer value which

2) | floor(number) is less than or equal to given number.

3) | sqrt(number) Returns the square root of given number.

4) pow(base, Returns the power of given number.
exponent)
5) | abs(number) Returns the absolute value of given number.
Example:

#include<stdio.h>
#include <math.h>
int main(){
printf("\n%f",ceil(3.6));
printf("\n%f",ceil(3.3));
printf("\n%f",floor(3.6));
printf("\n%f",floor(3.2));
printf("\n%f",sqrt(16));
printf("\n%f",sqrt(7));
printf("\n%f",pow(2,4));
printf("\n%f",pow(3,3));
printf("\n%d",abs(-12));
return 0;
}

Qutput:
4.000000

4.000000
3.000000

53

Programmingin G pyBLISHED IN STUCOR

3.000000
4.000000
2.645751
16.000000
27.000000
12

3.4 RECURSION

When function is called within the same function, it is known as recursion in C. The
function which calls the same function, is known as recursive function.

A function that calls itself, and doesn't perform any task after function call, is know
as tail recursion. In tail recursion, we generally call the same function with return statement. An
example of tail recursion is given below.

Let's see a simple example of recursion.
recursionfunction(){

recursionfunction();//calling self function

}

Example:
#include<stdio.h>

int factorial (int n)
{
if (n<0)
return -1; /*Wrong value*/
if (n==0)
return 1; /*Terminating condition*/
return (n * factorial (n -1));
}
int main(){
int fact=0;
fact=factorial(5);
printf("\n factorial of 5 is %d",fact);

54

Programming in € pyUBLISHED IN STUCOR

return O;

}

Output:
factorial of 5 is 120

We can understand the above program of recursive method call by the figure given below:

return 5 * factorial(4) = 120
‘ return 4 * factorial(3) = 24
L return 3 * factorial(2) = 6
L return 2 * factorial(1) = 2

| return 1 * factorial(0) = 1

1*2*%3%4*5=120

Fig: Recursion

3.5 POINTERS

The pointer in C language is

Ny Y

points to an address of a value.

address I value

pointer variable

Advantage of pointer

1) Pointer reduces the code and improves the performance, it is used to retrieving strings,
trees etc. and used with arrays, structures and functions.

2) We can return multiple values from function using pointer.

3) It makes you able to access any memory location in the computer's memory.

Usage of pointer

There are many usage of pointers in ¢ language.

55

Programming in € pyUBLISHED IN STUCOR

1) Dynamic memory allocation

In ¢ language, we can dynamically allocate memory using malloc() and calloc() functions
where pointer is used.
2) Arrays, Functions and Structures

Pointers in ¢ language are widely used in arrays, functions and structures. It reduces the
code and improves the performance.

Symbols used in pointer

Symbol Name Description

& (ampersand sign) | address of operator | determines the address of a variable.

* (asterisk sign) indirection operator | accesses the value at the address.

Address Of Operator

The address of operator iriable. But, we need to use %u to
display the address of a variable.
Example:
#include<stdio.h>
int main(){
int number=50;
printf("value of number is %d, address of numb¢€t 1s %ou",number,&number);

return O;

§
Output

value of number 1s 50, address of number 1s fff4
Declaring a pointer
The pointer in ¢ language can be declared using * (asterisk symbol).
int *a;//pointer to int
char *c;//pointer to char

Pointer example

An example of using pointers printing the address and value is given below.

56

Programming in € pyUBLISHED IN STUCOR

p number

(pointer) (normal variable)

As you can see in the above figure, pointer variable stores the address of number variable
1.e. fff4. The value of number variable is 50. But the address of pointer variable p is aaa3.
By the help of * (indirection operator), we can print the value of pointer variable p.
Let's see the pointer example as explained for above figure.
#include<stdio.h>
int main(){

int number=50;

int *p;
p=&number;//stores the address of
printf(" Address of p variable is %
printf("Value of p variable is %d \n

return O;

}

Qutput
Address of number variable is fft4

Address of p variable is fff4
Value of p variable is 50

NULL Pointer
A pointer that is not assigned any value but NULL is known as NULL pointer. If you

don't have any address to be specified in the pointer at the time of declaration, you can assign
NULL value. It will a better approach.

int *p=NULL;

In most the libraries, the value of pointer is 0 (zero).

Example: Pointer Program to swap 2 numbers without using 3rd variable

#include<stdio.h>

57

Programming in € pyUBLISHED IN STUCOR

int main(){

int a=10,b=20,*p1=&a,*p2=&b;

printf("Before swap: *p1=%d *p2=%d",*p1,*p2);

*pl=*pl+¥p2;

*p2="pl-*p2;

*pl=*pl-*p2;

printf("\nAfter swap: *p1=%d *p2=%d",*p1,*p2);
return O;

}

Output:
Before swap: *p1=10 *p2=20
After swap: *p1=20 *p2=10

3.6 POINTER TO POINTER

In C pointer to pointer concept, a pointer refers to the address of another pointer.
In ¢ language, a pointer can point to the address of another pointer which points to the address of

a value. Let's understand it by the diagram given below:

. ‘ N |
address —_— address w value

pointer pointer

Let's see the syntax of pointer to pointer.

int **p2;

Example:
Let's see an example where one pointer points to the address of another pointer.
v v
fffo fff2 fff4
fff2 fifd 50
p2 p number

variable

58

Programming in € pyUBLISHED IN STUCOR

As you can see in the above figure, p2 contains the address of p (fff2) and p contains the
address of number variable (fff4).
Example:
#include<stdio.h>
int main(){
int number=50;
int *p;//pointer to int
int **p2;//pointer to pointer
p=&number;//stores the address of number variable
p2=&p;
printf(" Address of number variable is %x \n",&number);
printf(" Address of p variable is %x \n",p);
printf("Value of *p variable is %d \n",*p);
printf(" Address of p2 variable is %x \n",p2);
printf("Value of **p2 variable is %d \n",*p);

return O;

}
Output:

Address of number variable is ffw
Address of p variable is fff4

Value of *p variable is 50

Address of p2 variable is fff2
Value of **p variable is 50
3.7 POINTER ARITHMETIC
In C pointer holds address of a value, so there can be arithmetic operations on the pointer

variable. Following arithmetic operations are possible on pointer in C language:

o Increment

o Decrement

o Addition

o Subtraction

59

Programmingin G pyBLISHED IN STUCOR

o Comparison
Incrementing Pointer in C
Incrementing a pointer is used in array because it is contiguous memory location.
Moreover, we know the value of next location.
Increment operation depends on the data type of the pointer variable. The formula of

incrementing pointer is given below:

new_address= current address + 1 * size of(data type)

For 32 bit int variable, it will increment to 2 byte.

For 64 bit int variable, it will increment to 4 byte.

Let's see the example of incrementing pointer variable on 64 bit OS.
Example:

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable
printf(" Address of p variable is %u \n",p);

p=p+1;

printf(" After increment: Address of p variable is %u \n",p);

return O;

}

Qutput:
Address of p variable is 3214864300

After increment: Address of p variable is 3214864304
Decrementing Pointer in C
Like increment, we can decrement a pointer variable. The formula of decrementing

pointer is given below:

new_address= current address -1 * size of(data type)

For 32 bit int variable, it will decrement to 2 byte.

60

Programmingin G pyBLISHED IN STUCOR

For 64 bit int variable, it will decrement to 4 byte.

Let's see the example of decrementing pointer variable on 64 bit OS.
Example:

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(" Address of p variable is %u \n",p);

p=p-1;

printf(" After decrement: Address of p variable is %u \n",p);

}

Output:
Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296
Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is

given below:

new_address= current_address + (number * size of(data type))

For 32 bit int variable, 1t will add 2 * number.

For 64 bit int variable, it will add 4 * number.

Let's see the example of adding value to pointer variable on 64 bit OS.
Example:

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable
printf(" Address of p variable is %u \n",p);

p=p+3; //adding 3 to pointer variable

61

Programmingin G pyBLISHED IN STUCOR

printf(" After adding 3: Address of p variable is %u \n",p);

return O;

}

Output:
Address of p variable is 3214864300

After adding 3: Address of p variable is 3214864312

As you can see, address of p is 3214864300. But after adding 3 with p variable, it is
3214864312 i.e. 4*3=12 increment. Since we are using 64 bit OS, it increments 12. But if we
were using 32 bit OS, it were incrementing to 6 only i.e. 2*3=6. As integer value occupies 2 byte
memory in 32 bit OS.
C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. The formula of

subtracting value from pointer variable is given below:

new_address= current address - (number * size of(data type))

For 32 bit int variable, it will subtract 2 * number.

For 64 bit int variable, it will subtract 4 * number.

Let's see the example of subtracting value from pointer variable on 64 bit OS.
Example:

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(" Address of p variable is %u \n",p);

p=p-3; //subtracting 3 from pointer variable

printf(" After subtracting 3: Address of p variable is %u \n",p);

return O;

}

Output:
Address of p variable is 3214864300

62

Programming in € pyUBLISHED IN STUCOR

After subtracting 3: Address of p variable is 3214864288

You can see after subtracting 3 from pointer variable, it is 12 (4*3) less than the previous
address value.
3.8 ARRAYS AND POINTERS

Arrays are closely related to pointers in C programming but the important difference
between them is that, a pointer variable takes different addresses as value whereas, in case of

array it is fixed.

This can be demonstrated b
#include <stdio.h>
int main()

{
char charArr[4];
int 1;
for(i=0; 1 <4; ++1)
{
printf(" Address of charArr[%d] = %u\n", 1, &charArr][i]);

}

return O;
}
When you run the program, the output will be:
Address of charArr[0] = 28{f44
Address of charArr[1] = 28{f45
Address of charArr[2] = 28{f46
Address of charArr[3] = 28ff47

Note: You may get different address of an array.

63

Programming in € pyUBLISHED IN STUCOR

Notice, that there is an equal difference (difference of 1 byte) between any two consecutive
elements of array charArr.
But, since pointers just point at the location of another variable, it can store any address.
Relation between Arrays and Pointers
Consider an array:
int arr[4];
arr

arr[0] arr[l] arr[3] arr[4]

Filgure: Array as Poinber
In C programming, name of the array always points to address of the first element of an

array.

In the above example, arr a ress of the first element.
&arr[0] is equivalent to arr

Since, the addresses of botl arr and &arr[0] are also the same.
arr[0] is equivalent to *arr (value o
Similarly,
&arr[1] 1s equivalent to (arr + 1) A
&arr[2] is equivalent to (arr + 2)

&arr[3] is equivalent to (arr + 3) , arr[3 quivalent to “(arr + 3).

&arr[i] is equivalent to (arr + 1) AND, arr[1] is equivalent to *(arr + 1).

In C, you can declare an array and can use pointer to alter the data of an array.
Example: Program to find the sum of six numbers with arrays and pointers
#include <stdio.h>
int main()

{
int 1, classes[6],sum = 0;
printf("Enter 6 numbers:\n");

for(i=0; 1< 6; ++1)

64

Programming in € pyUBLISHED IN STUCOR

// (classes + 1) 1s equivalent to &classes|[i]
scanf("%d",(classes + 1));
// *(classes + 1) is equivalent to classes|[i]
sum += *(classes + 1);

}

printf("Sum = %d", sum);

return 0;

}

Qutput:
Enter 6 numbers:

D W WL A W N

Sum =21

3.9 ARRAY OF POINTERS

An array of pointers would be an array that holds memory locations. Such a

construction is often necessary in the C programming language. Remember that an array of
pointers is really an array of strings.
Example:
#include <stdio.h>
const int ARRAY SIZE =35;
int main ()
{
/* first, declare and set an array of five integers: */
int array_of integers[] = {5, 10, 20, 40, 80};

/* next, declare an array of five pointers-to-integers: */

65

Programming in € pyUBLISHED IN STUCOR

int 1, *array of pointersfARRAY SIZE];
for (1=0;1<ARRAY SIZE; i++)
{
/* for indices 1 through 5, set a pointer to
point to a corresponding integer: */
array of pointers[i] = &array of integers[i];
}
for (1=0;1<ARRAY_SIZE; i++)
{
/* print the values of the integers pointed to
by the pointers: */
printf("array of integers[%d] = %d\n", i, *array of pointers[i]);

}

return O;
}
Output:
array of integers[0] =5
array of integers[1] =10
array of integers[2] =20
array of integers[3] =40
array of integers[4] = 80

UNIT IV STRUCTURES

Structure - Nested structures — Pointer and Structures — Array of structures — Example Program

using structures and pointers — Self referential structures — Dynamic memory allocation - Singly

linked list - typedef

4.1 STRUCTURE
Structure in ¢ language is a user defined datatype that allows you to hold different
type of elements.

Each element of a structure is called a member.

66

Programmingin G pyBLISHED IN STUCOR

It works like a template in C++ and class in Java. You can have different type of
elements in it.

It is widely used to store student information, employee information, product
information, book information etc.
Defining structure

The struct keyword is used to define structure. Let's see the syntax to define structure in c.

struct structure _name

{

data type memberl;
data type member2;

data type memberN;
I

Let's see the example to define structure for employee in c.
struct employee
{ intid;

char name[50];

float salary;
s

Here, struct is the keyword, employee is the tag name of

structure; id, name and salary are the members or fields of the structure. Let's understand it by
the diagram given below:

tag or structure tag
struct keyword

T

struct employeeg{

int id; > members or
charname[50], —* fields of
floatsalary;, ——> structure
h

67

Programmingin G pyBLISHED IN STUCOR

Declaring structure variable
We can declare variable for the structure, so that we can access the member of structure
easily. There are two ways to declare structure variable:
1. By struct keyword within main() function
2. By declaring variable at the time of defining structure.
1st way:
Let's see the example to declare structure variable by struct keyword. It should be
declared within the main function.
struct employee
{ intid;
char name[50];
float salary;
3
Now write given code inside the main() function.
struct employee el, €2;
2nd way:
Let's see another way to declare variable at the time of defining structure.
struct employee
{ intid;
char name[50];
float salary;
rel,e2;
Which approach is good
But if no. of variable are not fixed, use 1st approach. It provides you flexibility to declare
the structure variable many times.
If no. of variables are fixed, use 2nd approach. It saves your code to declare variable in
main() fuction.
Accessing members of structure
There are two ways to access structure members:
1. By . (member or dot operator)

2. By -> (structure pointer operator)

68

Programmingin G pyBLISHED IN STUCOR

Let's see the code to access the id member of p/ variable by . (member) operator.
pl.id

Example:
#include<stdio.h>
#include <string.h>
struct employee
{ intid;

char name[50];
tel; //declaring el variable for structure
int main()

{

//store first employee information

el.id=101;

strcpy(el.name, "Sonoo Jaiswal");//copying string into char array
//printing first employee information

printf("employee 1 id : %d\n", el.id);

printf("employee 1 name : %s\n", el.name);

return O;

}
QOutput: » = o

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

4.2 NESTED STRUCTURES
Nested structure in C language can have another structure as a member. There are two
ways to define nested structure in ¢ language:
1. By separate structure
2. By Embedded structure
Separate structure
We can create 2 structures, but dependent structure should be used inside the main

structure as a member. Let's see the code of nested structure.

69

Programming in € pyBLISHED IN STUCOR

struct Date
{
int dd;
int mm;
int yyyy;
|5
struct Employee
{
int id;
char name[20];
struct Date doj;
fempl;

As you can see, doj (date f type Date. Here doj is used as a

member in Employee structure. In ructure in many structures.
Embedded structure
We can define structure wi juires less code than previous way.
But it can't be used in many struc
struct Employee
{
int id;
char name[20];
struct Date
{
int dd;
int mm;
int yyyy;
ydoj;
yempl;
Accessing Nested Structure

We can access the member of nested structure by Outer Structure.

Nested Structure.member as given below:

70

Programming in € pyBLISHED IN STUCOR

el.doj.dd

el.doj.mm

el.doj.yyyy
4.3 ARRAY OF STRUCTURES

There can be array of structures in C programming to store many information of different
data types. The array of structures is also known as collection of structures.
Let's see an example of structure with array that stores information of 5 students and prints it.
#include<stdio.h>
#include <string.h>
struct student {
int rollno;
char name[10];
I
int main(){

nt 1;

struct student st[5];
printf("Enter Records of 5 students"
for(i=0:i<5:i++) { geet
printf("\nEnter Rollno:");
scanf("%d",&st[1].rollno);
printf("\nEnter Name:");
scanf("%s",&st[1].name);
}

printf("\nStudent Information List:");

for(i=0;i<5;i++){

printf("\nRollno:%d, Name:%s",st[i].rollno,st[1].name);

}

return O;

}

71

Programming in C

Output:
Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo
Enter Rollno:2

Enter Name:Ratan
Enter Rollno:3

Enter Name:Vimal
Enter Rollno:4

Enter Name:James
Enter Rollno:5

Enter Name:Sarfraz
Student Information List:
Rollno:1, Name:Sonoo
Rollno:2, Name:Ratan
Rollno:3, Name:Vimal
Rollno:4, Name:James

Rollno:5, Name:Sarfraz

4.4 DYNAMIC MEMORY ALI'OCATIO

PUBLISHED IN STUCOR

The concept of dynamic memory allocation in ¢ language enables the C programmer to

allocate memory at runtime. Dynamic memory allocation in ¢ language is possible by 4

functions of stdlib.h header file.

1. malloc()
2. calloc()
3. realloc()
4. free()

Before learning above functions, let's understand the difference between static memory

allocation and dynamic memory allocation.

72

Programming in € pyUBLISHED IN STUCOR

Static memory allocation Dynamic memory allocation

Memory is allocated at compile time. Memory is allocated at run time.

Memory can't be increased while executing | Memory can be increased while executing
program. program.

Used in array. Used in linked list.

Now let's have a quick look at the methods used for dynamic memory allocation.

malloc() | Allocates single block of requested memory.

calloc() | Allocates multiple block of requested memory.

realloc() | Reallocates the memory occupied by malloc() or calloc() functions.

freeQ | Frees the dynRc SSSRaR,

The malloc() function allocates single block of requested memory .

malloc()

It doesn't initialize memory at execution time, so it has garbage value initially.
It returns NULL if memory is not sufficient.

The syntax of malloc() function is given below:

ptr=(cast-type*)malloc(byte-size)

Example:
#include<stdio.h>

#include<stdlib.h>
int main(){
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
if(ptr==NULL)
{
printf("Sorry! unable to allocate memory");
exit(0);

73

Programming in € pyUBLISHED IN STUCOR

}

printf("Enter elements of array: ");
for(i=0;i<n;++1)
{
scanf("%d",ptr+i);
sum+="*(ptr+1);
}
printf("Sum=%d",sum);
free(ptr);
return O;
)
Qutput:

Enter elements of array: 3
Enter elements of array: 10
10

10

Sum=30

calloc()

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.
It returns NULL if memory is not sufficient.
The syntax of calloc() function is given below:

ptr=(cast-type*)calloc(number, byte-size)

Example:
#include<stdio.h>

#include<stdlib.h>
int main(){
int n,1,*ptr,sum=0;
printf("Enter number of elements: ");

scanf("%d",&n);

74

Programming in € pyUBLISHED IN STUCOR

ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc
if(ptr==NULL)
{
printf("Sorry! unable to allocate memory");
exit(0);
¥
printf("Enter elements of array: ");
for(i=0;1<n;++1)
{
scanf("%d",ptr+1);
sum+=*(ptr+i1);
¥
printf("Sum=%d",sum);
free(ptr);

return 0O;

§
Output:

Enter elements of array: 3
Enter elements of array: 10
10

10

Sum=30

realloc()
If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by
realloc() function. In short, it changes the memory size.

Let's see the syntax of realloc() function.

ptr=realloc(ptr, new-size)

free()
The memory occupied by malloc() or calloc() functions must be released by calling free()

function. Otherwise, it will consume memory until program exit.

75

Programming in € pyUBLISHED IN STUCOR

Let's see the syntax of free() function.

free(ptr)

4.5 SELF REFERENTIAL STRUCTURES
A self referential structure is used to create data structures like linked lists, stacks, etc.
Following is an example of this kind of structure:
struct struct name
{
datatype datatypename;

struct name * pointer name;

55

A self-referential structure is one of the data structures which refer to the pointer to
I

(points) to another structure of the lsame type. For example, alinked list is supposed to be a self-

referential data structure. The next node of a node is being pointed, which is of the same struct
type. For example,
typedef struct listnode {
void *data;

struct listnode *next;

} linked_list;

In the above example, the listnode is a self-referential structure — because the *next is of
the type struct listnode.
4.6 SINGLY LINKED LIST

A linked list is a way to store a collection of elements. Like an array these can be
character or integers. Each element in a linked list is stored in the form of a node.

Node:

node

O 2000

'mtruct node (\
Ant data; o
sStruct node ‘noxt;

) B

76

Programming in € pyBLISHED IN STUCOR

A node is a collection of two sub-elements or parts. A data part that stores the element
and a next part that stores the link to the next node.

Linked List:

No e 1 MNodd e 2 N oo & S

] 3000 N e
r“ B N =W

WS ER T Yy

O] T e =
PR da BT SO

A linked list is formed when many such nodes are linked together to form a chain. Each
node points to the next node present in the order. The first node is always used as a reference to
traverse the list and is called HEAD. The last node points to NULL.

Declaring a Linked list :

In C language, a linked list tructure and pointers .

struct LinkedList
{

int data;

struct LinkedList *next;

The above definition is us 1st. The data field stores the
element and the next is a pointer to store the address of the next node.

In place of a data type, struct LinkedList is written before next. That's because its a self-
referencing pointer. It means a pointer that points to whatever it is a part of. Here next is a part
of a node and it will point to the next node.

Creating a Node:
Let's define a data type of struct LinkedList to make code cleaner.

typedef struct LinkedList *node; //Define node as pointer of data type struct LinkedList
node createNode(){
node temp; // declare a node
temp = (node)malloc(sizeof(struct LinkedList)); // allocate memory using malloc()
temp->next = NULL;// make next point to NULL
return temp;//return the new node

77

Programmingin G pyBLISHED IN STUCOR

typedef is used to define a data type in C.
malloc() is used to dynamically allocate a single block of memory in C, it is available in the
header file stdlib.h.
sizeof() is used to determine size in bytes of an element in C. Here it is used to determine size of
each node and sent as a parameter to malloc.

The above code will create a node with data as value and next pointing to NULL.

Let's see how to add a node to the linked list:

node addNode(node head, int value){
node temp,p;// declare two nodes temp and p
temp = createNode();//createNode will return a new node with data = value and next
pointing to NULL.
temp->data = value; // add element's value to data part of node
if(head == NULL){
head =temp; //when linked list is empty
}
else{
p = head;//assign head to p
while(p->next != NULL){
p = p->next;//traverse the list until p is the last node.The last node always points
to NULL.

}

p->next = temp;//Point the previous last node to the new node created.

}

return head;

Here the new node will always be added after the last node. This is known asinserting a

node at the rear end.
Focdfor thought
This type of linked list is known as simple or singly linked list. A simple linked list can be

traversed in only one direction from head to the last node.

78

Programming in € pyUBLISHED IN STUCOR

The last node 1s checked by the condition :
p->next = NULL;

Here -> is used to access next sub element of node p. NULL denotes no node exists after the
current node , i.e. its the end of the list.
Traversing the list:

The linked list can be traversed in a while loop by using the head node as a starting reference:

node p;
p = head;
while(p !=NULL)
{
p = p->next;
}
e O B
4.7 TYPEDEF

The C programming language provides a keyword called typedef, by using this keyword you
can create a user defined name for existing data type. Generally typedef are use to create
an alias name (nickname).

Declaration of typedef

typedef datatype alias name;

Example:
typedef int tindata;

Example program:
#include<stdio.h>

#include<conio.h>
typedef int intdata;

void main()

{
int a=10;

integerdata b=20

79

Programming in € pyUBLISHED IN STUCOR

typedef intdata integerdata;//Intergerdata is again alias name of intdata
integerdata s;
s=a+tb;
printf("\nSum::%d",s);
getch();
}
Output:
Sum::30
Code Explanation
o In above program Intdata is an user defined name or alias name for an integer data
type.
e All properties of the integer will be applied on Intdata also.
o Integerdata is an alias name to existing user defined name called Intdata.

Advantages of typedef

e [t makes the program more
e Typedef make complex dex

typedef with struct
Take a look at below struct sei_-jt‘v “VARE .SERys
struct student {
int id;
char *name;
float percentage;
1§
struct student a,b;
As we can see we have to include keyword struct every time you declare a new variable,
but if we use typedef then the declaration will as easy as below.
typedef struct{
int id;
char *name;
float percentage;

}student;

80

Programmingin G pyBLISHED IN STUCOR

student a,b;

This way typedef make your declaration simpler.
UNIT V FILE PROCESSING

Files — Types of file processing: Sequential access, Random access — Sequential access file -

Example Program: Finding average of numbers stored in sequential access file - Random access

file - Example Program: Transaction processing using random access files — Command line

arguments

5.1 FILES
A file represents a sequence of bytes on the disk where a group of related data is stored.
File is created for permanent storage of data. It is a readymade structure.
Why files are needed? i
e When a program is terminated, the entire data is lost. Storing in a file will preserve your
data even if the program terminates.
o Ifyou have to enter a large number of data, it will take a lot of time to enter them all.
However, if you have a file containing all the data, you can easily access the contents of
the file using few commands in C.
e You can easily move your data from one computer to another without any changes.
Types of Files
When dealing with files, there are two types of files you should know about:
1. Text files
2. Binary files
1. Text files
Text files are the normal .txt files that you can easily create using Notepad or any simple
text editors.
When you open those files, you'll see all the contents within the file as plain text. You
can easily edit or delete the contents.
They take minimum effort to maintain, are easily readable, and provide least security

and takes bigger storage space.

81

Programming in € pyBLISHED IN STUCOR

2. Binary files
Binary files are mostly the .bin files in your computer.
Instead of storing data in plain text, they store it in the binary form (0's and 1's).
They can hold higher amount of data, are not readable easily and provides a better
security than text files.
File Operations
In C, you can perform four major operations on the file, either text or binary:
Creating a new file
Opening an existing file
Closing a file

Reading from and writing information to a file

A

C provides a number of functions that helps to perform basic file operations. Following

are the functions,

Function

fopen() existing file
fclose()

getc() e

putc() writes a character to a file

fscanf() reads a set of data from a file

fprintf() writes a set of data to a file

getw() reads a integer from a file
putw() writes a integer to a file

fseek() set the position to desire point
ftell() gives current position in the file

rewind() || set the position to the beginning point

82

Programming in € pyUBLISHED IN STUCOR

Opening a File or Creating a File

The fopen() function is used to create a new file or to open an existing file.

Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the opened(or
created) file.
filename is the name of the file to be opened and mode specifies the purpose of opening the file.

Mode can be of following types,

Mode | Description

r opens a text file in reading mode
W opens or create a text file in writing mode.
a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ | opens a text file in both reading and writing mode

at opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ | opens a binary file in both reading and writing mode

wb+ | opens a binary file in both reading and writing mode

ab+ | opens a binary file in both reading and writing mode

Closing a File

The fclose() function is used to close an already opened file.

Syntax :

int fclose(FILE *fp);

83

Programming in € pyUBLISHED IN STUCOR

Here fclose() function closes the file and returns zero on success, or EOF if there is an
error in closing the file. This EOF is a constant defined in the header file stdio.h.
Input/ Output operation on File
In the above table we have discussed about various file I/O functions to perform reading
and writing on file. getc() and putc() are the simplest functions which can be used to read and
write individual characters to a file.
Example:
#include<stdio.h>
int main()
{
FILE *fp;
char ch;
fp = fopen("one.txt", "w");
printf("Enter data...");
while((ch = getchar()) != EOF)
putc(ch, fp);
}
fclose(fp);
fp = fopen("one.txt", "r");
while((ch = getc(fp)! = EOF)
printf("%c",ch);
// closing the file pointer
fclose(fp);

return O;

}
Reading and Writing to File using fprintf() and fscanf()

#include<stdio.h>

struct emp

{

char name[10];

int age;

84

Programming in € pyBLISHED IN STUCOR

I
void main()
{
struct emp e;
FILE *p,*q;
p = fopen("one.txt", "a");
q = fopen("one.txt", "r'");
printf("Enter Name and Age:");
scanf("%s %d", e.name, &e.age);
fprintf(p,"%s %d", e.name, e.age);
fclose(p);
do
{
fscanf(q,"%s %d", e.name, e.
printf("%s %d", e.name, e.agéel
}
while(!feof(q));

but in different modes.

fprintf() function directly writes into the file, while fscanf() reads from the file, which can
then be printed on the console using standard printf() function.
Difference between Append and Write Mode

Write (w) mode and Append (a) mode, while opening a file are almost the same. Both are
used to write in a file. In both the modes, new file is created if it doesn't exists already.

The only difference they have is, when you open a file in the write mode, the file is reset,
resulting in deletion of any data already present in the file. While in append mode this will not
happen.

Append mode is used to append or add data to the existing data of file(if any). Hence,
when you open a file in Append(a) mode, the cursor is positioned at the end of the present

data in the file.

85

Programming in € pyUBLISHED IN STUCOR

Reading and Writing in a Binary File

A Binary file is similar to a text file, but it contains only large numerical data. The
Opening modes are mentioned in the table for opening modes above.
fread() and fwrite() functions are used to read and write is a binary file.

Syntax for writing a binary file:

fwrite(data-element-to-be-written, size_of elements, number of elements, pointer-to-file);

fread() is also used in the same way, with the same arguments like fwrite() function. Below

mentioned is a simple example of writing into a binary file

const char *mytext = "The quick brown fox jumps over the lazy dog";

FILE *bfp= fopen("test.txt", "wb");

if (bfp)

{
fwrite(mytext, sizeof(char), strle

fclose(bfp);

5.2 TYPES OF FILE PROCESSING: SEQUENTIAL ACCESS, RANDOM ACCESS

In computer programming, the two main types of file handling are:
. Sequential access
In this type of files data is kept in sequential order if we want to read the last record of the

file, we need to read all records before that record so it takes more time.

L IR

e i Aan
] 2 3 4 5 6 7/ 8

Sequential access to file
. Random access
In this type of files data can be read and modified randomly .If we want to read the last

record we can read it directly. It takes less time when compared to sequential file.

86

Programming in € pyUBLISHED IN STUCOR

W\/

1 3 7 2 8 6 4 5

Random Access To File

There is no need to read each record sequentially, if we want to access a particular record.

C supports these functions for random access file processing.

1. fseek()

2. ftell()

3. rewind()
fseek():

It is used to move the rea

di i itions using fseek function.
Syntax:

fseek(file pointer, displacement, pointer position);

Where
file pointer ---- It is the pointer wh

displacement ---- It is positive or pg of bytes which are skipped

Ve
backward (if negative) or forwardf . position. This is attached with L
because this is a long integer.
Pointer position:

This sets the pointer position in the file.

Value | Pointer Position

0 Beginning of file

1 Current position

2 End of file

Example:
1) fseek(p,10L,0)

0 means pointer position is on beginning of the file, from this statement pointer position

1s skipped 10 bytes from the beginning of the file.

87

Programming in € pyUBLISHED IN STUCOR

2)fseek(p,SL,1)

1 means current position of the pointer position. From this statement pointer position is
skipped 5 bytes forward from the current position.
3)fseek(p,-5L,1)

From this statement pointer position is skipped 5 bytes backward from the current
position.
ftell(): It tells the byte location of current position of cursor in file pointer.
rewind(): It moves the control to beginning of the file.

Example program for fseek():

Write a program to read last ‘n’ characters of the file using appropriate file functions(Here
we need fseek() and fgetc())
#include<stdio.h>
#include<conio.h>

void main()

{

FILE *fp;

char ch;

clrscr();

fp=fopen("filel.c", "r");
if(fp==NULL)

printf("file cannot be opened");

else

{

printf("Enter value of n to read last ‘n’ characters");
scanf("%d",&n);

fseek(fp,-n,2);

while((ch=fgetc(fp))!=EOF)

{

printf("%c\t",ch);}

}

}

88

Programming in € pyUBLISHED IN STUCOR

fclose(fp);
getch();

5.3 COMMAND LINE ARGUMENTS

Command line argument is a parameter supplied to the program when it is invoked.
Command line argument is an important concept in C programming. It is mostly used when you
need to control your program from outside. Command line arguments are passed to

the main() method.

Syntax:

int main(int argc, char *argv[])

Here argc counts the numb and line and argv][] is a pointer

array which holds pointers of type uments passed to the program.

Example:
#include <stdio.h>
#include <conio.h>
int main(int argc, char *argv[])
{
int 1;
if(argc >=2)
{
printf("The arguments supplied are:\n");
for(i = 1; 1 < argc; i++)
{
printf("%s\t", argv[i]);

}

else

{

printf("argument list is empty.\n");

89

DOWNLOADED FROM STUCOR APP

Programmingin € pUBLISHED IN STUCOR

}

return O;

Remember that argv[0] holds the name of the program and argv[1] points to the first
command line argument and argv[n] gives the last argument. If no argument is

supplied, argc will be 1.

SO R R T LR] WERERNERER L] 4

90

