

11

What is meant by sorting ? mention its types
Sorting is the process of placing elements from a collection in some kind of order.
For example, a list of words could be sorted alphabetically or by length.

 Bubble Sort

 Selection Sort

 Insertion Sort

 Merge Sort

 Heap Sort

 Quick Sort

12

Develop algorithm for Celsius to Fahrenheit and vice versa
Python Program to convert temperature in celsius to fahrenheit

Program to Convert Celsius To Fahrenheit

In the following program we are taking the input from user, user enters the temperature

in Celsius and the program converts the entered value into Fahrenheit using the

conversion formula we have seen above.

celsius = float(input("Enter temperature in celsius: "))

fahrenheit = (celsius * 9/5) + 32

print('%.2f Celsius is: %0.2f Fahrenheit' %(celsius, fahrenheit))

Output:

Program to Convert Fahrenheit to Celsius

In the following program user enters the temperature in Fahrenheit and the program

converts the entered value into Celsius using the Fahrenheit to Celsius conversion

formula.

fahrenheit = float(input("Enter temperature in fahrenheit: "))

celsius = (fahrenheit - 32) * 5/9

print('%.2f Fahrenheit is: %0.2f Celsius' %(fahrenheit, celsius))

Output:

13

Define programming language
A programming language is a formal language, which comprises a set of instructions that

produce various kinds of output. Programming languages are used in

computer programming to implement algorithms.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

14

Identify the function types
There are two basic types of functions: built-in functions and user defined functions. The built-

in functions are part of the Python language; for instance dir() , len() , or abs() . The user

defined functions are functions created with the def keyword.

15

Examine a simple program to print the integer number from 1 to 50
Sum of natural numbers up to 50

num = 50

if num < 0:

 print("Enter a positive number")

else:

 sum = 0

 # use while loop to iterate until zero

 while(num > 0):

 sum += num

 num -= 1

 print("The sum is", sum)

16

Discuss building blocks of algorithm

An algorithm is made up of three basic building blocks: sequencing, selection, and iteration.

Sequencing: An algorithm is a step-by-step process, and the order of those steps are crucial to

ensuring the correctness of an algorithm.

Selection: Algorithms can use selection to determine a different set of steps to execute based
on a Boolean expression.
Iteration: Algorithms often use repetition to execute steps a certain number of times or until a
certain condition is met.

17

Discover the steps of simple strategies for developing algorithms.

Approach the problem in stages:

Think:

i) Analyze the problem

ii) Restate the problem

iii) Write out examples of input and output

iv) Break the problem into its component parts

v) Outline a solution in psuedo-code

vi) Step through your example data with your psuedo-code

Execute

1. Code it up

2. Test your solution against your examples

 Differentiate user defined function and predefined function

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

18
User-Defined function

 In Python, a user-defined function's declaration begins with the keyword def and

followed by the function name.

 The function may take arguments(s) as input within the opening and closing

parentheses, just after the function name followed by a colon.

 After defining the function name and arguments(s) a block of program statement(s)

start at the next line and these statement(s) must be indented.

Python Built-in Function.

 The Python interpreter has a number of functions that are always available for use.

These functions are called built-in functions. For example, print() function prints the given

object to the standard output device (screen) or to the text stream file.

19

Analyze the notations used in algorithmic problem solving
We usually present algorithms in the form of some pseudo-code, which is normally a mixture
of English statements, some mathematical notations, and selected keywords from a
programming language.
Algorithms may also be represented by diagrams. One popular diagrammatic method is the
flowchart, which consists of terminator boxes, process boxes, and decision boxes, with flows
of logic indicated by arrows.

20

Describe some example for recursion function
Recursive Functions in Python

A recursive function is a function defined in terms of itself via self-referential expressions.
This means that the function will continue to call itself and repeat its behavior until some
condition is met to return a result.

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n-1)

PART-B

1

Explain the algorithm GCD and find LCM

Euclid’s algorithm is based on repeated
application of equality gcd(m,n) = gcd(n, m mod n)
until the second number becomes 0, which makes
the problem trivial.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Example:
gcd(60,24) = gcd(24,12) = gcd(12,0) =
12

Pseudocode

while n ≠ 0 do

r ← m mod n

m ← n

n ← r

return m

2

Discuss with suitable examples

i)Find minimum in a list

def smallest_num_in_list(list):

 min = list[0]

 for a in list:

 if a < min:

 min = a

 return min

print(smallest_num_in_list([1, 2, -8, 0]))

Sample Output:

-8

ii)Find Maximum in a list
def max_num_in_list(list):

 max = list[0]

 for a in list:

 if a > max:

 max = a

 return max

print(max_num_in_list([1, 2, -8, 0]))

Sample Output:

2

3

i)Summarize advantage and disadvantage of flow chart

Advantages and Disadvantages of Flowchart

Flowchart Meaning

It is said that a single picture is worth thousands words and flowchart works basically on

that concept only as it illustrates solution of complex problems through diagrams and thus

helps an individual to understand the concept better, however sometimes it may complicate

the solution which in turn will make it even more difficult for an individual to understand

the solution of the problem

Advantages of Flowchart

 Short and Simple

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

The biggest advantage of using flowchart is that it is short as well as simple

 Logical Steps

It helps them understand the solution of the problem logically.

 Effective Communication

It is one of the effective ways of communicating because flowchart can be made on

1 or 2 pages only as opposed to other methods of communication like written

communication which may take many pages, hence if one wants to save time and

communicate effectively than flowcharts can be a good option for them.

Disadvantages of Flowchart

 Not suitable where Solution is long

When the solution of the problem is short than it is a good method but if the

solution is longer than this may not be the ideal method.

 Complicate Things

One does not understand the solution even when the solution is right due to the

wrong presentation through flowcharts.

 Difficult to Alter

Another limitation is that flowcharts are difficult to alter because if there is one

mistake than one has to alter the whole flowchart

 ii)Summarize the symbol used in flow chart

i)

Symbol Description Symbol Description

START /

STOP

PROCESS

DECISION

INPUT

OUTPUT

CONNECTO

RS

STORAGE

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

4

Describe Build an algorithm for the following

i) Prime number or not
Program to check if a number is prime or not

num = 111

To take input from the user

#num = int(input("Enter a number: "))

prime numbers are greater than 1

if num > 1:

 # check for factors

 for i in range(2,num):

 if (num % i) == 0:

 print(num,"is not a prime number")

 print(i,"times",num//i,"is",num)

 break

 else:

 print(num,"is a prime number")

if input number is less than

or equal to 1, it is not prime

else:

 print(num,"is not a prime number")

Output

111 is not a prime number

3 times 37 is 111

ii) Odd or even

Python program to check if the input number is odd or even.
A number is even if division by 2 gives a remainder of 0.
If the remainder is 1, it is an odd number.

num = int(input("Enter a number: "))
if (num % 2) == 0:
 print("{0} is Even".format(num))
else:
 print("{0} is Odd".format(num))

output
Enter a number: 7
7

7 is Odd

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

Explain the rules for pseudo code and uses of keywords
RULES FOR PSEUDOCODE

1. Write only one stmt per line

 Each stmt in your pseudocode should express just one action for the computer.

 If the task list is properly drawn, then in most cases each task will correspond to

 one line of pseudocode.

Eg: TASK LIST:

 Read name, hourly rate, hours worked, deduction rate

Perform calculations
 gross = hourlyRate * hoursWorked

 deduction = grossPay * deductionRate

 net pay = grossPay – deduction

 Write name, gross, deduction, net pay

PSEUDOCODE:

 READ name, hourlyRate, hoursWorked, deductionRate

 grossPay = hourlyRate * hoursWorked

 deduction = grossPay * deductionRate

 netPay = grossPay – deduction

 WRITE name, grossPay, deduction, netPay

2. Capitalize initial keyword

 In the example above, READ and WRITE are in caps. There are just a few

 keywords we will use:

 READ, WRITE, IF, ELSE, ENDIF, WHILE, ENDWHILE, REPEAT, UNTIL

3. Indent to show hierarchy

 We will use a particular indentation pattern in each of the design structures:

 SEQUENCE: keep statements that are “stacked” in sequence all starting in the

 same column.

 SELECTION: indent the statements that fall inside the selection structure, but not

 the keywords that form the selection

 LOOPING: indent the statements that fall inside the loop, but not the keywords

 that form the loop

Eg: In the example above, employees whose grossPay is less than 100 do not

have any deduction.

Task List:
 Read name, hourly rate, hours worked, deduction rate

 Compute gross, deduction, net pay

 Is gross >= 100?

 YES: calculate deduction

 NO: no deduction

 Write name, gross, deduction, net pay

Pseudocode:

 READ name, hourlyRate, hoursWorked

 grossPay = hourlyRate * hoursWorked

 IF grossPay >= 100

 deduction = grossPay * deductionRate

 ELSE

 deduction = 0

 ENDIF

 netPay = grossPay – deduction

 WRITE name, grossPay, deduction, netPay

4. End multiline structures

 See how the IF/ELSE/ENDIF is constructed above. The ENDIF (or END

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 whatever) always is in line with the IF (or whatever starts the structure).

5. Keep stmts language independent

 Resist the urge to write in whatever language you are most comfortable with. In

 the long run, you will save time! There may be special features available in the

 language you plan to eventually write the program in; if you are SURE it will be

 written in that language, then you can use the features. If not, then avoid using

 the special features

Pseudocode uses Keywords (Reserved Words) to control the structure of a solution.
Reserved words are written in capitals. Structural elements come in pairs, eg for every
BEGIN there is an END, for every IF there is an ENDIF, etc. Indenting is used to show
structure in the algorithm.

6

Explain the following programming language

i). Machine language

ii). Assembly language

iii). High level language

i) Machine language

Machine code is a computer program written in machine language instructions that can

be executed directly by a computer's central processing unit (CPU). Each instruction

causes the CPU to perform a very specific task, such as a load, a store, a jump, or

an ALU operation on one or more units of data in CPU registers or memory.

ii) Assembly language

Assembly language (or assembler language), is any low-level programming language in

which there is a very strong correspondence between the instructions in the language and

the architecture's machine code instructions. Assembly code is converted into executable

machine code by an assembler. Assembly language instructions usually consist of

an opcode mnemonic followed by a list of data, arguments. These are translated by

an assembler into machine language instructions that can be loaded into memory and

executed.
iii) High level language
High-level programming languages mean that languages of writing computer
instructions in a way that is easily understandable and close to human language.
High-level languages are created by developers so that programmers don’t need to
know highly difficult low level/machine language. Programmers can easily learn
high-level languages as it is very close to human language.

7

Neat sketch explain the following building blocks of alg.

i). Statements

ii). Control Flow

i) Statements

A computer program statement is an instruction for the computer program to perform
an action. There are many different types of statements that can be given in a
computer program in order to direct the actions the program performs. In computer
programming, a statement is a syntactic unit of an imperative programming language that
expresses some action to be carried out. A program written in such a language is formed

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

by a sequence of one or more statements. A statement may have internal components
(e.g., expressions).

ii) Control flow

Control Flow Statements

Without control flow statements, the interpreter executes these statements in the order

they appear in the file from left to right, top to bottom. You can use control flow

statements in your programs to conditionally execute statements, to repeatedly execute a

block of statements, and to otherwise change the normal, sequential flow of control.

8

Describe State and function in Building Block and examples.

Building blocks of algorithms (statements, state, control flow, functions)

Algorithms can be constructed from basic building blocks namely, sequence,

selection and iteration.

 Statements:

 Statement is a single action in a computer.

 In a computer statements might include some of the following actions

 input data-information given to the program

 process data-perform operation on a given input

 output data-processed result

 State:

Transition from one process to another process under specified condition with

in a time is called state.

 Control flow:

The process of executing the individual statements in a given order is called

control flow.

The control can be executed in three ways

1. sequence

2. selection

3. iteration

 Sequence:

All the instructions are executed one after another is called sequence execution

.Selection:

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

A selection statement causes the program control to be transferred to a specific

part of the program based upon the condition.

If the conditional test is true, one part of the program will be executed,

otherwise it will execute the other part of the program.

 Iteration:

In some programs, certain set of statements are executed again and again based

upon conditional test. i.e. executed more than one time. This type of execution

is called looping or iteration.

 Functions:

  Function is a sub program which consists of block of code(set of

instructions) that performs a particular task.

 For complex problems, the problem is been divided into smaller and

simpler tasks during algorithm design.

 Benefits of Using Functions

  Reduction in line of code

 code reuse

 Better readability

 Information hiding

 Easy to debug and test

 Improved maintainability

Example:

 Algorithm for addition of two numbers using function

Main function()

Step 1: Start

Step 2: Call the function add()

Step 3: Stop

sub function add()

Step 1: Function start

Step 2: Get a, b Values

Step 3: add c=a+b

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Step 4: Print c

Step 5: Return

9

Draw a flow chart print all prime number between to intervals
Python program to print all
prime number in an interval

start = 11
end = 25

for val in range(start, end + 1):

 # If num is divisible by any number
 # between 2 and val, it is not prime
 if val > 1:
 for n in range(2, val):
 if (val % n) == 0:
 break
 else:
 print(val)

Output:

11

13

17

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

23

10

i). Describe pseudo code for Fibonacci sequence using

ii). Draw a flow chart for factorial given number (3*3)

Function for nth Fibonacci number

def Fibonacci(n):

 if n<0:

 print("Incorrect input")

 # First Fibonacci number is 0

 elif n==1:

 return 0

 # Second Fibonacci number is 1

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 elif n==2:

 return 1

 else:

 return Fibonacci(n-1)+Fibonacci(n-2)

Driver Program

print(Fibonacci(9))

Output:

21

i) Draw a flowchart for factorial of given

Number
Python 3 program to find

factorial of given number

def factorial(n):

 # single line to find factorial

 return 1 if (n==1 or n==0) else n * factorial(n - 1)

Driver Code

num = 5

print ("Factorial of",num,"is",

 factorial(num))

Output:

Factorial of 5 is 120

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

i). Describe the program to insert an element in a sorted list

ii). Draw the flow chart sum of n numbers

Python3 program to insert

an element into sorted list

Function to insert element

def insert(list, n):

 # Searching for the position

 for i in range(len(list)):

 if list[i] > n:

 index = i

 break

 # Inserting n in the list

 list = list[:i] + [n] + list[i:]

 return list

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Driver function

list = [1, 2, 4]

n = 3

print(insert(list, n))

Output:

[1, 2, 3, 4]

i) Draw the flowchart to find the sum of series
1+2+3+4+….+100

Sum of natural numbers up to num

num = 50

if num < 0:
 print("Enter a positive number")
else:
 sum = 0
 # use while loop to iterate until zero

 while(num > 0):
 sum += num
 num -= 1
 print("The sum is", sum)

output

The sum is 1275
>>>

i). Summarize the difference between algorithm, flow chart and

pseudo code

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

12
ALGORITHM

• An algorithm is defined as a finite sequence of explicit instructions,

which when provided with a set of input values produces an output and

then terminates.

• To be an algorithm, the steps must be unambiguous and after a finite

number of steps, the solution of the problem is achieved.

FLOWCHART

• A flowchart is a pictorial representation of an algorithm in which the steps are drawn in

the form of different shapes of boxes and the logical flow is indicated by

interconnecting arrows.

• The boxes represent operations and the arrows represent the sequence in which the

operations are implemented.

PSEUDOCODE

• Pseudo code is a generic way of describing an algorithm without

using any specific programming language-related notations.

• It is an outline of a program, written in a form, which can easily be

converted into real programming statements.

13

(i). Explain algorithmic problem solving technique in detail.

Algorithms are the solutions to computational problems. They define a method that uses
the input to a problem in order to produce the correct output. A computational problem
can have many solutions. Efficient algorithms can solve the computational problems
more effectively.

To harness the power of computers we use programming. Programming is the

art of developing a solution to a computational problem, in the form of a set of

instructions that a computer can execute. These instructions are what we call code, and the

language in which they are written a programming language.

The abstract method that such code describes is what we call an algorithm. The aim of

algorithmic problem solving is thus to, given a computational problem, devise an

algorithm that solves it. One does not necessarily need to complete the full programming

process (i.e. write code that implements the algorithm

in a programming language) to enjoy solving algorithmic problems. However, it often

provides more insight and trains you at finding simpler algorithms to problems.

14

Explain program life cycle

 Program Development Cycle

• Development cycle of a program includes:

 Analyse/Define the Problem

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 Task Analysis

 Developing Algorithm

 Testing the Algorithm for Accuracy

 Coding the Solution

 Test and Debug the Program

 Documentation

 Implementation

 Maintenance and Enhancement

PART-C

1

What is pseudo code? Explain how it can be designed and write

benefits and limitations.

PSEUDOCODE

 Pseudo code is a generic way of describing an algorithm without

using any specific programming language-related notations.

 It is an outline of a program, written in a form, which can easily be

converted into real programming statements.

Pseudocode is a kind of structured english for describing algorithms. It allows the

designer to focus on the logic of the algorithm without being distracted by details of

language syntax. At the same time, the pseudocode needs to be complete. It describe the

entire logic of the algorithm so that implementation becomes a rote mechanical task of

translating line by line into source code.

In general the vocabulary used in the pseudocode should be the vocabulary of the problem

domain, not of the implementation domain. The pseudocode is a narrative for someone

who knows the requirements (problem domain) and is trying to learn how the solution is

organized.

Advantages and benefits of pseudo code:

Programming can be a complex process when the requirements of the program are

complex in nature. The pseudo code provides a simple method of developing the program

logic as it uses every language to prepare a brief set of instructions in the order in which

they appear. In the completed program it allows the programmer programmers to focus on

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

the steps required to solve a problem rather than on how to use the computer language.
Some of the most significant benefits of the Pseudo code are:

 Since it is a language-independent it can be used by most programmers it allows

the developer to express the design in plain and natural language.

 It is easier to develop a program from a pseudo code as compared to the flow

chart. Programmers do not have to think about syntax, we simply have to

concentrate on the underline logic. The focus is on the steps to solve a problem

rather than how to use the computer language.

 Often it is easy to translate pseudocode into a programming language, a step

which can be accomplished by less experienced

 The uses of words and phrases in pseudo code, which are in the lines of basic

computer operations simplify the translation from the pseudo code algorithm to

the specific programming language.

 Unlike flow charts, pseudo code is at and does not tend to run over many pages.

Its simple structure and readability make it easier to modify.

 The pseudocode allows programmers to work in different computer languages to

talk to others they can be reviewed by groups easier than the real code.

Disadvantages/limitation of Pseudo Code:

Although the pseudo code is a very simple mechanism to specify problem-solving logic, it
has some of the limitations that are listed below:

 The main disadvantages are that it does not provide a visual representation of the

programming logic.

 There are no accepted standards for writing the pseudo code. Programmers use

their own styles of writing pseudo code.

 The pseudo code cannot be compiled nor executed and there is no real formative

of a syntax of rules. It is simply one step, an important one, in producing the final

code.

2

Explain guidelines for preparing flowcharts, benefits and limitation of

flowcharts and preparing flow chart for quadratic equation

Advantages and Disadvantages of Flowchart

Flowchart Meaning

It is said that a single picture is worth thousands words and flowchart works basically on

that concept only as it illustrates solution of complex problems through diagrams and

thus helps an individual to understand the concept better, however sometimes it may

complicate the solution which in turn will make it even more difficult for an individual to

understand the solution of the problem

Advantages of Flowchart

Short and Simple

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

The biggest advantage of using flowchart is that it is short as well as simple

Logical Steps

It helps them understand the solution of the problem logically.

Effective Communication

It is one of the effective ways of communicating because flowchart can be made on 1 or

2 pages only as opposed to other methods of communication like written

communication which may take many pages, hence if one wants to save time and

communicate effectively than flowcharts can be a good option for them.

Disadvantages of Flowchart

Not suitable where Solution is long

When the solution of the problem is short than it is a good method but if the solution is

longer than this may not be the ideal method.

Complicate Things

One does not understand the solution even when the solution is right due to the wrong

presentation through flowcharts.

Difficult to Alter

Another limitation is that flowcharts are difficult to alter because if there is one mistake

than one has to alter the whole flowchart

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

Describe the algorithm for finding sum and average of n numbers.

Sum of natural numbers up to num

num = 50

if num < 0:
 print("Enter a positive number")
else:
 sum = 0
 # use while loop to iterate until zero

 while(num > 0):
 sum += num

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 num -= 1
 print("The sum is", sum)

output

The sum is 1275
>>>

Python program to get average of a list

Using reduce() and lambda

importing reduce()

from functools import reduce

def Average(lst):

 return reduce(lambda a, b: a + b, lst) / len(lst)

Driver Code

lst = [15, 9, 55, 41, 35, 20, 62, 49]

average = Average(lst)

Printing average of the list

print("Average of the list =", round(average, 2))

Output:

Average of the list = 35.75

Python program to get average of a list

Using mean()

importing mean()

from statistics import mean

def Average(lst):

 return mean(lst)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Driver Code

lst = [15, 9, 55, 41, 35, 20, 62, 49]

average = Average(lst)

Printing average of the list

print("Average of the list =", round(average, 2))

Output:

Average of the list = 35.75

def cal_average(num):

 sum_num = 0

 for t in num:

 sum_num = sum_num + t

Also state the properties of a good algorithm

4

Describe the algorithm of towers of Hanoi problem.

Tower of Hanoi Problem

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The

objective of the puzzle is to move the entire stack to another rod, obeying the following

simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and placing it on

top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.

Recursive Python function to solve tower of hanoi

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

def TowerOfHanoi(n , from_rod, to_rod, aux_rod):

 if n == 1:

 print "Move disk 1 from rod",from_rod,"to rod",to_rod

 return

 TowerOfHanoi(n-1, from_rod, aux_rod, to_rod)

 print "Move disk",n,"from rod",from_rod,"to rod",to_rod

 TowerOfHanoi(n-1, aux_rod, to_rod, from_rod)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

UNIT 2 - DATA, EXPRESSIONS, STATEMENTS

SYLLABUS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions,

statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow

of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values

of n variables, distance between two points.

PART-A

Q.

No.
Q&A

1. Define the two modes in Python.
Python has two basic modes: script and interactive. The normal mode is the mode

where the scripted and finished .py files are run in the Python interpreter. Interactive mode is a command line shell

which gives immediate feedback for each statement, while running previously fed statements in active memory. As

new lines are fed into the interpreter, the fed program is evaluated both in part and in whole.

Interactive mode is a good way to play around and try variations on syntax.

The basic differences between these two modes are as follows: Interactive mode is

used when an user wants to run one single line or one block of code. It runs very quickly and gives the output

instantly. Script Mode, on the other hand , is used when the user is working with more than one single code or a

block of code

2. Give the various data types in Python

Python Data Types

There are different types of python data types. Some built-in python data types are:

1. Python Data Type – Numeric

Python numeric data type is used to hold numeric values like;

1. int – holds signed integers of non-limited length.

2. long- holds long integers(exists in Python 2.x, deprecated in Python 3.x).

3. float- holds floating precision numbers and it’s accurate upto 15 decimal places.

4. complex- holds complex numbers.

In Python we need not to declare datatype while declaring a variable like C or C++. We can simply just assign

values in a variable.

2. Python Data Type – String

The string is a sequence of characters. Python supports Unicode characters. Generally, strings are represented by

either single or double quotes.

3. Python Data Type – List

The list is a versatile data type exclusive in Python. In a sense, it is the same as the array in C/C++. But the

interesting thing about the list in Python is it can simultaneously hold different types of data. Formally list is an

ordered sequence of some data written using square brackets([]) and commas(,).

4. Python Data Type – Tuple

Tuple is another data type which is a sequence of data similar to list. But it is immutable. That means data in a tuple

is write protected. Data in a tuple is

5. Dictionary

Python Dictionary is an unordered sequence of data of key-value pair form. It is similar to the hash table type.

Dictionaries are written within curly braces in the form key:value.

3. Point out the rules to be followed for naming any identifier

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores

and digits (0 to 9).

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

2

4. Assess a program to assign and access variables

Python Variables
Python is not “statically typed”. We do not need to declare variables before using them, or declare their type. A

variable is created the moment we first assign a value to it.

The following is a sample program used to assign and access variables :

An integer assignment

age = 45

A floating point

salary = 1456.8

A string

name = "John"

print(age)

print(salary)

print(name)

Output:
45

1456.8

John

5. Compose the importance of indentation in Python

Python Indentation

Most of the programming languages like C, C++, Java use braces { } to define a block of code. Python uses

indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first unindented line. The

amount of indentation is up to you, but it must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an example.
Example code
for i in range(1,11):
 print(i)
 if i == 5:
 break

6. Select and assign how an input operation was done in Python.

input () : This function first takes the input from the user and then evaluates the expression, which means Python

automatically identifies whether user entered a string or a number or list. If the input provided is not correct then

either syntax error or exception is raised by python. For example –

Python program showing a use of input()

val = input("Enter your value: ")

print(val)

Output:

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

 How the input function works in Python :

 When input() function executes program flow will be stopped until the user has given an input.

 The text or message display on the output screen to ask a user to enter input value is optional i.e. the prompt,

will be printed on the screen is optional.

 Whatever you enter as input, input function convert it into a string. if you enter an integer value

still input() function convert it into a string. You need to explicitly convert it into an integer in your code

using typecasting.

7. Demonstrate the various operations in Python

Basic Operators in Python

1. Arithmetic operators: Arithmetic operators are used to perform mathematical operations like addition,

subtraction, multiplication and division.

OPERAT

OR DESCRIPTION SYNTAX

+ Addition: adds two operands x + y

- Subtraction: subtracts two operands x - y

* Multiplication: multiplies two operands x * y

/ Division (float): divides the first operand by the second x / y

// Division (floor): divides the first operand by the second x // y

%

Modulus: returns the remainder when first operand is divided by

the second x % y

2. Relational Operators: Relational operators compares the values. It either returns True or False according to

the condition.

OPERATOR DESCRIPTION SYNTAX

> Greater than: True if left operand is greater than the right x > y

< Less than: True if left operand is less than the right x < y

== Equal to: True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>=

Greater than or equal to: True if left operand is greater than or equal to the

right x >= y

<= Less than or equal to: True if left operand is less than or equal to the right x <= y

3. Logical operators: Logical operators perform Logical AND, Logical OR and Logical NOT operations.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

4

OPERATOR DESCRIPTION SYNTAX

and Logical AND: True if both the operands are true x and y

or Logical OR: True if either of the operands is true x or y

not Logical NOT: True if operand is false not x

4. Bitwise operators: Bitwise operators acts on bits and performs bit by bit operation.

OPERATOR DESCRIPTION SYNTAX

& Bitwise AND x & y

| Bitwise OR x | y

~ Bitwise NOT ~x

^ Bitwise XOR x ^ y

>> Bitwise right shift x>>

<< Bitwise left shift x<<

5. Assignment operators: Assignment operators are used to assign values to the variables.

OPERATOR DESCRIPTION SYNTAX

=

Assign value of right side of expression to left side

operand x = y + z

+=

Add AND: Add right side operand with left side operand

and then assign to left operand a+=b a=a+b

-=

Subtract AND: Subtract right operand from left operand

and then assign to left operand a-=b a=a-b

*=

Multiply AND: Multiply right operand with left operand

and then assign to left operand a*=b a=a*b

/=

Divide AND: Divide left operand with right operand and

then assign to left operand a/=b a=a/b

%=

Modulus AND: Takes modulus using left and right

operands and assign result to left operand a%=b a=a%b

//= Divide(floor) AND: Divide left operand with right a//=b a=a//b

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

operand and then assign the value(floor) to left operand

**=

Exponent AND: Calculate exponent(raise power) value

using operands and assign value to left operand a**=b a=a**b

&=

Performs Bitwise AND on operands and assign value to

left operand a&=b a=a&b

|=

Performs Bitwise OR on operands and assign value to left

operand a|=b a=a|b

^=

Performs Bitwise xOR on operands and assign value to

left operand a^=b a=a^b

>>=

Performs Bitwise right shift on operands and assign value

to left operand a>>=b a=a>>b

<<=

Performs Bitwise left shift on operands and assign value

to left operand

a <<= b a= a

<< b

6. Special operators: There are some special type of operators like-

 Identity operators-
is and is not are the identity operators both are used to check if two values are located on the same part

of the memory. Two variables that are equal does not imply that they are identical.

 is True if the operands are identical

is not True if the operands are not identical

8. Discover the difference between logical and bitwise

operator.

Logical operators

Logical operators are the and, or, not operators.

Operator Meaning Example

and True if both the operands are true x and y

or True if either of the operands is true x or y

not True if operand is false (complements the operand) not x

Logical operators in Python

Example #3: Logical Operators in Python

1. x = True

2. y = False

3.

4. # Output: x and y is False

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

6

5. print('x and y is',x and y)

6.

7. # Output: x or y is True

8. print('x or y is',x or y)

9.

10. # Output: not x is False

11. print('not x is',not x)

Here is the truth table for these operators.

Bitwise operators

Bitwise operators act on operands as if they were string of binary digits. It operates bit by bit, hence the name.

For example, 2 is 10 in binary and 7 is 111.

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Operator Meaning Example

& Bitwise AND x& y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x>> 2 = 2 (0000 0010)

<< Bitwise left shift x<< 2 = 40 (0010 1000)

Bitwise operators in Python

9. What is a tuple? How literals of type tuple are written?

Give examples.

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The differences between

tuples and lists are, the tuples cannot be changed unlike lists and tuples use parentheses, whereas lists use square

brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put these comma-

separated values between parentheses also. For example −

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

10. Give the operator precedence in Python.

The following table lists all operators from highest precedence to lowest.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method names for the last two are +@ and

-@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'td>

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *=

**=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than +, so it first

multiplies 3*2 and then adds into 7.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

8

11. Define the scope and lifetime of a variable in Python.

Variable scope and lifetime

Not all variables are accessible from all parts of our program, and not all variables exist for the same amount of

time. Where a variable is accessible and how long it exists depend on how it is defined. We call the part of a

program where a variable is accessible its scope, and the duration for which the variable exists its lifetime.

A variable which is defined in the main body of a file is called a global variable. It will be visible throughout the

file, and also inside any file which imports that file. Global variables can have unintended consequences because of

their wide-ranging effects – that is why we should almost never use them. Only objects which are intended to be

used globally, like functions and classes, should be put in the global namespace.

A variable which is defined inside a function is local to that function. It is accessible from the point at which it is

defined until the end of the function, and exists for as long as the function is executing.

12. Point out the uses of default arguments in Python.

13. Generalize the uses of Python module.

Python Language Modules
1) What is Python Module?

2) Purpose of Modules

3) Types of Modules

4) How to use Modules

5) User defined Modules in Python

1) What is Python Module?
> A module is a file consisting of Python code. It can define functions, classes, and variables, and can also include

runnable code. Any Python file can be referenced as a module.

> A file containing Python code, for example: test.py, is called a module, and its name would be test..

Module vs. Function
Function: it’s a block of code that you can use/reuse by calling it with a keyword. Eg. print() is a function.

Module: it’s a .py file that contains a list of functions (it can also contain variables and classes). Eg. in

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

statistics.mean(a), mean is a function that is found in the statistics module.

2) Purpose of Modules
> As our program grows more in the size we may want to split it into several files for easier maintenance as well as

re-usability of the code. The solution to this is Modules.

> We can define your most used functions in a module and import it, instead of copying their definitions into

different programs. A module can be imported by another program to make use of its functionality. This is how you

can use the Python standard library as well.

3) Types of Modules
> Python provides us with some built-in modules, which can be imported by using the “import” keyword.

> Python also allows us to create your own modules and use them in your programs.

4) How to use Modules
There is a Python Standard Library with dozens of built-in modules. From those, five important modules,

random, statistics, math, datetime, csv

Python math module,

This contains factorial, power, and logarithmic functions, but also some trigonometry and constants.

i) import math
And then:

math.factorial(5)

math.pi

math.sqrt(5)

math.log(256, 2)

ii) import math as m
And then:

m.factorial(5)

m.pi

m.sqrt(5)

m.log(256, 2)

5) User defined Modules in Python

i) Create a module
A simple module, calc.py

price=1000

def add(x, y):

return (x+y)

def sub(x, y):

return (x-y)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

10

def mul(x, y):

return (x*y)

ii) Use Module
importing module calc.py

import calc

print calc.add(10, 2)

from calc import mul

print(add(10, 2))

14. Demonstrate how a function calls another function.

Justify your answer.

15. List the syntax for function call with and without

Arguments

Functions in Python

A function in Python is defined with the def keyword. Functions do not have declared return types. A function

without an explicit return statement returns None. In the case of no arguments and no return value, the definition is

very simple.

Function call without arguments

Calling the function is performed by using the call operator () after the name of the function.

>>> def hello_function():

... print 'Hello World, it\'s me. Function.'

...

>>> hello_function()

Hello World, it's me. Function.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

Function call with arguments

A simple Python function to check

whether x is even or odd

def evenOdd(x):

 if (x % 2 == 0):

 print "even"

 else:

 print "odd"

Driver code

evenOdd(2)

evenOdd(3)

Output:
even

odd

16. Define recursive function
In programming, recursion is when a function calls itself.

1. >>> def factorial(n):

2. if n==1:

3. return 1

4. return n*factorial(n-1)

5. >>> factorial(5)

120

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

12

Python Recursion Function – Pros & Cons

a. Python Recursion Function Advantages

With Python recursion, there are some benefits we observe:

1. A recursive code has a cleaner-looking code.

2. Recursion makes it easier to code, as it breaks a task into smaller ones.

3. It is easier to generate a sequence using recursion than by using nested iteration.

b. Python Recursion Function Disadvantages

The flip side of the coin is easy to quote:

1. Although it makes code look cleaner, it may sometimes be hard to follow.

2. They may be simpler, but recursive calls are expensive. They take up a lot of memory and time.

3. Finally, it isn’t as easy to debug a recursive function.

17. Define the syntax for passing arguments
The special syntax *args in function definitions in python is used to pass a variable number of arguments to a
function. It is used to pass a non-keyworded, variable-length argument list.

 Example for usage of *arg:

Python program to illustrate

*args with first extra argument

def myFun(arg1, *argv):

 print ("First argument :", arg1)

 for arg in argv:

 print("Next argument through *argv :", arg)

myFun('Hello', 'Welcome', 'to', 'GeeksforGeeks')

Output:
First argument : Hello

Next argument through *argv : Welcome

Next argument through *argv : to

Next argument through *argv : GeeksforGeeks

18. What are the two parts of function definition. Give its syntax.

'''Function definition and invocation.'''

def happyBirthdayEmily():

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear Emily.")

 print("Happy Birthday to you!")

happyBirthdayEmily()

happyBirthdayEmily()

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

'''Function with parameter called in main'''

def happyBirthday(person):

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear " + person + ".")

 print("Happy Birthday to you!")

def main():

 happyBirthday('Emily')

 happyBirthday('Andre')

main()

19. Point out the difference between recursive and iterative technique.

Recursive vs. Iterative Algorithms

The following highlights the differnce between two types of algorithms: Iterative and Recursive algorithms.

The challenge we will focus on is to define a function that returns the result of 1+2+3+4+….+n where n is a

parameter.

The Iterative Approach

The following code uses a loop – in this case a counting loop, aka a “For Loop”.

This is the main characteristic of iterative code: it uses loops.

Iterative Approach

Python

1

2

3

4

5

6

iterative Function (Returns the result of: 1 +2+3+4+5+...+n)

def iterativeSum(n):

 total=0

 for i in range(1,n+1):

 total += i

 return total

The Recursive Approach

The following code uses a function that calls itself. This is the main characteristic of a recursive approach.

1

2

3

4

5

6

Recursive Function (Returns the result of: 1 +2+3+4+5+...+n)

def recursiveSum(n):

 if (n > 1):

 return n + recursiveSum(n - 1)

 else:

 return n

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

14

OUTPUT

Using an interative approach

1+2+3+4+...+99+100=

5050

Using a recursive approach

1+2+3+4+...+99+100=

5050

20. Give the syntax for variable length arguments.

Python *args

Python has *args which allow us to pass the variable number of non keyword arguments to function.

In the function, we should use an asterisk * before the parameter name to pass variable length arguments.The

arguments are passed as a tuple and these passed arguments make tuple inside the function with same name as the

parameter excluding asterisk *.

Example : Using *args to pass the variable length arguments to the function

1. def adder(*num):

2. sum = 0

3.

4. for n in num:

5. sum = sum + n

6.

7. print("Sum:",sum)

8.

9. adder(3,5)

10. adder(4,5,6,7)

11. adder(1,2,3,5,6)

When we run the above program, the output will be

Sum: 8

Sum: 22

Sum: 17

In the above program, we used *num as a parameter which allows us to pass variable length argument list to

the adder() function. Inside the function, we have a loop which adds the passed argument and prints the result. We

passed 3 different tuples with variable length as an argument to the function.

PART-B

1. i) Illustrate a program to display different data types using variables and literals constants.

Python Data Types

A Data Type describes the characteristic of a variable.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

Python has six standard Data Types:
 Numbers

 String

 List

 Tuple

 Set

 Dictionary

Data Type Example Output

#1) Numbers

In Numbers, there are mainly 3

types which include Integer,

Float, and Complex.

Example:

1 a = 5

2 print(a, "is of type", type(a))

Output: 5 is of type

<class ‘int'>

 1 b = 2.5

2 print(b, "is of type", type(b))

Output: 2.5 is of type

<class ‘float'>

 1 c = 6+2j

2 print(c, "is a type", type(c))

Output: (6+2j) is a

type <class

‘complex'>

#2) String

A string is an ordered sequence

of characters.

Example:

1 String1 = "Welcome"

2 String2 ="To Python"

3 print(String1+String2)

Output: Welcome To

Python

#3) List

A list can contain a series of

values.

List variables are declared by

using brackets []. A list is

mutable, which means we can

modify the list.

Example:

1 List = [2,4,5.5,"Hi"]

2 print("List[2] = ", List[2])

Output: List[2] = 5.5

#4) Tuple

A tuple is a sequence of Python

objects separated by commas.

Tuples are immutable, which

means tuples once created

cannot be modified. Tuples are

defined using parentheses ().

Example:

1 Tuple = (50,15,25.6,"Python")

2
print("Tuple[1] = ", Tuple[1])

1 print("Tuple[0:3] =", Tuple[0:3])

Output: Tuple[1]

= 15

Output: Tuple[0:3]

= (50, 15, 25.6)

#5) Set

A set is an unordered

collection of items. Set is

Example:

1 Set = {5,1,2.6,"python"}

Output: {‘python', 1,

5, 2.6}

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

16

defined by values separated by

a comma inside braces { }.

2 print(Set)

#6) Dictionary

Dictionaries items are stored

and fetched by using the key.

Dictionaries are used to store a

huge amount of data. To

retrieve the value we must

know the key. In Python,

dictionaries are defined within

braces {}.

We use the key to retrieve the

respective value. But not the

other way around.

Syntax:

Key:value

Example:

1 Dict = {1:'Hi',2:7.5, 3:'Class'}

2

print(Dict)

Example:

1 print(Dict[2])

Output: {1: ‘Hi', 2:

7.5, 3: ‘Class'}

Output: 7.5

ii) Show how an input and output function is performed in Python with an example.

Python Input, Output and Import

Python provides functions input() and print() that are used for standard input and output operations respectively.

Python Output Using print() function

We use the print() function to output data to the standard output device (screen).

print('This sentence is output to the screen')

Output: This sentence is output to the screen

a = 5

print('The value of a is', a)

Output: The value of a is 5

print(1,2,3,4)

Output: 1 2 3 4

print(1,2,3,4,sep='*')

Output: 1*2*3*4

print(1,2,3,4,sep='#',end='&')

Output: 1#2#3#4&

Output formatting

Sometimes we would like to format our output to make it look attractive. This can be done by using

the str.format() method. This method is visible to any string object.

1. >>> x = 5; y = 10

2. >>> print('The value of x is {} and y is {}'.format(x,y))

3. The value of x is 5 and y is 10

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

Here the curly braces {} are used as placeholders. We can specify the order in which it is printed by

print('I love {0} and {1}'.format('bread','butter'))

Output: I love bread and butter

print('I love {1} and {0}'.format('bread','butter'))

Output: I love butter and bread

Python Input

To allow flexibility we might want to take the input from the user.

 In Python, we have the input() function to allow this. The syntax for input() is

input([prompt])

where prompt is the string we wish to display on the screen. It is optional.

1. >>> num = input('Enter a number: ')

2. Enter a number: 10

3. >>> num

4. '10'

Here, we can see that the entered value 10 is a string, not a number. To convert this into a number we can

use int() or float() functions.

1. >>> int('10')

2. 10

3. >>> float('10')

4. 10.0

Python Import

When our program grows bigger, it is a good idea to break it into different modules.

A module is a file containing Python definitions and statements. Python modules have a filename and end with the

extension .py.

Definitions inside a module can be imported to another module or the interactive interpreter in Python. We use

the import keyword to do this.

For example, we can import the math module by typing in import math.

import math

print(math.pi)

Now all the definitions inside math module are available in our scope. We can also import some specific attributes

and functions only, using the from keyword. For example:

1. >>> from math import pi

2. >>> pi

3. 3.141592653589793

2. Explain in detail about the various operators in python with suitable examples.

Operator in Python

#1: Arithmetic operators in Python #2: Comparison operators in Python #3: Logical Operators in

Python

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

18

1. x = 15

2. y = 4

3.

4. # Output: x + y = 19

5. print('x + y =',x+y)

6.

7. # Output: x - y = 11

8. print('x - y =',x-y)

9.

10. # Output: x * y = 60

11. print('x * y =',x*y)

12.
13. # Output: x / y = 3.75

14. print('x / y =',x/y)

15.
16. # Output: x // y = 3

17. print('x // y =',x//y)

18.
19. # Output: x ** y = 50625

20. print('x ** y =',x**y)

1. x = 10

2. y = 12

3.

4. # Output: x > y is False

5. print('x > y is',x>y)

6.

7. # Output: x < y is True

8. print('x < y is',x<y)

9.

10. # Output: x == y is False

11. print('x == y is',x==y)

12.
13. # Output: x != y is True

14. print('x != y is',x!=y)

15.
16. # Output: x >= y is False

17. print('x >= y is',x>=y)

18.
19. # Output: x <= y is True

20. print('x <= y is',x<=y)

1. x = True

2. y = False

3.

4. # Output: x and y is

False

5. print('x and y is',x and y)

6.

7. # Output: x or y is True

8. print('x or y is',x or y)

9.

10. # Output: not x is False

11. print('not x is',not x)

Bitwise operators

Bitwise operators act on operands as

if they were string of binary digits. It

operates bit by bit, hence the name.

For example, 2 is 10 in binary and 7

is 111.

In the table below: Let x = 10 (0000

1010 in binary) and y = 4 (0000

0100 in binary)

Operator Meaning Example

&

Bitwise

AND

x& y = 0

(0000

0000)

|

Bitwise

OR

x | y = 14

(0000

1110)

~

Bitwise

NOT

~x = -11

(1111

0101)

Assignment operators are used in

Python to assign values to variables.

a = 5 is a simple assignment operator

that assigns the value 5 on the right to

the variable a on the left.

There are various compound operators

in Python like a += 5 that adds to the

variable and later assigns the same. It

is equivalent to a = a + 5.

Operator Example

Equivatent

to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

 #5: Membership

operators in Python

1. x = 'Hello world'

2. y = {1:'a',2:'b'}

3.

4. # Output: True

5. print('H' in x)

6.

7. # Output: True

8. print('hello' not in x)

9.

10. # Output: True

11. print(1 in y)

12.
13. # Output: False

14. print('a' in y)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

^

Bitwise

XOR

x ^ y =

14 (0000

1110)

>>

Bitwise

right

shift

x>> 2 =

2 (0000

0010)

<<

Bitwise

left shift

x<< 2 =

40 (0010

1000)

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

3.
Python List

List is an ordered sequence of items. It is one of the most used datatype in Python and is very flexible. All the items

in a list do not need to be of the same type.

Declaring a list

Items separated by commas are enclosed within brackets [].

1. >>> a = [1, 2.2, 'python']

We can use the slicing operator [] to extract an item or a range of items from a list. Index starts form 0 in Python.

a = [5,10,15,20,25,30,35,40]

a[2] = 15

print("a[2] = ", a[2])

a[0:3] = [5, 10, 15]

print("a[0:3] = ", a[0:3])

a[5:] = [30, 35, 40]

print("a[5:] = ", a[5:])

Lists are mutable, meaning, value of elements of a list can be altered.

1. >>> a = [1,2,3]

2. >>> a[2]=4

3. >>> a

4. [1, 2, 4]

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

20

 ii) Discuss the various operation that can be

performed on a tuple and lists (minimum 5) with an example program

LIST OPERATIONS

List Operations Examples

Adding and Appending
 append(): Used for

appending and adding

elements to List.It is

used to add elements to

the last position of

List.

Syntax:
 list.append (element)

Adds List Element as value of List.

List = ['Mathematics', 'chemistry', 1997, 2000]

List.append(20544)

print(List)
Output:

['Mathematics', 'chemistry', 1997, 2000, 20544]

 insert(): Inserts an

elements at specified

position.

Syntax:
 list.insert(<position,
element)

 List = ['Mathematics', 'chemistry', 1997, 2000]

Insert at index 2 value 10087

List.insert(2,10087)

print(List)

Output:

['Mathematics', 'chemistry', 10087, 1997, 2000, 20544]

 extend(): Adds

contents to List2 to the

end of List1.

Syntax:
List1.extend(List2)

List1 = [1, 2, 3]

List2 = [2, 3, 4, 5]

Add List2 to List1

List1.extend(List2)

print(List1)

#Add List1 to List2 now

List2.extend(List1)

print(List2)
Output:

[1, 2, 3, 2, 3, 4, 5]

[2, 3, 4, 5, 1, 2, 3, 2, 3, 4, 5]

 sum() : Calculates sum

of all the elements of

List.

Syntax:
 sum(List)

List = [1, 2, 3, 4, 5]

print(sum(List))
Output:

15

 count():Calculates

total occurrence of

given element of List.

Syntax:
List.count(element)

List = [1, 2, 3, 1, 2, 1, 2, 3, 2, 1]

print(List.count(1))

Output:

4

 length:Calculates total

length of List.

Syntax:

List = [1, 2, 3, 1, 2, 1, 2, 3, 2, 1]

print(len(List))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

len(list_name)

Output:

10

 index(): Returns the

index of first

occurrence. Start and

End index are not

necessary parameters.

Syntax:
List.index(element[,sta
rt[,end]])

List = [1, 2, 3, 1, 2, 1, 2, 3, 2, 1]

print(List.index(2))
Output:

1

 min() : Calculates

minimum of all the

elements of List.

Syntax:
min(List)

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

print(min(List))
Output:

1.054

 max(): Calculates

maximum of all the

elements of List.

Syntax:
max(List)

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

print(max(List))

Output:

5.33

 reverse(): Sort the

given data structure

(both tuple and list) in

ascending order. Key

and reverse_flag are

not necessary

parameter and

reverse_flag is set to

False, if nothing is

passed through

sorted().

Syntax:
 sorted([list[,key[,Rever

se_Flag]]])

list.sort([key,[Reverse_
flag]])

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

#Reverse flag is set True

List.sort(reverse=True)

#List.sort().reverse(), reverses the sorted list

print(List)
Output:

[5.33, 4.445, 3, 2.5, 2.3, 1.054]

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

sorted(List)

print(List)
Output:

[1.054, 2.3, 2.5, 3, 4.445, 5.33]

Deletion of List Elements
To Delete one or more

elements, i.e. remove an

element, many built in

functions can be used, such

as pop() & remove() and
keywords such as del.

 pop(): Index is not a necessary parameter,

if not mentioned takes the last index.

Syntax:
 list.pop([index])

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

print(List.pop())

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

22

Output:

2.5

 del() : Element to be

deleted is mentioned

using list name and

index.

Syntax:
del list.[index]

 remove(): Element to

be deleted is

mentioned using list

name and element.

Syntax:
 list.remove(element)

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

del List[0]

print(List)
Output:

[4.445, 3, 5.33, 1.054, 2.5]

List = [2.3, 4.445, 3, 5.33, 1.054, 2.5]

List.remove(3)

print(List)
Output:

[2.3, 4.445, 5.33, 1.054, 2.5]

Tuples in Python

A Tuple is a collection of Python objects separated by commas. In someways a tuple is similar to a list

in terms of indexing, nested objects and repetition

but a tuple is immutable unlike lists which are mutable.

Tuple Operation

Creating Tuples

An empty tuple

empty_tuple = ()

print (empty_tuple)
Output:

 ()

Creating non-empty tuples

One way of creation

tup = 'python', 'geeks'

print(tup)

Another for doing the same

tup = ('python', 'geeks')

print(tup)

Output

('python', 'geeks')

('python', 'geeks')

Concatenation of Tuples
Code for concatenating 2 tuples

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

tuple1 = (0, 1, 2, 3)

tuple2 = ('python', 'geek')

Concatenating above two

print(tuple1 + tuple2)
Output:

(0, 1, 2, 3, 'python', 'geek')

Nesting of Tuples
Code for creating nested tuples

tuple1 = (0, 1, 2, 3)

tuple2 = ('python', 'geek')

tuple3 = (tuple1, tuple2)

print(tuple3)

Output :

((0, 1, 2, 3), ('python', 'geek'))

Repetition in Tuples

Code to create a tuple with repetition

tuple3 = ('python',)*3

print(tuple3)

Output

 ('python', 'python', 'python')

Using cmp(), max() , min()

A python program to demonstrate the use of

cmp(), max(), min()

tuple1 = ('python', 'geek')

tuple2 = ('coder', 1)

if (cmp(tuple1, tuple2) != 0):

 # cmp() returns 0 if matched, 1 when not tuple1

 # is longer and -1 when tuple1 is shoter

 print('Not the same')

else:

 print('Same')

print ('Maximum element in tuples 1,2: ' +

 str(max(tuple1)) + ',' +

 str(max(tuple2)))

print ('Minimum element in tuples 1,2: ' +

 str(min(tuple1)) + ',' + str(min(tuple2)))

Output

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

24

Not the same

Maximum element in tuples 1,2: python,coder

Minimum element in tuples 1,2: geek,1

4. i) What is a numeric literal? Give examples.

Numeric Literals

You can refer to numeric values using integers, floating point numbers, scientific notation,

hexadecimal notation, octal, and complex numbers:

Python integers can be an size. Integers larger than 2147483647 are called "long" integers because

they can't be stored in 32 bits.

123 # an integer

1.23 # a floating point number

-1.23 # a negative floating point number

1.23E45; # scientific notation

0x7b; # hexadecimal notation (decimal 123)

0173; # octal notation (decimal 123)

12+3*j; # complex number 12 + 3i (Note that Python uses "j"!)

2147483648L # a long integer

ii) Describe the arithmetic operators in Python
with an example.

1. Arithmetic operators: Arithmetic operators are used to perform

mathematical operations like addition, subtraction,

multiplication and division.
OPERATOR DESCRIPTION SYNTAX

+ Addition: adds two operands x + y

- Subtraction: subtracts two operands x - y

* Multiplication: multiplies two operands x * y

/ Division (float): divides the first operand by

the second

x / y

// Division (floor): divides the first operand by

the second

x // y

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

% Modulus: returns the remainder when first

operand is divided by the second

x % y

Examples of Arithmetic

Operator

a = 9

b = 4

Addition of numbers

add = a + b

Subtraction of numbers

sub = a - b

Multiplication of number

mul = a * b

Division(float) of number

div1 = a / b

Division(floor) of number

div2 = a // b

Modulo of both number

mod = a % b

print results

print(add)

print(sub)

print(mul)

print(div1)

print(div2)

print(mod)

Output:

13

5

36

2.25

2

1

5. Demonstrate the various expressions in Python with

suitable examples.
An expression is an instruction that combines values and operators and always evaluates down to a
single value.

Statements and expressions

A statement is an instruction that the Python interpreter can execute. Examples of statements are , the

assignment statement ,

the import statement. S, if statements, while statements, and for statements.

When you type a statement on the command line, Python executes it.

An expression is a combination of values, variables, operators, and calls to functions. If you type an

expression at the Python prompt,

the interpreter evaluates it and displays the result, which is always a value:

Python expressions
length = 5

breadth = 2

area = length * breadth

print('Area is', area)

print('Perimeter is', 2 * (length + breadth))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

26

6. i) What is membership and identity operators.

Python Membership(in, not in) & Identity Operators (is, is not)

Membership Operators
Membership operators are operators used to validate the membership of a value.

It test for membership in a sequence, such as strings, lists, or tuples.

1. in operator : The ‘in’ operator is

used to check if a value exists in a

sequence or not. Evaluates to true if

it finds a variable in the specified

sequence and false otherwise.

Python program to illustrate

Finding common member in list

using 'in' operator

list1=[1,2,3,4,5]

list2=[6,7,8,9]

for item in list1:

 if item in list2:

 print("overlapping")

else:

 print("not overlapping")

Output:

not overlapping

1. ‘not in’ operator- Evaluates to true if it does

 not finds a variable in the specified sequence

 and false otherwise.

Python program to illustrate

not 'in' operator

x = 24

y = 20

list = [10, 20, 30, 40, 50];

if (x not in list):

 print "x is NOT present in given list"

else:

 print "x is present in given list"

if (y in list):

 print "y is present in given list"

else:

 print "y is NOT present in given list"

Identity operators
In Python are used to determine whether a value is of a certain class or type. They are

usually used to determine the type of data a certain variable contains.
There are different identity operators such as

1. ‘is’ operator – Evaluates to true if

the variables on either side of the

operator point to the same object

and false otherwise.

Python program to illustrate the use

of 'is' identity operator

x = 5

if (type(x) is int):

 print ("true")

else:

 print ("false")

Output:

 true

1. ‘is not’ operator – Evaluates to false

2. if the variables on either side of the operator

3. point to the same object and true otherwise.

Python program to illustrate the

use of 'is not' identity operator

x = 5.2

if (type(x) is not int):

 print ("true")

else:

 print ("false")
Output:

 true

ii) Write a program to perform addition, subtraction, multiplication, integer division,
floor division and modulo division on two integer and float.

Examples of Arithmetic Operator

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

a = 9

b = 4

Addition of numbers

add = a + b

Subtraction of numbers

sub = a - b

Multiplication of number

mul = a * b

Division(float) of number

div1 = a / b

Division(floor) of number

div2 = a // b

Modulo of both number

mod = a % b

print results

print(add)

print(sub)

print(mul)

print(div1)

print(div2)

print(mod)

13

5

36

2.25

2

1

Output:

13

5

36

2.25

2

1

1. Relational Operators: Relational operators compares the values. It either

returns True or False according t

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

28

7. i) Formulate the difference between type casting and type coercion with suitable

example.

Casting is when you convert a variable value from one type to another. This is, in Python,

done with functions

such as int() or float() or str() . A very common pattern is that you convert a number, currently

as a string into a proper number.

Python code to demonstrate Type conversion

using int(), float()

initializing string

s = "10010"

printing string converting to int base 2

c = int(s,2)

print ("After converting to integer base 2 : ", end="")

print (c)

printing string converting to float

e = float(s)

print ("After converting to float : ", end="")

print (e)
Output:

After converting to integer base 2 : 18

After converting to float : 10010.0

ii) Write a program to print the digit at ones place and hundreds place of a number.

iii) Write a program to convert temperature in
degree Fahrenheit to Celsius.

8. i) Discuss the need and importance of function in Python.

Functions are an essential part of the Python programming language. Many important

functions are built-in in the Python language. However, as a Data Scientist, developers

constantly need to write their own functions to solve problems that their data poses.

Functions in Python

You use functions in programming to bundle a set of instructions that you want to use repeatedly or

that, because of their complexity, are better self-contained in a sub-program and called when needed.

That means that a function is a piece of code written to carry out a specified task. To carry out that

specific task, the function might or might not need multiple inputs. When the task is carried out, the

function can or can not return one or more values.

There are three types of functions in Python:

 Built-in functions, such as help() to ask for help, min() to get the minimum value, print() to

print an object to the terminal,… You can find an overview with more of these functions here.

 User-Defined Functions (UDFs), which are functions that users create to help them out; And

 Anonymous functions, which are also called lambda functions because they are not declared

with the standard def keyword.

def my_function(country = "Norway"):

 print("I am from " + country)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

ii) Illustrate a program to exchange the value of two variables with temporary variables
Program published on https://beginnersbook.com

Python program to swap two variables

num1 = input('Enter First Number: ')

num2 = input('Enter Second Number: ')

print("Value of num1 before swapping: ", num1)

print("Value of num2 before swapping: ", num2)

swapping two numbers using temporary variable

temp = num1

num1 = num2

num2 = temp

print("Value of num1 after swapping: ", num1)

print("Value of num2 after swapping: ", num2)
Output:

Enter First Number: 101

Enter Second Number: 99

Value of num1 before swapping: 101

Value of num2 before swapping: 99

Value of num1 after swapping: 99

Value of num2 after swapping: 101

iii)

9. Briefly discuss in detail about function prototyping in
python with suitable example program

What is the purpose of a function prototype?

The Function prototype serves the following purposes –

1) It tells the return type of the data that the function will return.

2) It tells the number of arguments passed to the function.

3) It tells the data types of the each of the passed arguments.
4) Also it tells the order in which the arguments are passed to the function.

Therefore essentially, function prototype specifies the input/output interlace

to the function i.e. what to give to the function and what to expect from the function.

Prototype of a function is also called signature of the function.

.

10. i) Analyze the difference between local and global variables.

Example-1
This function uses global variable s
def f():
 print s

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

30

Global scope
s = "I am Global variable"
f()

Output:

I am Global variable

a = 1

 Example-2
Uses global because there is no local 'a'
def f():
 print 'Inside f() : ', a

Variable 'a' is redefined as a local
def g():
 a = 2
 print 'Inside g() : ',a

Uses global keyword to modify global 'a'
def h():
 global a
 a = 3
 print 'Inside h() : ',a

Global scope
print 'global : ',a
f()
print 'global : ',a
g()
print 'global : ',a
h()
print 'global : ',a

Output:

global : 1

Inside f() : 1

global : 1

Inside g() : 2

global : 1

Inside h() : 3

global : 3

ii) Explain with an example program to circulate the values of n variables.

#circulate the values of n variables

Python program to right rotate a list by n

Returns the rotated list
def rightRotate(lists, num):
 output_list = []

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

31

 # Will add values from n to the new list
 for item in range(len(lists) - num, len(lists)):
 output_list.append(lists[item])

 # Will add the values before
 # n to the end of new list
 for item in range(0, len(lists) - num):
 output_list.append(lists[item])

 return output_list

Driver Code
rotate_num = 3
list_1 = [1, 2, 3, 4, 5, 6]

print(rightRotate(list_1, rotate_num))

Output :

[4, 5, 6, 1, 2, 3]

11. i) Describe in detail about lambda functions or anonymous function.

What are lambda functions in Python?

In Python, anonymous function is a function that is defined without a name.

While normal functions are defined using the def keyword, in Python anonymous functions are

defined using the lambda keyword.

Hence, anonymous functions are also called lambda functions.

How to use lambda Functions in Python?

A lambda function in python has the following syntax.

Syntax of Lambda Function in python

lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The expression is

evaluated and returned. Lambda functions can be used wherever function objects are required.

Example of Lambda Function in python

Here is an example of lambda function that doubles the input value.

Program to show the use of lambda functions

double = lambda x: x * 2

Output: 10

print(double(5))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

32

In the above program, lambda x: x * 2 is the lambda function. Here x is the argument and x * 2 is the

expression that gets evaluated and returned.

ii) Describe in detail about the rules to be followed while using lambda function.

Python lambda (Anonymous Functions)

In Python, anonymous function means that a function is without a name. As we already know

that def keyword is used to define the normal functions and the lambda keyword is used to create

anonymous functions. It has the following syntax:

lambda arguments: expression
 This function can have any number of arguments but only one expression, which is evaluated

and returned.

 One is free to use lambda functions wherever function objects are required.

 You need to keep in your knowledge that lambda functions are syntactically restricted to a

single expression.

 It has various uses in particular fields of programming besides other types of expressions in

functions.

12. i) Explain with an example program to return the average of given number passed as

argument to a function.

Python program to get average of a list

Using reduce() and lambda

importing reduce()

from functools import reduce

def Average(lst):

 return reduce(lambda a, b: a + b, lst) / len(lst)

Driver Code

lst = [15, 9, 55, 41, 35, 20, 62, 49]

average = Average(lst)

Printing average of the list

print("Average of the list =", round(average, 2))

Output:

Average of the list = 35.75

Python program to get average of a list

Using mean()

importing mean()

from statistics import mean

def Average(lst):

 return mean(lst)

Driver Code

lst = [15, 9, 55, 41, 35, 20, 62, 49]

average = Average(lst)

Printing average of the list

print("Average of the list =", round(average, 2))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

33

Output:

Average of the list = 35.75

def cal_average(num):

 sum_num = 0

 for t in num:

 sum_num = sum_num + t

 avg = sum_num / len(num)

 return avg

print("The average is", cal_average([18,25,3,41,5]))

OUTPUT

The average is 18.4

ii) Explain the various features of functions in
Python

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can also create

your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a

function in Python.

 Function blocks begin with the keyword def followed by the function name and parentheses (

()).

 Any input parameters or arguments should be placed within these parentheses. You can also

define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation string of the

function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

34

13. i) Describe the syntax and rules involved in the return statement in Python.

Python return statement

A return statement is used to end the execution of the function call and “returns” the result (value of

the expression following the return keyword) to the caller. The statements after the return statements

are not executed. If the return statement is without any expression, then the special value None is

returned.

Syntax:

def fun():

 statements

 .

 .

 return [expression]

Example:
Python program to

demonstrate return statement

def add(a, b):

 # returning sum of a and b

 return a + b

def is_true(a):

 # returning boolean of a

 return bool(a)

calling function

res = add(2, 3)

print("Result of add function is {}".format(res))

res = is_true(2<5)

print("\nResult of is_true function is {}".format(res))

Output:
Result of add function is 5

Result of is_true function is True

ii) Write a program to demonstrate the flow of
control after the return statement in Python.

A function that returns a list of the numbers of the Fibonacci series:

>>>

>>> def fib2(n): # return Fibonacci series up to n

... """Return a list containing the Fibonacci series up to n."""

... result = []

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

35

... a, b = 0, 1

... while a < n:

... result.append(a) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

14. i) Explain the operator precedence of arithmetic operators in Python.

Precedence of Python Operators

The combination of values, variables, operators and function calls is termed as an expression. Python

interpreter can evaluate a valid expression.

For example:

1.

2. >>> 5 - 7

3. -2

Here 5 - 7 is an expression.

There can be more than one operator in an expression. To evaluate these type of expressions there is a

rule of precedence in Python. It guides the order in which operation are carried out.

For example, multiplication has higher precedence than subtraction.

Multiplication has higher precedence

than subtraction

Output: 2

10 - 4 * 2

Parentheses () has higher precendence

Output: 12

(10 - 4) * 2

The operator precedence in Python are listed in the following table.

It is in descending order, upper group has higher precedence than

 the lower ones.

Operator precedence rule in Python

Operators Meaning

() Parentheses

** Exponent

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

36

+x, -x, ~x Unary plus, Unary minus, Bitwise NOT

*, /, //, %

Multiplication, Division, Floor division,

Modulus

+, - Addition, Subtraction

<<, >> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==, !=, >, >=, <, <=, is,

is not, in, not in Comparisions, Identity, Membership operators

not Logical NOT

and Logical AND

or Logical OR

Operator precedence rule in Python

Associativity of Python Operators

Associativity is the order in which an expression is evaluated that has multiple operator of the same

precedence. Almost all the operators have left-to-right associativity.

For example, multiplication and floor division have the same precedence. Hence, if

Left-right associativity

Output: 3

print(5 * 2 // 3)

Shows left-right associativity

Output: 0

print(5 * (2 // 3))

Run

Powered by DataCamp

Exponent operator ** has right-to-left associativity in Python.

Right-left associativity of ** exponent operator

Output: 512

print(2 ** 3 ** 2)

Shows the right-left associativity

of **

Output: 64

print((2 ** 3) ** 2)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

37

ii) Write a Python program to exchange the value of two variables

1. # Python program to swap two variables

2.

3. x = 5

4. y = 10

5.

6. # To take inputs from the user

7. #x = input('Enter value of x: ')

8. #y = input('Enter value of y: ')

9.

10. # create a temporary variable and swap the values

11. temp = x

12. x = y

13. y = temp

14.
15. print('The value of x after swapping: {}'.format(x))

16. print('The value of y after swapping: {}'.format(y))

iii) Write a Python program using function to find the sum of first ‘n’ even numbers

and print the result.

sum of Even numbers in python

Python program to get input n and calculate the sum of even numbers till n

Solution

n=int(input("Enter n value:"))

sum=0

for i in range(2,n+1,2):

 sum+=i

print(sum)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

UNIT 3 - CONTROL FLOW, FUNCTIONS

SYLLABUS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-

else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and

global scope, function composition, recursion; Strings: string slices, immutability, string functions and

methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array

of numbers, linear search, binary search.

PART-A

Q.

No.
Q&A

1. Analyze different ways to manipulate strings in Python.

Slicing

In Python slice operator is used to slice a part of a string. The syntax uses start and end index with a “:” in

between as shown in the following example:

>>> str = "Python is great"

>>> first_six = str[0:6]

>>> first_six

OUTPUT : Python

2. Write the syntax of if and if-else statements.

Python if Statement Syntax

if test expression:

 statement(s)

Python if Statement Flowchart

If the number is positive, we print an appropriate message

num = 3
if num > 0:
 print(num, "is a positive number.")
print("This is always printed.")

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

2

OUTPUT

3 is a positive number.

This is always printed.

Python if...else Statement

Syntax of if...else

if test expression:

 Body of if

else:

 Body of else

num = 3

if num >= 0:
 print("Positive or Zero")
else:
 print("Negative number")

OUTPUT
‘Positive or zero’

3. List out the applications of arrays.

Arrays
Arrays are used to store multiple values in one single variable:
cars = ["Ford", "Volvo", "BMW"]

print(cars)
OUTPUT
['Ford', 'Volvo', 'BMW']

4. Discuss about continue and pass statements.
for i in 'hello':

if(i == 'e'):

print('pass executed')

pass

print(i)

print('----')

for i in 'hello':

if(i == 'e'):

print('continue executed')

continue

print(i)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

Output :-

h

pass executed

e

l

l

o

h

continue executed

l

l

o

5. What will be the output of print(str[2:5]) if str=’hello world!’?

str='hello world!'

print(str[2:5])

output

llo

6. Give the use of return() statement with a suitable example.

A function in Python is defined by a def statement. The general syntax looks like this:

def function-name(Parameter list):

 statements, i.e. the function body

The parameter list consists of none or more parameters. Parameters are called arguments, if the function is called. The

function body consists of indented statements. The function body gets executed every time the function is called.

Parameter can be mandatory or optional.

Function bodies can contain one or more return statement. They can be situated anywhere in the function body. A

return statement ends the execution of the function call and "returns" the result, i.e. the value of the expression

following the return keyword, to the caller. Example:

def fahrenheit(T_in_celsius):

 """ returns the temperature in degrees Fahrenheit """

 return (T_in_celsius * 9 / 5) + 32

for t in (22.6, 25.8, 27.3, 29.8):

 print(t, ": ", fahrenheit(t))

The output of this script looks like this:

22.6 : 72.68

25.8 : 78.44

27.3 : 81.14

29.8 : 85.64

7. Write a program to iterate a range using continue statement.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

4

The continue Statement:

The continue statement in Python returns the control to the beginning of the while loop.

The continue statement rejects all the remaining statements in the current iteration of the loop and moves

the control back to the top of the loop.

The continue statement can be used in both while and for loops.

In the following script , when we have encountered a spam item, continue prevents us from eating spam!

edibles = ["ham", "spam", "eggs","nuts"]

for food in edibles:

 if food == "spam":

 print("No more spam please!")

 continue

 print("Great, delicious " + food)

 # here can be the code for enjoying our food :-)

else:

 print("I am so glad: No spam!")

print("Finally, I finished stuffing myself")

OUTPUT:

$ python for.py

Great, delicious ham

No more spam please!

Great, delicious eggs

Great, delicious nuts

I am so glad: No spam!

Finally, I finished stuffing myself

8. Name the type of Boolean operators.

Logical operators

Logical operators are the and, or, not operators.

The logical operators and, or and not are also referred to as boolean operators.

Operator Meaning Example

and True if both the operands are true x and y

or True if either of the operands is true x or y

not True if operand is false (complements the operand) not x

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

Boolean and operator returns

true if both operands return

true.

Boolean or operator returns

true if any one operand is true

The not operator returns true if

its operand is a false expression

and returns false if it is true.

>>> a=50

>>> b=25

>>> a>40 and b>40

False

>>> a>100 and b<50

False

>>> a==0 and b==0

False

>>> a>0 and b>0

True

>>> a=50

>>> b=25

>>> a>40 or b>40

True

>>> a>100 or b<50

True

>>> a==0 or b==0

False

>>> a>0 or b>0

True

>>> a=10

>>> a>10

False

>>> not(a>10)

True

9. Explain about break statement with an example.

The break Statement:

The break statement in Python terminates the current loop and resumes execution at the next statement.

The most common use for break is when some external condition is triggered requiring a hasty exit from a

loop. The break statement can be used in both while and for loops.

Example:

for letter in 'Python': # First Example

 if letter == 't':

 break
 print 'Current Letter :', letter

var = 10 # Second Example

while var > 0:

 print 'Current variable value :', var

 var = var -1

 if var == 8:

 break

print "Good bye!"

OUTPUT:

Current Letter : P

Current Letter : y

Current variable value : 10

Current variable value : 9

Good bye!

10. Where does indexing starts in Python?

Indexing starts from 0.
Example

>>> fruit = "banana"

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

6

>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

11. Illustrate the flowchart of if-elif-else statements.

Python if...elif...else Statement

Syntax of if...elif...else

if test expression:

 Body of if

elif test expression:

 Body of elif

else:

 Body of else

The elif is short for else if. It allows us to check for multiple expressions.

If the condition for if is False, it checks the condition of the next elif block and so on.

If all the conditions are False, body of else is executed.

Only one block among the several if...elif...else blocks is executed according to the condition.

The if block can have only one else block. But it can have multiple elif blocks.

Flowchart of if...elif...else

Example of if...elif...else

In this program, we check if the number is positive or negative or zero

and display an appropriate message

num = 3.4

if num > 0:

 print("Positive number")

elif num == 0:

 print("Zero")

else:

 print("Negative number")

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

When variable num is positive, Positive number is printed.

If num is equal to 0, Zero is printed.

If num is negative, Negative number is printed

12. Describe any 4 methods used on a string.

Python String Methods

Python provides lots of built-in methods which we can use on strings.

Below are the list of string methods available in Python 3.

Method Description Examples

Count(sub, [start], [end])

Returns the number of non-

overlapping occurrences of substring

(sub) in the range [start, end].

Optional arguments startand end are

interpreted as in slice notation.

>>> mystr = "Hello Python"

>>> print(mystr.count("o"))

2

>>> print(mystr.count("th"))

1

>>> print(mystr.count("l"))

2

>>> print(mystr.count("h"))

1

>>> print(mystr.count("H"))

1

>>> print(mystr.count("hH"))

0

Index(sub, [start], [end])

Searches the string for a specified

value and returns the position of

where it was found

>>> mystr = "HelloPython"

>>> print(mystr.index("P"))

5

>>>

print(mystr.index("hon"))

8

>>> print(mystr.index("o"))

4

replace(old, new[,count])

Returns a string where a specified

value is replaced with a specified

value

>>> mystr = "Hello Python.

Hello Java. Hello C++."

>>>

print(mystr.replace("Hello",

"Bye"))

Bye Python. Bye Java. Bye

C++.

>>>

print(mystr.replace("Hello",

"Hell", 2))

Hell Python. Hell Java.

Hello C++.

split(sep=None, maxsplit=-

1)

Splits the string at the specified

separator, and returns a list

>>> mystr = "Hello Python"

>>> print(mystr.split())

['Hello', 'Python']

>>> mystr1="Hello,,Python"

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

8

>>> print(mystr1.split(","))

['Hello', '', 'Python']

strip([chars])
Returns a trimmed version of the

string

>>> mystr = "

Hello Python

"

>>> print(mystr.strip(),

"!")

Hello Python !

>>> print(mystr.strip(), "

")

Hello Python

upper() Converts a string into upper case

>>> mystr = "hello Python"

>>> print(mystr.upper())

HELLO PYTHON

13. What are the advantages and disadvantages of recursion function?

Advantages of Recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using recursion.

3. Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

3. Recursive functions are hard to debug.

14. Explain the significance of for loop with else in an example.

For Loops
For loop is a programming language statement, i.e. an iteration statement, which allows a code block to be repeated a

certain number of times.

Syntax of the For Loop

The Python for loop is an iterator based for loop. It steps through the items of lists, tuples, strings, the keys of

dictionaries and other iterables. The Python for loop starts with the keyword "for" followed by an arbitrary variable

name, which will hold the values of the following sequence object, which is stepped through. The general syntax

looks like this:

for <variable> in <sequence>:

 <statements>

else:

 <statements>

The items of the sequence object are assigned one after the other to the loop variable; to be precise the variable points

to the items. For each item the loop body is executed.

Example of a simple for loop in Python:

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

>>> languages = ["C", "C++", "Perl", "Python"]

>>> for x in languages:

... print(x)

...

C

C++

Perl

Python

>>>

15. Define array with an example.

Arrays

Arrays are used to store multiple values in one single variable:

Example

Create an array containing car names:

cars = ["Ford", "Volvo", "BMW"]

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

cars = ["Ford", "Volvo", "BMW"]
x = cars[0]

print(x)

OUTPUT
Ford

16. Differentiate for loop and while loop.
The for loop is a programming language statement, i.e. an iteration statement, which allows a code block to

be repeated a certain number of times.

for <variable> in <sequence>:

 <statements>

else:

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

10

 <statements>

Example of a simple for loop in Python:

>>> languages = ["C", "C++", "Perl", "Python"]

>>> for x in languages:

... print(x)

...

C

C++

Perl

Python

>>>

A while loop statement in Python programming language repeatedly executes a target statement as long as

a given condition is true.

Syntax

The syntax of a while loop in Python programming language is −

while expression:

 statement(s)

n = 100

s = 0

counter = 1

while counter <= n:

 s = s + counter

 counter += 1

print("Sum of 1 until %d: %d" % (n,s))

OUTPUT
Sum of 1 until 100: 5050

17. Classify global variable with local variable.

Local Variables
When you define variables inside a function definition, they are local to this function by default. This
means that anything you will do to such a variable in the body of the function will have no effect on other
variables outside of the function, even if they have the same name. This means that the function body is
the scope of such a variable, i.e. the enclosing context where this name with its values is associated.

Global and local Variables in Functions

The following example, demonstrates, how global values can be used inside the body of a

function:

def f():

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

 print(s)

#s is global variable

s = "I love Paris in the summer!"

f()

Local Variable

def f():

#Here is id local variable

 s = "I love London!"

 print(s)

s = "I love Paris!"

f()

print(s)

The output looks like this:

I love London!

I love Paris!

18. Write a Python program to accept two numbers, multiply them and print the result.

1. a = int(input("enter first number: "))

2. b = int(input("enter second number: "))

3. result = a * b.

4. print("result :", result)

OUTPUT
enter first number: 4

enter second number: 5

result : 20

19. Justify the effects of slicing operation on an array.

How to slice arrays?

We can access a range of items in an array by using the slicing operator :.

1. import array as arr

2.

3. numbers_list = [2, 5, 62, 5, 42, 52, 48, 5]

4. numbers_array = arr.array('i', numbers_list)

5.

6. print(numbers_array[2:5]) # 3rd to 5th

7. print(numbers_array[:-5]) # beginning to 4th

8. print(numbers_array[5:]) # 6th to end

9. print(numbers_array[:]) # beginning to end

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

12

When you run the program, the output will be:

array('i', [62, 5, 42])

array('i', [2, 5, 62])

array('i', [52, 48, 5])

array('i', [2, 5, 62, 5, 42, 52, 48, 5])

20. How to access the elements of an array using index.

How to access array elements?

We use indices to access elements of an array:

1. import array as arr
2. a = arr.array('i', [2, 4, 6, 8])
3.
4. print("First element:", a[0])
5. print("Second element:", a[1])
6. print("Last element:", a[-1])

OUTPUT

First element: 2

Second element: 4

Last element: 8

PART-B

1. i. Write a Python program to find the sum of N natural numbers.

Program to add natural numbers upto n

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 100

initialize sum and counter

sum = 0

i = 1

while i <= n:

sum = sum + i

i = i+1 # update counter

print the sum

print("The sum is", sum)
OUTPUT The sum is 5050

ii. What is the use of pass statement? Illustrate with an example.

The pass Statement:

The pass statement in Python is used when a statement is required syntactically but you do not want any

command or code to execute.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

The pass statement is a null operation; nothing happens when it executes. The pass is also useful in places

where your code will eventually go, but has not been written yet (e.g., in stubs for example):

Example:
#!/usr/bin/python

for letter in 'Python':

 if letter == 'h':

 pass

 print 'This is pass block'

 print 'Current Letter :', letter

print "Good bye!"

OUTPUT

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good bye!

2. Define methods in a string with an example program using at least 5 methods.

Python String Methods

Python provides lots of built-in methods which we can use on strings.

Method Description Examples

capitalize()

Returns a copy of the string with its first

character capitalized and the rest

lowercased.

>>> print(capitalize(“Hello Python”)

Hello python

Casefold()

Returns a casefolded copy of the string.

Casefolded strings may be used for caseless

matching.

>>> mystring = "hello PYTHON"

>>> print(mystring.casefold())

hello python

Center(width,

[fillchar])

Returns the string centered in a string of

length width. Padding can be done using the

specified fillchar (the default padding uses

an ASCII space). The original string is

returned if width is less than or equal to

len(s)

>>> mystring = "Hello"

>>> x = mystring.center(12,

"-")

>>> print(x)

---Hello----

Count(sub, [start],

[end])

Returns the number of non-overlapping

occurrences of substring (sub) in the range

[start, end]. Optional

arguments startand end are interpreted as in

slice notation.

>>> mystr = "Hello Python"

>>> print(mystr.count("o"))

2

>>> print(mystr.count("th"))

1

>>> print(mystr.count("l"))

2

>>> print(mystr.count("h"))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

14

1

>>> print(mystr.count("H"))

1

>>> print(mystr.count("hH"))

0

endswith(suffix,

[start], [end])

Returns True if the string ends with the

specified suffix, otherwise it returns

False.

>>> mystr = "Python"

>>>

print(mystr.endswith("y"))

False

>>>

print(mystr.endswith("hon"))

True

How to access characters of a string?
Individual characters in a string can be accessed by specifying the string name followed by a number
in square brackets ([]). String indexing in Python is zero-based: the first character in the string has
index 0 , the next has index 1 , and so on.

3. Write a program for binary search using Arrays.

Python Program for Binary Search (Recursive and Iterative)

We basically ignore half of the elements just after one comparison.

1. Compare x with the middle element.

2. If x matches with middle element, we return the mid index.

3. Else If x is greater than the mid element, then x can only lie in right half subarray after the mid

element. So we recur for right half.

4. Else (x is smaller) recur for the left half.

Iterative:
Iterative Binary Search Function
It returns location of x in given array arr if present,
else returns -1
def binarySearch(arr, l, r, x):

 while l <= r:

 mid = l + (r - l)/2;

 # Check if x is present at mid
 if arr[mid] == x:
 return mid

 # If x is greater, ignore left half
 elif arr[mid] < x:
 l = mid + 1

 # If x is smaller, ignore right half
 else:
 r = mid - 1

 # If we reach here, then the element was not present
 return -1

Test array
arr = [2, 3, 4, 10, 40]

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

x = 10

Function call
result = binarySearch(arr, 0, len(arr)-1, x)

if result != -1:
 print "Element is present at index %d" % result
else:
 print "Element is not present in array"
Output:
Element is present at index 3

4. What is call by value and call by reference and explain it with suitable example

call-by-value :

1. >def plus_1(x) :
2. > x=x+1
3. >
4. >x=5
5. >plus_1(x)
6. >print x
7. 5

Here, x was passed by value - local changes within the function didn’t echo back to the

calling scope.

However, if we use a list, elements are passed by reference. So that here,

1. >def plus_1(x) :
2. > x[0]=x[0]+1
3. >
4. >x=[5]
5. >plus_1(x)
6. >print x[0]
7. 6

5. i) Write a python program to find the given number is odd or even

1. # Python program to check if the input number is odd or even.
2. # A number is even if division by 2 gives a remainder of 0.
3. # If the remainder is 1, it is an odd number.
4.
5. num = int(input("Enter a number: "))
6. if (num % 2) == 0:
7. print("{0} is Even".format(num))
8. else:
9. print("{0} is Odd".format(num))

Enter a number: 77

77 is Odd

6. Write a Python program to count the number of vowels in a string provided by the user.

Counting vowels: String Way

In this method, we will store all the vowels in a string and then pick every character from the enquired

string and check whether it is in the vowel string or not. The vowel string consists of all the vowels with

both cases since we are not ignoring the cases here. If the vowel is encountered then count gets

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

16

incremented and stored in a list and finally printed.

Python code to count and display number of vowels

Simply using for and comparing it with a

string containg all vowels

def Check_Vow(string, vowels):

 final = [each for each in string if each in vowels]

 print(len(final))

 print(final)

Driver Code

string = "I wandered lonely as a cloud"

vowels = "AaeEeIiOoUu"

Check_Vow(string, vowels);

Output:

10

['I', 'a', 'e', 'e', 'o', 'e', 'a', 'a', 'o', 'u']

Explain the types of function arguments in Python

Function Arguments

There are three types of Python function arguments using which we can call a function.
 Default Arguments.

 Keyword Arguments.

 Variable-length Arguments.

Function call with variable arguments

def display(*name, **address):

 for items in name:

 print (items)

 for items in address.items():

 print (items)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

#Calling the function

display('john','Mary','Nina',John='LA',Mary='NY',Nina='DC')

john

Mary

Nina

('John', 'LA')

('Mary', 'NY')

('Nina', 'DC')

#Function with Keyword argements

def print_name(name1, name2):

 """ This function prints the name """

 print (name2 + " and " + name1 + " are friends")

#calling the function

print_name(name2 = 'John',name1 = 'Gary')

John and Gary are friends

def sum(a=4, b=2): #2 is supplied as default argument

 """ This function will print sum of two numbers

 if the arguments are not supplied

 it will add the default value """

 print (a+b)

sum(1,2) #calling with arguments

sum() #calling without arguments

3

6

7. Explain the syntax and flowchart of the following loop statements

i) for loop

For Loops

Introduction

For loop is a programming language statement, i.e. an iteration statement, which allows a code block to be

repeated a certain number of times. The Python for loop is an iterator based for loop. It steps through the

items of lists, tuples, strings, the keys of dictionaries and other iterables. The Python for loop starts with the

keyword "for" followed by an arbitrary variable name, which will hold the values of the following sequence

object, which is stepped through. The general syntax looks like this:

for <variable> in <sequence>:

 <statements>

else:

 <statements>

The items of the sequence object are assigned one after the other to the loop variable; to be precise the

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

18

variable points to the items. For each item the loop body is executed.

Example of a simple for loop in Python:

>>> languages = ["C", "C++", "Perl", "Python"]

>>> for x in languages:

... print(x)

...

C

C++

Perl

Python

>>>

ii) while loop

What is while loop in Python?

The while loop in Python is used to iterate over a block of code as long as the test expression (condition) is

true.

We generally use this loop when we don't know beforehand, the number of times to iterate.

Syntax of while Loop in Python

while test_expression:

 Body of while

In while loop, test expression is checked first. The body of the loop is entered only if

the test_expression evaluates to True. After one iteration, the test expression is checked again. This process

continues until the test_expression evaluates to False.

In Python, the body of the while loop is determined through indentation.

Body starts with indentation and the first unindented line marks the end.

Python interprets any non-zero value as True. None and 0 are interpreted as False.

Flowchart of while Loop

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

Example: Python while Loop

Program to add natural numbers upto n

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

while i <= n:

 sum = sum + i

 i = i+1 # update counter

print the sum

print("The sum is", sum)

OUTPUT

Enter n: 10

The sum is 55

8. Illustrate with an example nested if and elif header in Python.

Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is called nesting in

computer programming.

Any number of these statements can be nested inside one another. Indentation is the only way to figure out

the level of nesting. This can get confusing, so must be avoided if we can.

Python Nested if Example

1. # In this program, we input a number

2. # check if the number is positive or

3. # negative or zero and display

4. # an appropriate message

5.

6. num = float(input("Enter a number: "))

7. if num >= 0:

8. if num == 0:

9. print("Zero")

10. else:

11. print("Positive number")

12. else:

13. print("Negative number")

Output 1

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

20

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

Zero

Develop a program to find the largest among three numbers.

9. Explain recursive function. How do recursive function works?

Recursive Functions in Python

A recursive function is a function defined in terms of itself via self-referential expressions. This means that

the function will continue to call itself and repeat its behavior until some condition is met to return a result.

The Fibonacci numbers are the numbers of the following sequence of integer values:

0,1,1,2,3,5,8,13,21,34,55,89, ...

The Fibonacci numbers are defined by:

Fn = Fn-1 + Fn-2

with F0 = 0 and F1 = 1

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-1) + fib(n-2)

10. Create a Python program to find the given year is leap year or not.

Python program to check if year is a leap year or not.

To get year (integer input) from the user.

year = int(input("Enter a year: "))

if (year % 4) == 0:

 if (year % 100) == 0:

 if (year % 400) == 0:

 print("{0} is a leap year". format(year))

if (year % 4) is not 0:

 print("{0} is NOT a leap year". format(year))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

OUTPUT

Enter a year: 2019

2019 is NOT a leap year

Enter a year: 2000

2000 is a leap year

Investigate on mutability and immutability in Python.

Python: Mutable vs. Immutable

Everything in Python is an object . You have to understand that Python represents all its data as objects. An

object’s mutability is determined by its type. Some of these objects like lists and dictionaries are mutable ,

meaning you can change their content without changing their identity. Other objects like integers, floats,

strings and tuples are objects that can not be changed.

Strings are Immutable List is mutable Tuple is immutable

Strings are immutable in

Python, which means you

cannot change an existing

string. The best you can do is

create a new string that is a

variation on the original.

Having mutable variables means

that calling the same method with

the same variables may not

guarantee the same output,

because the variable can be

mutated at any time by another

method or perhaps, another

thread, and that is where you start

to go crazy debugging.

Example

message = "strings immutable"

 message[0] = 'p'

 print(message)

output

Instead of producing the output

"strings immutable", this code

produces the runtime error:

TypeError: 'str' object does not

support item assignment

Why are Python strings

immutable?

Which means a string alue cannot

be updated . Immutability is a

clean and efficient solution to

concurrent access.

Having immutable

variables means that no matter

how many times the method is

called with the same

Mutable example

 my_list = [10, 20, 30]

 print(my_list)

Output

[10, 20, 30]

continue...

my_list = [10, 20, 30]

my_list[0] = 40

print(my_list)

Output

 [40, 20, 30]

Immutable example

 my_yuple = (10, 20, 30)

 print(my_yuple)

Output

(10, 20, 30)

 my_yuple = (10, 20, 30)

 my_yuple[0] = 40

 print(my_yuple)

output

 Traceback (most recent

call last):

 File "test.py", line 3, in <

module >

 my_yuple[0] = 40

 TypeError: 'tuple' object

does not support item

assignment

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

22

variable/value, the output will

always be the same.

11. Explain the different types of the function prototype with an example.

Foreign functions can also be created by instantiating function prototypes. Function

prototypes are similar to function prototypes in C; they describe a function (return

type, argument types, calling convention) without defining an implementation. The

factory functions must be called with the desired result type and the argument types

of the function.

Examine a Python program to generate first ‘N’ Fibonacci numbers.

def fib(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a + b

 return result

print(fib(100))

#[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Note: The Fibonacci numbers are 0,1,1,2,3,5,8,….. where each number is the sum of preceding two.

12. Generate a program that uses lambda function to multiply two numbers.

multi = lambda x, y : x * y

print(multi(5, 20))

print("\nResult from a multi Function")

def multi_func(x, y):

 return x * y

print(multi_func(5, 20))

OUTPUT
100

Result from a multiply Function

100

Discuss the methods to manipulate the arrays in Python.

Python Arrays

In programming, an array is a collection of elements of the same type.

Arrays are popular in most programming languages like Java, C/C++, JavaScript and so on.

However, in Python, they are not that common.

Python Lists Vs array Module as Arrays

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

We can treat lists as arrays. However, we cannot constrain the type of elements stored in a list.

How to create arrays?

We need to import array module to create arrays. For example:

1. import array as arr

2. a = arr.array('d', [1.1, 3.5, 4.5])

3. print(a)

Here, we created an array of float type. The letter 'd' is a type code. This determines the type of the

array during creation.

How to access array elements?

We use indices to access elements of an array:

1. import array as arr

2. a = arr.array('i', [2, 4, 6, 8])

3.

4. print("First element:", a[0])

5. print("Second element:", a[1])

6. print("Last element:", a[-1])

Remember, the index starts from 0 (not 1) similar to lists.

How to slice arrays?

We can access a range of items in an array by using the slicing operator :.

1. import array as arr

2.

3. numbers_list = [2, 5, 62, 5, 42, 52, 48, 5]

4. numbers_array = arr.array('i', numbers_list)

5.

6. print(numbers_array[2:5]) # 3rd to 5th

7. print(numbers_array[:-5]) # beginning to 4th

8. print(numbers_array[5:]) # 6th to end

9. print(numbers_array[:]) # beginning to end

When you run the program, the output will be:

array('i', [62, 5, 42])

array('i', [2, 5, 62])

array('i', [52, 48, 5])

array('i', [2, 5, 62, 5, 42, 52, 48, 5])

How to change or add elements?

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

24

Arrays are mutable; their elements can be changed in a similar way like lists.

1. import array as arr

2.

3. numbers = arr.array('i', [1, 2, 3, 5, 7, 10])

4.

5. # changing first element

6. numbers[0] = 0

7. print(numbers) # Output: array('i', [0, 2, 3, 5, 7, 10])

We can concatenate two arrays using + operator.

1. import array as arr

2.

3. odd = arr.array('i', [1, 3, 5])

4. even = arr.array('i', [2, 4, 6])

5.

6. numbers = arr.array('i') # creating empty array of integer

7. numbers = odd + even

8.

9. print(numbers)

How to remove/delete elements?

We can delete one or more items from an array using Python's del statement.

1. import array as arr

2.

3. number = arr.array('i', [1, 2, 3, 3, 4])

4.

5. del number[2] # removing third element

6. print(number) # Output: array('i', [1, 2, 3, 4])
13. Explain the significance of xrange() function in for loop with a help of a program.

Python code to demonstrate range() vs xrange() on basis of memory

import sys

from past.builtins import xrange

initializing a with range()

a = range(1,10000)

initializing a with xrange()

x = xrange(1,10000)

testing the size of a

range() takes more memory

print ("The size allotted using range() is : ")

print (sys.getsizeof(a))

testing the size of a

range() takes less memory

print ("The size allotted using xrange() is : ")

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

print (sys.getsizeof(x))

Output:

The size allotted using range() is :

80064

The size allotted using xrange() is :

40

14. Create a program to find the factorial of given number without recursion and with recursion.

Factorial of a number using recursion

def recur_factorial(n):

 if n == 1:

 return n

 else:

 return n*recur_factorial(n-1)

num = 6

check if the number is negative

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num == 0:

 print("The factorial of 0 is 1")

else:

 print("The factorial of", num, "is", recur_factorial(num))

 Illustrate the concept of local and global variables.

n=int(input("Enter number:"))

fact=1

while(n>0):

 fact=fact*n

 n=n-1

print("Factorial of the number is: ")

print(fact)

Enter number: 6

OUTPUT

Factorial of the number is:

720

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

UNIT 4 - LISTS, TUPLES, DICTIONARIES

SYLLABUS
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple
assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list
comprehension; Illustrative programs: selection sort, insertion sort, merge sort, Histogram.

Part A
Q.

No.
Q&A

1. Define Python list. How lists differ from Tuples.

List

A list is a collection which is ordered and changeable. In Python lists are written with square brackets.

The main difference between lists and a tuples is the fact that lists are mutable whereas tuples

are immutable.

2. What are the list operations?

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition here too, except

that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]:

print x,

1 2 3 Iteration

3. What are the different ways to create a list?

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

OUTPUT

['apple', 'banana', 'cherry']

4. Illustrate negative indexing in list with an example.

Negative Indexing

Negative indexing means beginning from the end, -1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[-1])

OUTPUT

cherry

5. How to slice a list in Python?

Slicing Python Lists

Python has an amazing feature known as slicing. Slicing can not only be used for lists, tuples or

arrays, but custom data structures as well, with the slice object.

Slicing Python Lists/Arrays and Tuples Syntax

Let's consider the list a shown below :

1 >>> a = [1, 2, 3, 4, 5, 6, 7, 8]

Slicing operation is done on a normal list a = [1, 2, 3, 4, 5, 6, 7, 8] and sub-elements 2, 3, and 4

returned in a new list as a result.

The following example illustrates the slicing operation on lists:

1

2

>>> a[1:4]

[2, 3, 4]

6. List out the methods that are available with list object in

Python programming.

Python List Methods

Python has some list methods that you can use to perform frequently occurring task (related to list) with ease.

For example, if you want to add element to a list, you can use append() method.

The table below contains all methods of list objects. Also, the table includes built-in functions that can take list

as a parameter and perform some task. For example, all() function returns True if all elements of an list

(iterable) is true. If not, it returns False.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Method Description

Python List append() Add a single element to the end of the list

Python List extend() Add Elements of a List to Another List

Python List insert() Inserts Element to The List

Python List remove() Removes item from the list

Python List index() returns smallest index of element in list

Python List count() returns occurrences of element in a list

Python List pop() Removes element at the given index

Python List reverse() Reverses a List

Python List sort() sorts elements of a list

Python List copy() Returns Shallow Copy of a List

Python List clear() Removes all Items from the List

7. Show the membership operators used in list.

Membership Operators in Python

Membership Operators are the operators, which are used to check whether a value/variable exists in the

sequence like string, list, tuples, sets, dictionary or not.

These operator returns either True or False, if a value/variable found in the list, its

returns True otherwise it returns False.

Python Membership Operators

Operator Description Example

in It returns True, if a variable/value found

in the sequence.

10 in

list1

not in It returns True, if a variable/value does

not found in the sequence.

10 not in

list1

Example:

Python example of "in" and "not in" Operators

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

declare a list and a string

str1 = "Hello world"

list1 = [10, 20, 30, 40, 50]

Check 'w' (capital exists in the str1 or not

if 'w' in str1:

 print "Yes! w found in ", str1

else:

 print "No! w does not found in " , str1

check 'X' (capital) exists in the str1 or not

if 'X' not in str1:

 print "yes! X does not exist in ", str1

else:

 print "No! X exists in ", str1

check 30 exists in the list1 or not

if 30 in list1:

 print "Yes! 30 found in ", list1

else:

 print "No! 30 does not found in ", list1

check 90 exists in the list1 or not

if 90 not in list1:

 print "Yes! 90 does not exist in ", list1

else:

 print "No! 90 exists in ", list1

Output

 Yes! w found in Hello world

 yes! X does not exist in Hello world

 Yes! 30 found in [10, 20, 30, 40, 50]

 Yes! 90 does not exist in [10, 20, 30, 40, 50]

8. Define Python Tuple.

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The differences

between tuples and lists are, the tuples cannot be changed unlike lists and tuples use parentheses,

whereas lists use square brackets.

A tuple is a collection which is ordered and unchangeable.
Example

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

9. What are the advantages of Tuple over list?

Tuples are faster than lists.
If you're defining a constant set of values and all you're ever going to do with it is
iterate through it, use a tuple instead of a list. It makes your code safer if you “write-protect” data that does
not need to be changed.

10. Classify the Python accessing elements in a Tuples.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices to obtain

value available at that index. For example −

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result −

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

11. Point out the methods used in Tuples

Python Tuple Methods

Method Description

Python slice()
creates a slice object specified by

range()

Python sorted() returns sorted list from a given iterable

Python sum() Add items of an Iterable

Python tuple() Function Creates a Tuple

12. How a Tuple is iterated? Explain with an example.

How to iterate through a tuple

There are different ways to iterate through a tuple object. The for statement in Python has a variant which

traverses a tuple till it is exhausted. It is equivalent to foreach statement in Java. Its syntax is −

for var in tuple:

 stmt1

 stmt2

Following script will print all items in the list

T = (10,20,30,40,50)

for var in T:

 print (T.index(var),var)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

The output generated is −

0 10

1 20

2 30

3 40

4 50

Another approach is to iterate over range upto length of tuple, and use it as index of item in tuple

for var in range(len(T)):

 print (var,T[var])

You can also obtain enumerate object from the tuple and iterate through it. Following code too gives

same output.

for var in enumerate(T):

 print (var)

13. Explain how Tuples are used as return values?
Tuples as Return Values. Functions can return tuples as return values. ... In each case, a function (which
can only return a single value), can create a single tuple holding multiple elements. For example, we could
write a function that returns both the area and the circumference of a circle of radius r.

Tuples as Return Values

Functions can return tuples as return values. This is very useful — we often want to know some batsman’s highest

and lowest score, or we want to find the mean and the standard deviation, or we want to know the year, the month,

and the day. In each case, a function (which can only return a single value), can create a single tuple holding multiple

elements.

For example, we could write a function that returns both the area and the circumference of a circle of radius

Example

def circleInfo(r):

 """ Return (circumference, area) of a circle of radius r """

 c = 2 * 3.14159 * r

 a = 3.14159 * r * r

 return (c, a)

print(circleInfo(10))

OUTPUT

(62.8318, 314.159)

14. Define dictionary with an example.

Dictionary

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries are written

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

with curly brackets, and they have keys and values.

Example

Create and print a dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Example-2

As an example, we will create a dictionary to translate English words into Spanish. For this dictionary, the keys are

strings and the values will also be strings.

One way to create a dictionary is to start with the empty dictionary and add key-value pairs. The empty dictionary is

denoted {}

#dictionary creation

#English to Spanish translation

#Key Value pairs

engtosp = {}

engtosp['one'] = 'uno'

engtosp['two'] = 'dos'

engtosp['three'] = 'tres'

print(engtosp)

OUTPUT

{'one': 'uno', 'two': 'dos', 'three': 'tres'}

eng2sp = {‘one’ : ‘uno’, ‘two’ : ‘dos’,’three’ : ’tres’ }

print(eng2sp)

{'one': 'uno', 'two': 'dos', 'three': 'tres'}

15. What are the properties of dictionary keys?

Properties of Dictionary Keys

First, a given key can appear in a dictionary only once. Duplicate keys are not allowed. A

dictionary maps each key to a corresponding value, so it doesn’t make sense to map a

particular key more than once.

Secondly, a dictionary key must be of a type that is immutable. You have already seen

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

examples where several of the immutable types you are familiar with—integer, float,

string, and Boolean—have served as dictionary keys.

No Restrictions on Dictionary Values

By contrast, there are no restrictions on dictionary values. Literally none at all. A

dictionary value can be any type of object Python supports, including mutable types like

lists and dictionaries, and user-defined objects

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys but

something like ['key'] is not allowed.

16. Give examples of dictionary methods

#Dictionary Methods

month = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'June': 6}

for key, value in month.items(): #Iteration of dictionary using For Loop

 print (key, value) # print Key-Value pair

print(month.keys()) # print KEYs alone

print(month.values()) # print values alone

print(month.items()) # print dictionary items

OUTPUT

Jan 1

Feb 2

Mar 3

Apr 4

May 5

June 6

dict_keys(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June'])

dict_values([1, 2, 3, 4, 5, 6])

dict_items([('Jan', 1), ('Feb', 2), ('Mar', 3), ('Apr', 4), ('May', 5), ('June', 6)])

17. Perform the bubble sort on the elements 23,78,45,8,32,56

def bubbleSort(arr):

 n = len(arr)

 # Traverse through all array elements

 for i in range(n):

 # Last i elements are already in place

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 for j in range(0, n-i-1):

 # traverse the array from 0 to n-i-1

 # Swap if the element found is greater

 # than the next element

 if arr[j] > arr[j+1] :

 arr[j], arr[j+1] = arr[j+1], arr[j]

Driver code to test above

arr = [23,78,45,8,32,56]

bubbleSort(arr)

print ("Sorted array is:")

print(arr)

OUTPUT

Sorted array is:

[8, 23, 32, 45, 56, 78]

18. Compose an example on insertion sort.
Python program for implementation of Insertion Sort

Function to do insertion sort
def insertionSort(arr):

 # Traverse through 1 to len(arr)
 for i in range(1, len(arr)):

 key = arr[i]

 # Move elements of arr[0..i-1], that are
 # greater than key, to one position ahead
 # of their current position
 j = i-1
 while j >=0 and key < arr[j] :
 arr[j+1] = arr[j]
 j -= 1
 arr[j+1] = key

Driver code to test above
arr = [12, 11, 13, 5, 6]
insertionSort(arr)
print ("Sorted array is:")
for i in range(len(arr)):
 print ("%d" %arr[i])

Sorted array is:

5

6

11

12

13

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19. What is the use of all(), any(), cmp() and sorted() in dictionary?

Built-in Functions with Dictionary

Built-in functions like all(), any(), len(), cmp(), sorted() etc. are commonly used with dictionary to

perform different tasks.

Function Description

all() Return True if all keys of the dictionary are true (or if the dictionary is empty).

any() Return True if any key of the dictionary is true. If the dictionary is empty, return False.

len() Return the length (the number of items) in the dictionary.

cmp() Compares items of two dictionaries.

sorted() Return a new sorted list of keys in the dictionary.

EXAMPLES

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

Output: 5

print(len(squares))

Output: [1, 3, 5, 7, 9]

print(sorted(squares))

20. Differentiate between Tuples and dictionaries

List and tuple is an ordered collection of items. Dictionary is unordered collection. List
and dictionary objects are mutable i.e. it is possible to add new item or delete and item from it. Tuple is an
immutable object.

List vs tuple vs dictionary in Python

List and Tuple objects are sequences. A dictionary is a hash table of key-value pairs. List and tuple is an ordered

collection of items. Dictionary is unordered collection.

List and dictionary objects are mutable i.e. it is possible to add new item or delete and item from it. Tuple is an

immutable object. Addition or deletion operations are not possible on tuple object.

Each of them is a collection of comma-separated items. List items are enclosed in square brackets [], tuple items

in round brackets or parentheses (), and dictionary items in curly brackets {}

PART-B

1. i) What is Python List? Describe the list usage with suitable examples.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Python Lists

The list is a most versatile datatype available in Python which can be written as a list of comma-

separated values (items) between square brackets. Important thing about a list is that items in a list need

not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets. For

example −

list1 = ['physics', 'chemistry', 1997, 2000]

list2 = [1, 2, 3, 4, 5]

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

How to create a list?

In Python programming, a list is created by placing all the items (elements) inside a square bracket [],

separated by commas.

1. # empty list

2. my_list = []
3.

4. # list of integers

5. my_list = [1, 2, 3]
6.

7. # list with mixed datatypes

8. my_list = [1, "Hello", 3.4]

How to access elements from a list?

There are various ways in which we can access the elements of a list.

List Index

We can use the index operator [] to access an item in a list. Index starts from 0. So, a list having 5

elements will have index from 0 to 4.

How to slice lists in Python?

We can access a range of items in a list by using the slicing operator (colon).

1. my_list = ['p','r','o','g','r','a','m','i','z']

2. # elements 3rd to 5th

3. print(my_list[2:5])

Iterating Through a List

Using a for loop we can iterate though each item in a list.
1. for fruit in ['apple','banana','mango']:

2. print("I like",fruit)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

OUTPUT

I like apple

I like banana

I like mango

>>>

ii) Write a program to illustrate the heterogeneous list.

a = ['Jan', 'Feb', 'Mar', 'Apr', 'May',’Jun’,Jul’,’Aug’,’Sep’, ‘Oct,’Nov’,’Dec’]

 a += '123456789'

b=[‘10’,’11’,’12’]

a = a+b

print(a)

OUTPUT
['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']

#Hetrogenuous Python List

a = ['Jan', 'Feb', 'Mar', 'Apr', 'May','Jun','Jul','Aug','Sep', 'Oct','Nov','Dec']

a += '123456789'

b=['10','11','12']

c = a+b

for mon in c :

 print(mon,'-2019')

OUTPUT
Jan -2019

Feb -2019

Mar -2019

Apr -2019

May -2019

Jun -2019

Jul -2019

Aug -2019

Sep -2019

Oct -2019

Nov -2019

Dec -2019

1 -2019

2 -2019

3 -2019

4 -2019

5 -2019

6 -2019

7 -2019

8 -2019

9 -2019

10 -2019

11 -2019

12 -2019

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

2. Describe the following

i) Creating the list

The list is a most versatile datatype available in Python which can be written as a list of comma-separated values

(items) between square brackets. Important thing about a list is that items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

ii) Accessing values in the lists

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to obtain value

available at that index. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result −

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

iii) Updating the list

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the assignment

operator, and you can add to elements in a list with the append() method. For example −

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2]

list[2] = 2001;

print "New value available at index 2 : "

print list[2]

When the above code is executed, it produces the following result −

Value available at index 2 :

1997

New value available at index 2 :

2001

iv) Deleting the list elements

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which element(s) you are

deleting or the remove() method if you do not know. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

print list1

del list1[2];

print "After deleting value at index 2 : "

print list1

When the above code is executed, it produces following result −

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

3.

Explain the basic list operations in detail with necessary programs.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition here

too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior chapter.

Basic List Operation Python Expression Results

Get Length len([1, 2, 3]) 3

Concatenation [1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6]

Repetition ['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!']

Membership 3 in [1, 2, 3] True

Iteration for x in [1, 2, 3]: print x, 1 2 3

Write a Python program to multiply two matrices.
1. # Program to multiply two matrices using nested loops

2.

3. # 3x3 matrix

4. X = [[12,7,3],

5. [4 ,5,6],

6. [7 ,8,9]]

7. # 3x4 matrix

8. Y = [[5,8,1,2],

9. [6,7,3,0],

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

10. [4,5,9,1]]

11. # result is 3x4

12. result = [[0,0,0,0],

13. [0,0,0,0],

14. [0,0,0,0]]
15.

16. # iterate through rows of X

17. for i in range(len(X)):

18. # iterate through columns of Y

19. for j in range(len(Y[0])):

20. # iterate through rows of Y

21. for k in range(len(Y)):

22. result[i][j] += X[i][k] * Y[k][j]
23.

24. for r in result:

25. print(r)

Output

[114, 160, 60, 27]

[74, 97, 73, 14]

[119, 157, 112, 23]

4. i. Discuss the Python list methods with examples.

PYTON LIST METHODS

Operations Python List Methods

Name Insert() Append() Extend()

Description The insert() method

inserts an element to

the list at a given

index.

The append() method adds

an item to the end of the
list.

The extend() extends the

list by adding all items of

a list (passed as an
argument) to the end.

Syntax
list.insert(index,

element)

list.append(item)

list1.extend(list2)

Parameters The insert() function

takes two

parameters:

 index - position

where an

element needs to

be inserted

 element - this is

the element to

be inserted in

the list

 The method takes a

single argument

 item - an item to be

added at the end of the

list

 The item can be

numbers, strings,

dictionaries, another

list, and so on.

 The extend() method

takes a single

argument (a list) and

adds it to the end.

Return

Value

returns None.

Returns none None

Example # Inserting Element

to List

1. # animals list # language list

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

vowel list

vowel = ['a', 'e', 'i',

'u']

inserting element

to list at 4th position

vowel.insert(3, 'o')

print('Updated List:

', vowel)

2. animals = ['cat', 'dog',

'rabbit']

3.

4. # 'guinea pig' is

appended to the animals

list

5. animals.append('guinea

pig')

6.

7. # Updated animals list

8. print('Updated animals

list: ', animals)

language = ['French',

'English', 'German']

another list of language

language1 = ['Spanish',

'Portuguese']

language.extend(language

1)

Extended List

print('Language List: ',

language)

OUTPUT
Updated List:

 ['a', 'e', 'i', 'o', 'u']

Updated animals list:

 ['cat', 'dog', 'rabbit', 'guinea

pig']

Language List:

 ['French', 'English',

'German', 'Spanish',

'Portuguese']

ii. Why it is necessary to have both the functions append and extend? What is the result of the following

expression that uses append where it probably intended to use extend?

>>>lst=[1,2,3]

>>>lst.append([4,5,6])

What is the difference between the list methods append and extend?
1. append adds its argument as a single element to the end of a list. The length of the list itself will increase by

one.

2. extend iterates over its argument adding each element to the list, extending the list.

Example-1: Append

The append method is used to add an object to a list.

This object can be of any data type, a string, an integer, a boolean, or even another list.

The following code is used to append an item to a list L that initially has 4 elements

>>> L = [1, 2, 3, 4]

>>> L.append(5)

>>> L

[1, 2, 3, 4, 5]

The append method adds the new item 5 to the list.

Now, the length of the list has increased by one because the append method adds only one object to the

list.

This is an important distinction of append method when compared to the case with extend.

Now let’s try to append a list to our list.

>>> L = [1, 2, 3, 4]

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

>>> L.append([5, 6, 7])

>>> L

[1, 2, 3, 4, [5, 6, 7]]

Now we appended one object (which happens to be of type list) to our list L

Again, after the modification the list length grew by only one.

Now let’s take a look at a similar, yet different, method.

Example-2: Extend

extend is another very common list method.

Unlike append that can take an object of any type as an argument, extend can only take an iterable

object as an argument.

An iterable object is an object that you can iterate through like strings, lists, tuples, dicts, or any object

with the __iter__() method.

What extend does is very straightforward, it iterates through the iterable object one item at a time and

appends each item to the list.

For example, let’s try to extend a list by another list.

>>> L = [1, 2, 3, 4]

>>> L.extend([5, 6, 7])

>>> L

[1, 2, 3, 4, 5, 6, 7]

As you can see in the example above, extend takes a list (which is an iterable) as an argument and appends

each item of the list to L.

Three integer objects were appended to the list and the list size grew by three.

This behavior is obviously different from that of the append method.

5. i) Illustrate List comprehension with suitable examples

List comprehension is an elegant way to define and create list in Python. These lists have often the qualities of

sets, but are not in all cases sets.

List comprehension is a complete substitute for the lambda function as well as the functions map(), filter() and

reduce(). For most people the syntax of list comprehension is easier to be grasped.

EXAMPLES
A map() function to convert Celsius values into Fahrenheit and vice versa - list

comprehension:

>>> Celsius = [39.2, 36.5, 37.3, 37.8]

>>> Fahrenheit = [((float(9)/5)*x + 32) for x in Celsius]

>>> print Fahrenheit

[102.56, 97.70, 99.14, 100.04]

>>>
The following list comprehension creates the Pythagorean triples:

>>> [(x,y,z) for x in range(1,30) for y in range(x,30) for z in range(y,30) if x**2 +

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

y**2 == z**2]

[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8,

15, 17), (9, 12, 15), (10, 24, 26), (12, 16, 20), (15,

20, 25), (20, 21, 29)]

>>>
Cross product of two sets:

>>> colours = ["red", "green", "yellow", "blue"]

>>> things = ["house", "car", "tree"]

>>> coloured_things = [(x,y) for x in colours for y in things]

>>> print coloured_things

[('red', 'house'), ('red', 'car'), ('red', 'tree'),('green', 'house'), ('green', 'car'), ('green',

'tree'), ('yellow', 'house'), ('yellow', 'car'), ('yellow', 'tree'), ('blue', 'house'), ('blue',

'car'), ('blue', 'tree')]

>>>

iii) Write a Python program to concatenate two lists.

Python 3 code to demonstrate list

concatenation using + operator

Initializing lists

test_list3 = [1, 4, 5, 6, 5]

test_list4 = [3, 5, 7, 2, 5]

using + operator to concat

test_list3 = test_list3 + test_list4

Printing concatenated list

print ("Concatenated list using + : " str(test_list3))

Output:
Concatenated list using + : [1, 4, 5, 6, 5, 3, 5, 7, 2, 5]

Using list comprehension

List comprehension can also accomplish this task of list concatenation. In this case, a new list is

created, but this method is a one liner alternative to the loop method discussed above.

Python3 code to demonstrate list

concatenation using list comprehension

Initializing lists

test_list1 = [1, 4, 5, 6, 5]

test_list2 = [3, 5, 7, 2, 5]

using list comprehension to concat

res_list = [y for x in [test_list1, test_list2] for y in x]

Printing concatenated list

print ("Concatenated list using list comprehension: "+ str(res_list))

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Output:
Concatenated list using list comprehension: [1, 4, 5, 6, 5, 3, 5, 7, 2, 5]

Method #4 : Using extend()

extend() is the function extended by lists in Python and hence can be used to perform this task. This

function performs the inplace extension of first list.

Python3 code to demonstrate list

concatenation using list.extend()

Initializing lists

test_list3 = [1, 4, 5, 6, 5]

test_list4 = [3, 5, 7, 2, 5]

using list.extend() to concat

test_list3.extend(test_list4)

Printing concatenated list

print ("Concatenated list using list.extend() : "+ str(test_list3))

Output:
Concatenated list using list.extend() : [1, 4, 5, 6, 5, 3, 5, 7, 2, 5]

6. i. What is a Python Tuple? What are the advantages of Tuple over list?

Tuples in Python

A Tuple is a collection of Python objects separated by commas. In someways a tuple is similar to a list

in terms of indexing, nested objects and repetition but a tuple is immutable unlike lists which are

mutable.

Creating Tuples
An empty tuple

empty_tuple = ()

print (empty_tuple)

OUTPUT

()

Creating non-empty tuples

One way of creation

tup = 'python', 'programming'

print(tup)

Another for doing the same

tup = ('python', 'programming')

print(tup)

Output

('python', 'programming')

('python', 'programming')

Code for concatenating 2 tuples

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

tuple1 = (0, 1, 2, 3)

tuple2 = ('python', 'tuple')

Concatenating above two

print(tuple1 + tuple2)

Output:

(0, 1, 2, 3, 'python', 'tuple')

ii. “Tuples are immutable”. Explain with example.
In Python, tuples are immutable, and "immutable" means the value cannot change. These are well-known,

basic facts of Python.

According to the Python data model, "objects are Python's abstraction for data, and all data in a Python program is

represented by objects or by relations between objects". Every value in Python is an object, including integers, floats,

and Booleans. In Java, these are "primitive data types" and considered separate from "objects". Not so, in Python. So

not only is the datetime.datetime(2018, 2, 4, 19, 38, 54, 798338) datetime object an object, but the integer 42 is an object

and the Boolean True is an object.

Every value in Python is an object.

All Python objects have three things: a value, a type, and an identity.

>> spam = 42

>>> spam

42

>>> type(spam)

<class 'int'>

>>> id(spam)

1594282736

The variable spam refers to an object that has a value of 42, a type of int, and an identity of 1594282736. An identity is

a unique integer, created when the object is created, and never changes for the lifetime of the object. An object's type

also cannot change. Only the value of an object may change.

Let's try changing an object's value by entering the following into the interactive shell:

>>> spam = 42

>>> spam = 99

You may think you've changed the object's value from 42 to 99, but you haven't. All you've done is made spam refer

to a new object. You can confirm this by calling the id() function and noticing spam refers to a completely new object:

>>> spam = 42

>>> id(spam)

1594282736

>>> spam = 99

>>> id(spam)

1594284560

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7. Illustrate the ways of creating the Tuple and the Tuple assignment with suitable programs.

A tuple1 is a sequence of values much like a list. The values stored in a tuple can be any

type, and they are indexed by integers. The important difference is that tuples

are immutable. Tuples are also comparable and hashable so we can sort lists of them and

use tuples as key values in Python dictionaries.

Creation of Tuples

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>
Without the comma Python treats ('a') as an expression with a string in parentheses that
evaluates to a string:

Another way to construct a tuple is the built-in function tuple. With no argument, it creates

an empty tuple:

>>> t = tuple()

>>> print t

()

If the argument is a sequence (string, list or tuple), the result of the call to tuple is a tuple

with the elements of the sequence:

>>> t = tuple('lupins')

>>> print t

('l', 'u', 'p', 'i', 'n', 's')

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print t[0]

'a'

And the slice operator selects a range of elements.

>>> print t[1:3]

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

TypeError: object doesn't support item assignment
You can't modify the elements of a tuple.

Tuple assignment

One of the unique syntactic features of the Python language is the ability to have a tuple on

the left hand side of an assignment statement. This allows you to assign more than one

variable at a time when the left hand side is a sequence.

In this example we have a two element list (which is a sequence) and assign the first and

second elements of the sequence to the variables x and y in a single statement.

>>> m = ['have', 'fun']

>>> x, y = m

>>> x

'have'

>>> y

'fun'

>>>

It is not magic, Python roughly translates the tuple assignment syntax to be the following:

>>> m = ['have', 'fun']

>>> x = m[0]

>>> y = m[1]

>>> x

'have'

>>> y

'fun'

>>>

The number of variables on the left and the number of values on the right have to be the

same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple). For

example, to split an email address into a user name and a domain, you could write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned to uname,

the second to domain.

>>> print uname

monty

>>> print domain

python.org

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

8. What are the accessing elements in a Tuple? Explain with suitable programs.

Example: 1

1 Tuple = (3, 5, 6.7, “Python”)

2 print(“Third element of the Tuple is:”, Tuple[2])

Output:
Third element of the Tuple is: 6.7

Example: 2

1 Tuple = (3, 5, 6.7, “Python”)

2 print(“First element of the Tuple is:”, Tuple[0])

3 print(“Last element of the Tuple is:”, Tuple[3])

Output:
First element of the Tuple is: 3

Last element of the Tuple is: ‘Python’

We can also access the items present in the nested tuple with the help of nested indexing.

Example: 3

1 Tuple = (“Python”, [2, 4, 6], (4, 5.6, “Hi”))

2 print(“First element of the tuple is:”, Tuple[0][1])

3 print(“Items present inside another list or tuple is:”, Tuple[2][1])

Output:
First element of the tuple is: ‘y’

Items present inside another list or tuple is: 5.6

Example: 4

1 Tuple = (3, 5, 7.8)

2 print(“Last element of the tuple is:”, Tuple[-1])

Output:
Last element of the tuple is: 7.8

Packing and Unpacking the Tuple
Python provides an important feature called packing and unpacking. In packing, we put the value into a

tuple, but in unpacking, we extract all those values stored in the tuples into variables.

Example: 5

1 Tuple = (“John”, 23567, “Software Engineer”)

2 (eName, eID, eTitle) = Tuple

3 print(“Packed tuples is:”, Tuple)

4 print(“Employee name is:”, eName)

5 print(“Employee ID is:”, eID)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

6 print(“Employee Title is:”, eTitle)

Output:
Packed tuples is: (“John”, 23567, “Software Engineer”)

Employee name is: John

Employee ID is: 23567

Employee Title is: Software Engineer

9. i. Explain the basic Tuple operations with examples.

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and repetition here too,

except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior chapter −

Tuple Operation Python Expression Results

len() – get length of

tuple

len((1, 2, 3)) 3

concatenation (1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6)

Replication ('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!',

'Hi!')

Membership 3 in (1, 2, 3) True

For Loop for x in (1, 2, 3): print x, 1 2 3

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for strings.

Assuming following input −

L = ('spam', 'Spam', 'SPAM!')

Python

Expression

Results Description

L[2] 'SPAM!' Offsets start at zero

L[-2] 'Spam' Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

ii. Write a program to check whether an element ‘y’ and ‘a’ belongs to the tuple My_tuple =

(‘p’,’y’,’t’,’h’,’o’,n’) and after printing the result, delete the Tuple.

iii.

my_tuple = (‘p’,’y’,’t’,’h’,’o’,n’,)

In operation

Output: True

print('y' in my_tuple)

Output: False

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

print('a' in my_tuple)

Can delete an entire tuple

del my_tuple

10. Describe the built in functions with Tuples.

Built-In Methods

BUILT-IN

FUNCTION DESCRIPTION

all() Returns true if all element are true or if tuple is empty

any() return true if any element of the tuple is true. if tuple is empty, return false

len() Returns length of the tuple or size of the tuple

enumerate() Returns enumerate object of tuple

max() return maximum element of given tuple

min() return minimum element of given tuple

sum() Sums up the numbers in the tuple

sorted() input elements in the tuple and return a new sorted list

tuple()
Convert an iterable to a tuple.

Write a program to use Max(), Min() and sorted() methods in Tuple.

11. Discuss a)Tuples as return values b) Variable Length Argument Tuples

Working With Functions: Return Values

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

 Most functions take in arguments, perform some processing and then return a value to the caller. In Python

this is achieved with the return statement.

def square(n):

 return n*n

two_squared = square(2)

or print it as before

print(square(2))

 Python also has the ability to return multiple values from a function call, something missing from many

other languages. In this case the return values should be a comma-separated list of values and Python then

constructs a tuple and returns this to the caller, e.g.

def square(x,y):

 return x*x, y*y

t = square(2,3)

print(t) # Produces (4,9)

Now access the tuple with usual operations

 is possible to return multiple values from a function in the form of tuple, list, dictionary or an object of a user

defined class

Return as tuple

>>> def function():

 a=10; b=10

 return a,b

>>> x=function()

>>> type(x)

<class 'tuple'>

>>> x

(10, 10)

>>> x,y=function()

>>> x,y

(10, 10)

Return as list

>>> def function():

 a=10; b=10

 return [a,b]

>>> x=function()

>>> x

[10, 10]

>>> type(x)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

<class 'list'>

Return as dictionary

>>> def function():

 d=dict()

 a=10; b=10

 d['a']=a; d['b']=b

 return d

>>> x=function()

>>> x

{'a': 10, 'b': 10}

>>> type(x)

<class 'dict'>

Write a program to illustrate the comparison operators in Tuple.

Comparing tuples

A comparison operator in Python can work with tuples.

The comparison starts with a first element of each tuple. If they do not compare to =,< or > then it proceed to

the second element and so on.

It starts with comparing the first element from each of the tuples

Let's study this with an example-

#case 1

a=(5,6)

b=(1,4)

if (a>b):print("a is bigger")

else: print("b is bigger")

#case 2

a=(5,6)

b=(5,4)

if (a>b):print("a is bigger")

else: print ("b is bigger")

#case 3

a=(5,6)

b=(6,4)

if (a>b):print("a is bigger")

else: print("b is bigger")

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

12. Write a Python program to perform linear search on a list.

Python Program for Linear Search

Problem: Given an array arr[] of n elements, write a function to search

a given element x in arr[].

Examples :
Input : arr[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 110;

Output : 6

Element x is present at index 6

Input : arr[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 175;

Output : -1

Element x is not present in arr[].

A simple approach is to do linear search, i.e

 Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

 If x matches with an element, return the index.

 If x doesn’t match with any of elements, return -1.

Example:

Searching an element in a list/array in python

can be simply done using \'in\' operator

if x in arr: print arr.index(x)

Linearly search x in arr[]

If x is present then return its location else return -1

Def search(arr, x):

 for i in range(len(arr)):

 if arr[i] == x:

 return i

 return -1

Write a Python program to store ‘n’ numbers in a list and sort the list using selection sort.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering

ascending order) from unsorted part and putting it at the beginning. The algorithm maintains two

subarrays in a given array.

1) The subarray which is already sorted.

2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order) from the

unsorted subarray is picked and moved to the sorted subarray.

Following example explains the above steps:

arr[] = 64 25 12 22 11

// Find the minimum element in arr[0...4] and place it at beginning

11 25 12 22 64

// Find the minimum element in arr[1...4]

// and place it at beginning of arr[1...4]

11 12 25 22 64

// Find the minimum element in arr[2...4]

// and place it at beginning of arr[2...4]

11 12 22 25 64

// Find the minimum element in arr[3...4]

// and place it at beginning of arr[3...4]

11 12 22 25 64

Python program for implementation of Selection # Sort

import sys

A = [64, 25, 12, 22, 11]

 # Traverse through all array elements

for i in range(len(A)):

 # Find the minimum element in remaining unsorted array

 min_idx = i

 for j in range(i+1, len(A)):

 if A[min_idx] > A[j]:

 min_idx = j

 # Swap the found minimum element with the first element

 A[i], A[min_idx] = A[min_idx], A[i]

Driver code to test above

print ("Sorted array")

for i in range(len(A)):

 print("%d" %A[i]),

Output:
Sorted array: 11 12 22 25 64

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13. Explain the properties of Dictionary keys with examples.

Properties of Dictionary Keys
 More than one entry per key is not allowed (no duplicate key is allowed)

 The values in the dictionary can be of any type while the keys must be immutable like
numbers, tuples or strings.

Differentiate a List and Dictionary. Explain the Dictionary Methods with examples.

Python: Dictionary and its properties

Dictionary is a generalization of a List. Dictionary stores (key, value) pair for easier value access in future using the key.

We see how it is different from a list and its properties.

What is a Dictionary?

In Python, Dictionary is a generalization of a List. Values in a list are accessed using index that start from 0, whereas

values in a Dictionary are accessed using a key. A key can be any immutable python object. Dictionaries are surrounded by

curly braces.

Dictionaries are yet another widely used data-structures in Python, just like Lists. It would be interesting to know how it is

possible to have various types of keys in dictionary and yet have a fast lookup while accessing the value for that key.

Python creates a hash for the key and created internal hash: value map.

In dictionary, we can define our own keys.

In dict2 = {'i': 'one', 'ii': 'two', 'iii': 'three', 'iv': 'four'} , keys are ['i', 'ii', 'iii', 'iv'].

An example comparing a list and dict would be helpful:

Example of Python List Example of Python Dictionary

>>> list1 = ['zero', 'one', 'two']

 The first element of list1 can be accessed

using index list1[0]

>>> list1[0]

'zero'

>>> dict1 = {0: 'zero', 1: 'one', 2: 'two'}

>>> dict1[0]

'zero'

>>> dict1[1]

'one'

Accessing an element in a list requires us to

use specific index, which is an integer.

However, we can have any other immutable Python object

for accessing an element in case of dictionary!

For example:

>>> dict2 = {'i': 'one', 'ii': 'two', 'iii': 'three', 'iv': 'four'}

>>> dict2['ii']

'two'

Declaring a Dictionary Accessing elements of a

Dictionary

Updating a value against a key

in Python dict

Empty dictionary is declared by We use square brackets along with Dictionaries are mutable, just like

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

empty curly braces.

>>> dict1 = {}

>>> dict1

{}

>>> type(dict1)

<type 'dict'>

the key whose value we want to

access.

Examples:

>>> month = {'Jan': 1, 'Feb': 2,

'Mar': 3, 'Apr': 4, 'May': 5, 'June':

6}

>>> month['Apr']

4

lists. We can update a value at

using a specific key.

>>> month = {'Jan': 1, 'Feb': 2,

'Mar': 3, 'Apr': 4, 'May': 5, 'June':

6}

>>> month['Jan'] = 'One'

>>> month.get('Jan')

'One'

Unlike a List or Tuple, Dictionary does not maintain the order in which you added the keys and values. For instance, if you

try to print the dict in the above example, you’ll see a random order.

Dictionary methods

Generalized form of declaring a dictionary is d = {key1: value1, key2: value2 }:

>>> month = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'June': 6}

dict.keys() dict1.values() dict1.items()

dict.keys() returns a list of all the

keys of the dictionary.

>>> month.keys()

['Mar', 'Feb', 'Apr', 'June', 'Jan',

'May']

Similarly, we can get a list of the

all the values of the dictionary.

dict.values() returns a list of all

the values of the dictionary.

>>> month.values()

[3, 2, 4, 6, 1, 5]

dict.items() returns a list of (key, value)

tuples of the dictionary.

>>> month.items()

[('Mar', 3), ('Feb', 2), ('Apr', 4), ('June',

6), ('Jan', 1), ('May', 5)]

Looping over a Dictionary in Python

dict.items() returns a list of (key, value) tuples of the dictionary. We

can use it iterate/loop over the dictionary.

>>> month.items()

[('Mar', 3), ('Feb', 2), ('Apr', 4), ('June', 6), ('Jan', 1), ('May', 5)]

for key, value in month.items():

 print key, value

Mar 3

Feb 2

Apr 4

June 6

Jan One

May 5

July 7

Deleting elements of a Dictionary

We can delete a value in a dict by using

a key. For example:

>>> month = {'Jan': 1, 'Feb': 2, 'Mar': 3,

'Apr': 4, 'May': 5, 'June': 6}

>>> del month['Mar']

>>> month

{'Feb': 2, 'Apr': 4, 'June': 6, 'Jan': 1,

'May': 5}

We can also delete an

entire dict using del

>>> del month

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

14. Write a Python program named weather that is passed a dictionary of daily temperatures and returns the

average temperature over the weekend for the weekly temperatures given.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 PROBLEM SOLVING AND PYTHON

PROGRAMMING

UNIT 5 - FILES, MODULES, PACKAGES

SYLLABUS

Files and exception: text files, reading and writing files, format operator; command line arguments, errors

and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

Part-A

Q.
No.

Q&A

1. Point out different modes of file opening.
Python File I/O: Read and Write Files in Python

Mode Description

'r' Open a file for reading. (default)

'w'
Open file for writing. Creates a new file if it does not exist or truncates

the file if it exists.

'x'

Open a file for exclusive creation. If the file already exists, the

operation

fails.

'a'
Open for appending at the end of the file without truncating it. Creates

a new file if it does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a Õle for updating (reading and writing)

f = open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in text mode

f = open("img.bmp",'r+b') # read and write in binary mod

2. Define the access modes
access_mode - The access_mode determines the mode in which the file has to be opened, i.e.,
read, write, append, etc. A complete list of possible values is given below in the table. This is
optional parameter and the default file access mode is read (r).

3. Distinguish between files and modules.
Any Python file is a module, its name being the file's base name without the .py extension. A package is
a collection of Python modules: while a module is a single Python file, a package is a directory of
Python modules containing an additional __init__.py file, to distinguish a package from a directory that
just happens to contain a bunch of Python scripts.

4. Define read and write file
Access modes govern the type of operations possible in the opened file. It refers to how the file will be used
once its opened. These modes also define the location of the File Handle in the file. File handle is like a
cursor, which defines from where the data has to be read or written in the file. There are 6 access modes in
python.
Read and Write (‘r+’) : Open the file for reading and writing. The handle is positioned at the beginning of
the file. Raises I/O error if the file does not exists.

5. Describe renaming and delete.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

2

#Syntax for renaming a file

import os

Rename a file from test1.txt to test2.txt

os.rename(“test1.txt”, “test2.txt”)

Syntax
os.remove(file_name)

Example

Following is the example to delete an existing file test2.txt:

#!/usr/bin/python

import os

Delete file test2.txt

os.remove(“text2.txt”)

6. Discover the format operator available in files.
Python uses C-style string formatting to create new, formatted strings. The "%" operator is used
to format a set of variables enclosed in a "tuple" (a fixed size list), together with a format string, which
contains normal text together with "argument specifiers", special symbols like "%s" and "%d".

7. Explain with example the need for exceptions.

What is an Exception?

An exception is an error that happens during execution of a program. When that

error occurs, Python generate an exception that can be handled, which avoids your

program to crash.

Why use Exceptions?

Exceptions are convenient in many ways for handling errors and special conditions

in a program. When you think that you have a code which can produce an error then

you can use exception handling.

8. Explain Built-in exceptions.

Python Built-in Exceptions

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

Exception Cause of Error

AssertionError Raised when assert statement fails.

AttributeError

Raised when attribute assignment or reference

fails.

EOFError

Raised when the input() functions hits end-of-

file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit

Raise when a generator's close() method is

called.

ImportError Raised when the imported module is not found.

IndexError

Raised when index of a sequence is out of

range.

KeyError Raised when a key is not found in a dictionary.

KeyboardInterrupt

Raised when the user hits interrupt key (Ctrl+c

or delete).

MemoryError Raised when an operation runs out of memory.

NameError

Raised when a variable is not found in local or

global scope.

NotImplementedError Raised by abstract methods.

OSError

Raised when system operation causes system

related error.

OverflowError

Raised when result of an arithmetic operation is

too large to be represented.

ReferenceError

Raised when a weak reference proxy is used to

access a garbage collected referent.

RuntimeError

Raised when an error does not fall under any

other category.

StopIteration

Raised by next() function to indicate that there is

no further item to be returned by iterator.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

4

SyntaxError

Raised by parser when syntax error is

encountered.

IndentationError Raised when there is incorrect indentation.

TabError

Raised when indentation consists of

inconsistent tabs and spaces.

SystemError Raised when interpreter detects internal error.

SystemExit Raised by sys.exit() function.

TypeError

Raised when a function or operation is applied

to an object of incorrect type.

UnboundLocalError

Raised when a reference is made to a local

variable in a function or method, but no value

has been bound to that variable.

UnicodeError

Raised when a Unicode-related encoding or

decoding error occurs.

UnicodeEncodeError

Raised when a Unicode-related error occurs

during encoding.

UnicodeDecodeError

Raised when a Unicode-related error occurs

during decoding.

UnicodeTranslateError

Raised when a Unicode-related error occurs

during translating.

ValueError

Raised when a function gets argument of

correct type but improper value.

ZeroDivisionError

Raised when second operand of division or

modulo operation is zero.

Python Built-in Exceptions

9. Difference between built-in exceptions and handling exception

Python has many built-in exceptions which forces your program to output an error when something

in it goes wrong.

However, sometimes you may need to create custom exceptions that serves your purpose.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

User-defined exceptions

Though Python has many built-in exception covering a lot of error scenarios but sometimes you as a user

would want to create your own exception for a specific scenario in order to make error messages more

relevant to the context. Such exceptions are called user-defined exceptions or custom exceptions.

User-defined exception Python example

Suppose you have a Python function that take age as a parameter and tells whether a person is eligible to vote

or not. Voting age is 18 or more.

If person is not eligible to vote you want to raise an exception using raise statement, for this scenario you want

to write a custom exception named “InvalidAgeError”.

Custom exception

class InvalidAgeError(Exception):

 def __init__(self, arg):

 self.msg = arg

def vote_eligibility(age):

 if age < 18:

 raise InvalidAgeError("Person not eligible to vote, age is " + str(age))

 else:

 print('Person can vote, age is', age)

try:

 vote_eligibility(22)

 vote_eligibility(14)

except InvalidAgeError as error:

 print(error)

Output

Person can vote, age is 22

Person not eligible to vote, age is 14

10. Write a program to write a data in a file for both write and append modes.

f = open("demofile1.txt", "w")

f.write("I am writing to a new file")

f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r")

print(f.read())

OUTPUT

“I am writing to a file”

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

6

f = open("demofile2.txt", "a")

f.write("Now the file has more content!")

f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r")

print(f.read())

OUTPUT

Hello! Welcome to demofile2.txt

This file is for testing purposes.

Good Luck!Now the file has more content!

11. How to import statements?

Modules are Python .py files that consist of Python code. Any Python file can be referenced as a

module. A Python file called hello.py has the module name of hello that can be imported into other

Python files or used on the Python command line interpreter.

Modules can define functions, classes, and variables that you can reference in other Python .py files

or via the Python command line interpreter.

In Python, modules are accessed by using the import statement. When you do this, you execute the

code of the module, keeping the scopes of the definitions so that your current file(s) can make use of

these.

When Python imports a module called hello for example, the interpreter will first search for a built-in

module called hello. If a built-in module is not found, the Python interpreter will then search for a file

named hello.py in a list of directories that it receives from the sys.path variable.

Importing Modules

To make use of the functions in a module, you’ll need to import the module with an import statement.

An import statement is made up of the import keyword along with the name of the module.

In a Python file, this will be declared at the top of the code, under any shebang lines or general

comments.

So, in the Python program file my_rand_int.py we would import the random module to generate

random numbers in this manner:

my_rand_int.py

import random

12. Express about namespace and scoping

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

What is a Namespace in Python?

Namespace is a collection of names.

In Python, you can imagine a namespace as a mapping of every name, you have defined, to

corresponding objects.

Different namespaces can co-exist at a given time but are completely isolated.

A namespace containing all the built-in names is created when we start the Python interpreter and

exists as long we don't exit.

This is the reason that built-in functions like id(), print() etc. are always available to us from any part

of the program. Each module creates its own global namespace.

These different namespaces are isolated. Hence, the same name that may exist in different modules

do not collide.

Modules can have various functions and classes. A local namespace is created when a function is

called, which has all the names defined in it. Similar, is the case with class. Following diagram may

help to clarify this concept.

Python Variable Scope

Although there are various unique namespaces defined, we may not be able to access all of them

from every part of the program. The concept of scope comes into play.

Scope is the portion of the program from where a namespace can be accessed directly without any

prefix.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

8

At any given moment, there are at least three nested scopes.

1. Scope of the current function which has local names

2. Scope of the module which has global names

3. Outermost scope which has built-in names

When a reference is made inside a function, the name is searched in the local namespace, then in the

global namespace and finally in the built-in namespace.

Example of scope of variables

def outer_function():
 a = 20
 def inner_function():
 a = 30
 print('a =',a)

 inner_function()
 print('a =',a)

a = 10
outer_function()
print('a =',a)

OUTPUT

a = 30

a = 20

a = 10

13. Differentiate global and local

This function has a variable with
name same as s.
def f():
 s = "I am Local"
 print s

Global scope
s = "I am Global"
f()
print s

OUTPUT
I am Local
I am Global

14. Identify what are packages in Python.
Any Python file is a module, its name being the file's base name/module's __name__ property without
the .py extension. A package is a collection of Python modules, i.e., a package is a directory of Python
modules containing an additional __init__.py file. The __init__.py distinguishes a package from a

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

directory that just happens to contain a bunch of Python scripts.

>>> import datetime

>>> from datetime import date

>>> date.today()

datetime.date(2017, 9, 1)

15. Examine buffering

What is the use of buffering in python's built-in open() function?

The optional buffering argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line

buffered, any other positive value means use a buffer of (approximately) that size (in bytes). A negative

buffering means to use the system default.If omitted, the system default is used.

Example

filedata = open(file.txt,"r",0)

or

filedata = open(file.txt,"r",1)

or

filedata = open(file.txt,"r",2)

16. Discuss file.isatty[]

Python File isatty() Method

Example

Check if the file is connected to a terminal device:

f = open("demofile.txt", "r")

print(f.isatty())
OUTPUT
False

17. Discover except Clause with Multiple exception

The try and except Block: Handling Exceptions

The try and except block in Python is used to catch and handle exceptions. Python executes

code following the try statement as a “normal” part of the program. The code that follows

the except statement is the program’s response to any exceptions in the

preceding try clause.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

10

18. Create a Python script to display the current date and time.

Example : Python get today's date

1. from datetime import date

2. import time.time

3.

4. today = date.today()

5. print("Today's date:", today)

OUTPUT

Today's date: 2019-12-10

>>>

from datetime import datetime

import pytz

print(datetime.now(pytz.timezone('Asia/Kolkata')))

OUTPUT

2019-12-10 21:02:30 + 5 : 30

19. Analyze the object as return values.

The return statement makes a python function to exit and hand back a value to its caller. The objective

of functions in general is to take in inputs and return something. A return statement, once executed,

immediately halts execution of a function, even if it is not the last statement in the function.

Functions that return values are sometimes called fruitful functions.

def sum(a,b):

 return a+b

sum(5,16)

Output

21

Everything in python, almost everything is an object. Lists, dictionaries, tuples are also python objects.

The code below shows a python function that returns a python object; a dictionary

This function returns a dictionary

def foo():

 d = dict();

 d['str'] = "Tutorialspoint"

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

 d['x'] = 50

 return d

print foo()

Output

{'x': 50, 'str': 'Tutorialspoint'}

20. Discuss a modular design
Modular programming is a software design technique, which is based on the general principal of modular design.

Modular design is an approach which has been proven as indispensable in engineering even long before the first

computers. Modular design means that a complex system is broken down into smaller parts or components, i.e. modules.

These components can be independently created and tested. In many cases, they can be even used in other systems as

well.

Importing Modules
 Python module : every file, which has the file extension .py and consists of proper Python code, can be seen or is a

module. There is no special syntax required to make such a file a module. A module can contain arbitrary objects, for

example files, classes or attributes. All those objects can be accessed after an import. There are different ways to import a

modules. We demonstrate this with the math module:

import math

The module math provides mathematical constants and functions, e.g. π (math.pi), the sine function (math.sin()) and the

cosine function (math.cos()). Every attribute or function can only be accessed by putting "math." in front of the name:

>>> math.pi

3.141592653589793

>>> math.sin(math.pi/2)

1.0

>>> math.cos(math.pi/2)

6.123031769111886e-17

>>> math.cos(math.pi)

-1.0

PART-B

1. Write a Python program to demonstrate the file I/O operations. The most basic tasks involved in file manipulation

are reading data from files and writing or appending data to files.

Reading and Writing Files in Python

In our first example we want to show how to read data from a file. The way of telling Python that we want to read from a

file is to use the open function. The first parameter is the name of the file we want to read and with the second parameter,

assigned to the value "r", we state that we want to read from the file:

fobj = open("wordsworth.txt", "r")

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

12

The "r" is optional. An open() command with just a file name is opened for reading per default. The open() function

returns a file object, which offers attributes and methods.

fobj = open("wordsworth.txt.txt")

After we have finished working with a file, we have to close it again by using the file object method close():

fobj.close()

Now we want to finally open and read a file. The method rstrip() in the following example is used to strip off whitespaces

(newlines included) from the right side of the string "line":

fobj = open("ad_lesbiam.txt")

for line in fobj:

 print(line.rstrip())

fobj.close()

OUTPUT

I wandered lonely as a cloud

That floats on high o'er vales and hills,

When all at once I saw a crowd,

A host, of golden daffodils;

Beside the lake, beneath the trees,

Fluttering and dancing in the breeze.

2. Discuss the different modes for opening a file and closing a file.

Python has a built-in function open() to open a file. This function returns a file object, also called a

handle, as it is used to read or modify the file accordingly.

1. >>> f = open("test.txt") # open file in current directory

2. >>> f = open("C:/Python33/README.txt") # specifying full path

We can specify the mode while opening a file. In mode, we specify whether we want to read 'r',

write 'w' or append 'a' to the file. We also specify if we want to open the file in text mode or binary

mode.

The default is reading in text mode. In this mode, we get strings when reading from the file.

On the other hand, binary mode returns bytes and this is the mode to be used when dealing with non-

text files like image or exe files.

Mode Description

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

'r' Open a file for reading. (default)

'w'

Open a file for writing. Creates a new file if it does not exist or truncates the file

if it exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a'

Open for appending at the end of the file without truncating it. Creates a new file

if it does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

Python File Modes

1. f = open("test.txt") # equivalent to 'r' or 'rt'

2. f = open("test.txt",'w') # write in text mode

3. f = open("img.bmp",'r+b') # read and write in binary mode

1. f = open("test.txt",mode = 'r',encoding = 'utf-8')

 Closing a file in Python

When we are done with operations to the file, we need to properly close the file.

Closing a file will free up the resources that were tied with the file and is done using

Python close() method.

Python has a garbage collector to clean up unreferenced objects but, we must not rely on it to close

the file.

1. f = open("test.txt",encoding = 'utf-8')

2. # perform file operations

3. f.close()

This method is not entirely safe. If an exception occurs when we are performing some operation with

the file, the code exits without closing the file.

A safer way is to use a try...finally block.
1. try:

2. f = open("test.txt",encoding = 'utf-8')

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

14

3. # perform file operations

4. finally:

5. f.close()

This way, we are guaranteed that the file is properly closed even if an exception is raised, causing

program flow to stop.

3. i) Write a program to catch a divide by zero exception. Add a finally block too.

> def divide(x, y):

... try:

... result = x / y

... except ZeroDivisionError:

... print("division by zero!")

... else:

... print("result is", result)

... finally:

... print("executing finally clause")

...

>>> divide(2, 1)

result is 2.0

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

ii) Write a function to print the hash of any given file in Python.

Python 3 code to demonstrate

SHA hash algorithms.

import hashlib

initializing string

str = "GreekandLatin"

encoding GreekandLatin using encode()

then sending to SHA256()

result = hashlib.sha256(str.encode())

printing the equivalent hexadecimal value.

print("The hexadecimal equivalent of SHA256 is : ")

print(result.hexdigest())

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

print ("\r")

initializing string

str = "GreekandLatin"

encoding GreekandLatin using encode()

then sending to SHA384()

result = hashlib.sha384(str.encode())

printing the equivalent hexadecimal value.

print("The hexadecimal equivalent of SHA384 is : ")

print(result.hexdigest())

print ("\r")

OUTPUT
The hexadecimal equivalent of SHA256 is :

bed3b89c643693e40b1bb6f8ae65cb75eb5925e03918179e801f79e399980efc

The hexadecimal equivalent of SHA384 is :

29d4ccd433fbba7a40e73fdd89b55cd1cbb8cc0707f6b0e565c62809a680956a2a799f6ff9a47ad0ae36107e4cf9116b

4. i) Describe the use of try block and except block in python with syntax.

What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts the normal

flow of the program's instructions. In general, when a Python script encounters a situation that it

cannot cope with, it raises an exception. An exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception immediately otherwise

it terminates and quits.

Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program by

placing the suspicious code in a try: block. After the try: block, include an except: statement, followed

by a block of code which handles the problem as elegantly as possible.

Syntax

Here is simple syntax of try....except...else blocks −

try:

 You do your operations here

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

EXAMPLE

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

16

This example opens a file, writes content in the, file and comes out gracefully because there is no

problem at all −

#!/usr/bin/python3

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print ("Error: can\'t find file or read data")

else:

 print ("Written content in the file successfully")

 fh.close()

This produces the following result −

Written content in the file successfully

ii) Describe with an example exceptions with arguments in python.

Argument of an Exception

An exception can have an argument, which is a value that gives additional information about the

problem. The contents of the argument vary by exception. You capture an exception's argument by

supplying a variable in the except clause as follows −

try:

 You do your operations here;

except ExceptionType, Argument:

 You can print value of Argument here...

If you write the code to handle a single exception, you can have a variable follow the name of the

exception in the except statement. If you are trapping multiple exceptions, you can have a variable

follow the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the exception. The

variable can receive a single value or multiple values in the form of a tuple. This tuple usually contains

the error string, the error number, and an error location.

Example

Following is an example for a single exception −

#!/usr/bin/python

Define a function here.

def temp_convert(var):

 try:

 return int(var)

 except ValueError, Argument:

 print "The argument does not contain numbers\n", Argument

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

Call above function here.

temp_convert("xyz");

This produces the following result −

The argument does not contain numbers

invalid literal for int() with base 10: 'xyz'

5. Explain about the files related methods

A file object is created using open function and here is a list of functions which can be called on this

object −

Sr.No. Methods with Description

1 file.close()

Close the file. A closed file cannot be read or written any more.

2 file.flush()

Flush the internal buffer, like stdio's fflush. This may be a no-op on some file-like objects.

3 file.fileno()

Returns the integer file descriptor that is used by the underlying implementation to request I/O

 operations from the operating system.

4 file.isatty()

Returns True if the file is connected to a tty(-like) device, else False.

5 file.next()

Returns the next line from the file each time it is being called.

6 file.read([size])

Reads at most size bytes from the file (less if the read hits EOF before obtaining size bytes).

7 file.readline([size])

Reads one entire line from the file. A trailing newline character is kept in the string.

8 file.readlines([sizehint])

Reads until EOF using readline() and return a list containing the lines. If the optional sizehint

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

18

 argument is present, instead of reading up to EOF, whole lines totalling approximately

sizehint bytes (possibly after rounding up to an internal buffer size) are read.

9 file.seek(offset[, whence])

Sets the file's current position

10 file.tell()

Returns the file's current position

11 file.truncate([size])

Truncates the file's size. If the optional size argument is present, the file is truncated to (at most)

 that size.

12 file.write(str)

Writes a string to the file. There is no return value.

13 file.writelines(sequence)

Writes a sequence of strings to the file. The sequence can be any iterable object producing strings,

typically a list of strings.

6. i) Structure Renaming a file

Python | os.rename() method

OS module in Python provides functions for interacting with the operating system. OS comes under

Python’s standard utility modules. This module provides a portable way of using operating system

dependent functionality.

os.rename() method in Python is used to rename a file or directory.

This method renames a source file/ directory to specified destination file/directory.

Syntax: os.rename(source, destination, *, src_dir_fd = None, dst_dir_fd = None)

Parameters:
source: A path-like object representing the file system path. This is the source file path which is to

renamed.

destination: A path-like object representing the file system path.

src_dir_fd (optional): A file descriptor referring to a directory.

dst_dir_fd (optional): A file descriptor referring to a directory.

Return Type: This method does not return any value.

Example: Use of os.rename() method

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

Python program to explain os.rename() method

importing os module
import os

Source file path
source = 'GeeksforGeeks/file.txt'

destination file path
dest = 'GeekforGeeks/newfile.txt'

Now rename the source path
to destination path
using os.rename() method
os.rename(source, dest)
print("Source path renamed to destination path successfully.")

Output:
Source path renamed to destination path successfully.

7. i) Describe the import statements
ii) Describe the from…import statements

Importing Modules

To make use of the functions in a module,

you’ll need to import the module with

an import statement.

An import statement is made up of

the import keyword along with the name of

the module.

In a Python file, this will be declared at the

top of the code, under any shebang lines or

general comments.

. This means that we will have to refer to the

function in dot notation, as

in [module].[function].

In practice, with the example of

the random module, this may look like a

function such as:

Example

So, in the Python program

file my_rand_int.py we would import

the random module to generate random

numbers in this manner:

my_rand_int.py

import random

When we import a module, we are making it

available to us in our current program as a

separate namespace

Let’s create a for loop to show how we will

call a function of the random module within

our my_rand_int.py program:

my_rand_int.py

import random

for i in range(10):

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

20

 random.randint() which calls the

function to return a random integer,

or

 random.randrange() which calls the

function to return a random element

from a specified range.

The import statement allows you to import one

or more modules into your Python program,

letting you make use of the definitions

constructed in those modules.

Using from … import

To refer to items from a module within your

program’s namespace, you can use

the from … import statement. When you

import modules this way, you can refer to

the functions by name rather than through

dot notation

In this construction, you can specify which

definitions to reference directly.

In other programs, you may see

the import statement take in references to

everything defined within the module by

using an asterisk (*) as a wildcard, but this

is discouraged by PEP 8.

Let’s first look at importing one specific

function, randint() from the random module:

Output

6

9

1

14

3

22

10

1

15

9

my_rand_int.py

from random import randint

Here, we first call the from keyword,

then random for the module. Next, we use

the import keyword and call the specific

function we would like to use.

Now, when we implement this function

within our program, we will no longer write

the function in dot notation

as random.randint() but instead will just

write randint():

my_rand_int.py

from random import randint

for i in range(10):

 print(randint(1, 25))

When you run the program, you’ll receive

output similar to what we received earlier.

Using the from … import construction

allows us to reference the defined elements

of a module within our program’s

namespace, letting us avoid dot notation.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

Aliasing Modules

It is possible to modify the names of

modules and their functions within Python

by using the as keyword.

You may want to change a name because

you have already used the same name for

something else in your program, another

module you have imported also uses that

name, or you may want to abbreviate a

longer name that you are using a lot.

The construction of this statement looks like

this:

import [module] as [another_name]

Let’s modify the name of the math module

in our my_math.py program file. We’ll

change the module name of math to m in

order to abbreviate it. Our modified

program will look like this:

my_math.py

import math as m

print(m.pi)

print(m.e)

Within the program, we now refer to

the pi constant as m.pi rather than math.pi.

For some modules, it is commonplace to use

aliases. The matplotlib.pyplot module’s

official documentation calls for use of plt as

an alias:

import matplotlib.pyplot as plt

This allows programmers to append the

shorter word plt to any of the functions

available within the module, as

in plt.show().

8. Describe in detail locating modules.

Locating Python modules

Finding Modules: The Path

For modules to be available for use, the Python interpreter must be able to locate the module file. Python has a set

of directories in which it looks for module files. This set of directories is called the search path, and is analogous to

the PATH environment variable used by an operating system to locate an executable file.

Python's search path is built from a number of sources:

 PYTHONHOME is used to define directories that are part of the Python installation. If this environment

variable is not defined, then a standard directory structure is used. For Windows, the standard location is

based on the directory into which Python is installed. For most Linux environments, Python is installed
under /usr/local, and the libraries can be found there. For Mac OS, the home directory is

under /Library/Frameworks/Python.framework.

 PYTHONPATH is used to add directories to the path. This environment variable is formatted like the

OS PATH variable, with a series of filenames separated by :'s (or ;'s for Windows).

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

22

 Script Directory. If you run a Python script, that script's directory is placed first on the search path so that

locally-defined moules will be used instead of built-in modules of the same name.

 The site module's locations are also added. (This can be disabled by starting Python with the -S option.)

The site module will use the PYTHONHOME location(s) to create up to four additional directories.

Generally, the most interesting one is the site-packages directory. This directory is a handy place to put

additional modules you've downloaded. Additionally, this directory can contain .PTH files. The site module

reads .PTH files and puts the named directories onto the search path.

The search path is defined by the path variable in the sys module. If we import sys, we can display sys.path. This is

very handy for debugging. When debugging shell scripts, it can help to run 'python -c 'import sys; print sys.path' just

to see parts of the Python environment settings.

Installing a module, then, is a matter of assuring that the module appears on the search path. There are four central

methods for doing this.

 Some packages will suggest you create a directory and place the package in that directory. This may be

done by downloading and unzipping a file. It may be done by using Subversion and sychronizing your

subversion copy with the copy on a server. Either way, you will likely only need to create an operating

system link to this directory and place that link in site-packages directory.

 Some packages will suggest you download (or use subversion) to create a temporary copy. They will

provide you with a script — typically based on setup.py — which moves files into the correct locations.

This is called the distutils distribution. This will generally copy the module files to the site-

packages directory.

 Some packages will rely on setuptools. This is a package from the Python Enterprise Application

Kit that extends distuils to further automates download and installation. This tool, also, works by moving

the working library modules to the site-packages directory.

 Extending the search path. Either set the PYTHONPATH environment variable, or put .PTH files in the site-

packages directory.

Windows Environment

In the Windows environment, the Python_Path symbol in the Windows registry is used to locate modules.

9. Identify the various methods used to delete the elements from the dictionary

Python | Ways to remove a key from dictionary

Dictionary is used in manifold practical applications such as day-day programming, web

development and AI/ML programming as well, making it a useful container overall. Hence, knowing

shorthands for achieving different tasks related to dictionary usage always is a plus. This article deals

with one such task of deleting a dictionary key-value pair from a dictionary.

Method 1 : Using del
del keyword can be used to inplace delete the

key that is present in the dictionary. One

drawback that can be thought of using this is

that is raises an exception if the key is not

found and hence non-existence of key has to

be handled.

Method 2 : Using pop()
pop() can be used to delete a key and its

value inplace. Advantage over using del is

that it provides the mechanism to print

desired value if tried to remove a non-

existing dict. pair. Second, it also returns the

value of key that is being removed in

addition to performing a simple delete

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

Code #1 : Demonstrating key-value pair

deletion using del

Python code to demonstrate
removal of dict. pair
using del

Initializing dictionary
test_dict = {"Arushi" : 22, "Anuradha" : 21, "Mani" : 21, "Haritha" : 21}

Printing dictionary before removal
print ("The dictionary before performing remove is : " + str(test_dict))

Using del to remove a dict
removes Mani
del test_dict['Mani']

Printing dictionary after removal
print ("The dictionary after remove is : " + str(test_dict))

Using del to remove a dict
raises exception
del test_dict['Manjeet']

Output :
The dictionary before performing remove is : {'Anuradha': 21, 'Haritha': 21, 'Arushi': 22, 'Mani': 21}

The dictionary after remove is : {'Anuradha': 21, 'Haritha': 21, 'Arushi': 22}

Exception :
Traceback (most recent call last):

 File "/home/44db951e7011423359af4861d475458a.py", line 20, in

 del test_dict['Manjeet']

KeyError: 'Manjeet'

operation.

Code #2 : Demonstrating key-value pair

deletion using pop()

Python code to demonstrate
removal of dict. pair
using pop()

Initializing dictionary
test_dict = {"Arushi" : 22, "Anuradha" : 21, "Mani" : 21, "Haritha" : 21}

Printing dictionary before removal
print ("The dictionary before performing remove is : " + str(test_dict))

Using pop() to remove a dict. pair
removes Mani
removed_value = test_dict.pop('Mani')

Printing dictionary after removal
print ("The dictionary after remove is : " + str(test_dict))
print ("The removed key's value is : " + str(removed_value))

print ('\r')

Using pop() to remove a dict. pair
doesn't raise exception
assigns 'No Key found' to removed_value
removed_value = test_dict.pop('Manjeet', 'No Key found')

Printing dictionary after removal
print ("The dictionary after remove is : " + str(test_dict))
print ("The removed key's value is : " + str(removed_value))
Output :
The dictionary before performing remove is :

{'Arushi': 22, 'Anuradha': 21, 'Mani': 21,

'Haritha': 21}

The dictionary after remove is : {'Arushi': 22,
'Anuradha': 21, 'Haritha': 21}

The removed key's value is : 21

The dictionary after remove is : {'Arushi': 22,
'Anuradha': 21, 'Haritha': 21}

The removed key's value is : No Key found

Method 3 : Using items() + dict comprehension
items() coupled with dict comprehension can also help us achieve task of key-value pair deletion but, it

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

24

has drawback of not being an inplace dict. technique. Actually a new dict if created except for the

key we don’t wish to include.

Code #3 : Demonstrating key-value pair deletion using items() + dict. comprehension

Python code to demonstrate
removal of dict. pair
using items() + dict comprehension

Initializing dictionary
test_dict = {"Arushi" : 22, "Anuradha" : 21, "Mani" : 21, "Haritha" : 21}

Printing dictionary before removal
print ("The dictionary before performing remove is : " + str(test_dict))

Using items() + dict comprehension to remove a dict. pair
removes Mani
new_dict = {key:val for key, val in test_dict.items() if key != 'Mani'}

Printing dictionary after removal
print ("The dictionary after remove is : " + str(new_dict))

Output :
The dictionary before performing remove is : {'Anuradha': 21, 'Haritha': 21, 'Arushi': 22, 'Mani': 21}

The dictionary after remove is : {'Anuradha': 21, 'Haritha': 21, 'Arushi': 22}

10. Describe in detail exception handling with sample program

Python Exceptions

An exception can be defined as an abnormal

condition in a program resulting in the disruption in

the flow of the program.

Whenever an exception occurs, the program halts the

execution, and thus the further code is not executed.

Therefore, an exception is the error which python

script is unable to tackle with.

Python provides us with the way to handle the

Exception so that the other part of the code can be

executed without any disruption. However, if we do

not handle the exception, the interpreter doesn't

Common Exceptions

A list of common exceptions that can be thrown from

a normal python program is given below.

1. ZeroDivisionError: Occurs when a

number is divided by zero.

2. NameError: It occurs when a name is not

found. It may be local or global.

3. IndentationError: If incorrect indentation

is given.

4. IOError: It occurs when Input Output

operation fails.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

execute all the code that exists after the that.

5. EOFError: It occurs when the end of the

file is reached, and yet operations are being

performed.

Problem without handling exceptions

Example

1. a = int(input("Enter a:"))

2. b = int(input("Enter b:"))

3. c = a/b;

4. print("a/b = %d"%c)

5.

6. #other code:

7. print("Hi I am other part of the program")

Output:

Enter a:10

Enter b:0

Traceback (most recent call last):

 File "exception-test.py", line 3, in <module>

 c = a/b;

ZeroDivisionError: division by zero

Handling Zero divide Exception

Example

1. try:

2. a = int(input("Enter a:"))

3. b = int(input("Enter b:"))

4. c = a/b;

5. print("a/b = %d"%c)

6. except:

7. print("can't divide by zero")

8. else:

9. print("Hi I am else block")

Output:

Enter a:10

Enter b:0

can't divide by zero

Exception handling in

python

If the python program contains suspicious code that

may throw the exception, we must place that code in

the try block. The try block must be followed with

the except statement which contains a block of code

that will be executed if there is some exception in the

try block.

Syntax

1. try:

2. #block of code

3.

4. except Exception1:

5. #block of code

We can also use the else statement with the try-

except statement in which, we can place the code

which will be executed in the scenario if no

exception occurs in the try block.

The syntax to use the else statement with the try-

except statement is given below.

1. try:

2. #block of code

3.

4. except Exception1:

5. #block of code

6.

7. else:

8. #this code executes if no except block is e

xecuted

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

26

6.

7. except Exception2:

8. #block of code

9.

10. #other code

11. Write a program to find the one’s complement of binary number using file.

Python3 program to print 1's and 2's

complement of a binary number

Returns '0' for '1' and '1' for '0'

def flip(c):

 return '1' if (c == '0') else '0'

Print 1's and 2's complement of

binary number represented by "bin"

def printOneAndTwosComplement(bin):

 n = len(bin)

 ones = ""

 twos = ""

 # for ones complement flip every bit

 for i in range(n):

 ones += flip(bin[i])

 # for two's complement go from right

 # to left in ones complement and if

 # we get 1 make, we make them 0 and

 # keep going left when we get first

 # 0, make that 1 and go out of loop

 ones = list(ones.strip(""))

 twos = list(ones)

 for i in range(n - 1, -1, -1):

 if (ones[i] == '1'):

 twos[i] = '0'

 else:

 twos[i] = '1'

 break

 # If No break : all are 1 as in 111 or 11111

 # in such case, add extra 1 at beginning

 if (i == -1):

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

 twos.insert(0, '1')

 print("1's complement: ", *ones, sep = "")

 print("2's complement: ", *twos, sep = "")

Driver Code

if __name__ == '__main__':

 bin = "111100"

 printOneAndTwosComplement(bin.strip(""))

 OUTPUT

1's complement: 000011

2's complement: 000100

12. Write a program to display a pyramid
Python program to
print Diamond shape

Function to print
Diamond shape
def Pyramid(rows):
 n = 0
 for i in range(1, rows + 1):
 # loop to print spaces
 for j in range (1, (rows - i) + 1):
 print(end = " ")

 # loop to print star
 while n != (2 * i - 1):
 print("*", end = "")
 n = n + 1
 n = 0

 # line break
 print()

Driver Code
number of rows input
rows = 10
Pyramid(rows)

13. Write a program to find the number of instances of different digits in a given number

Python program to find the frequency of each element of an array

Input size of array

n = int(input('Enter the number of elements : '))

arr = []

freq = [-1] * n

Input elements in array

print('\nEnter elements in array: ')

for i in range(n):

 temp = int(input())

Initially initialize frequencies to -1

 arr.append(temp)

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

28

for i in range(0, n):

 count = 1

for j in range(i+1, n):

 if(arr[i] == arr[j]):

 count = count + 1

 freq[j] = 0

if(freq[i] != 0):

 freq[i] = count

Print frequency of each element

print('\nFrequency of all elements of array : \n');

for i in range(0, n):

 if(freq[i] != 0):

 print(arr[i], ' occurs ', freq[i], ' times')

OUTPUT

Enter a number : 43829

Frequency of all elements of array :

4 occurs -1 times

3 occurs -1 times

8 occurs -1 times

2 occurs -1 times

9 occurs 1 times

14. Describe in detail printing to the screen.
Screen output

Text output is one of the basics in Python programming. Not all Programs have graphical user interfaces, text

screens often suffice.

You can output to the terminal with print function. This function displays text on your screen, it won’t print.

The terminal is a very simple interface for Python programs. While not as shiny as a GUI or web app, it’s

good enough to cover the basics in.

Print function

Create a new program (text file) in your IDE or code editor.

Name the file hello.py. It only needs one line of code.

To output text to the screen you will need this line::

print("Hello World")

Run the program (from terminal: python hello.py)

If you run the program:

Hello World

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

Print newline

The program above prints everything on a single line. At some point you’ll want to write multiple lines.

To write multiple lines, add the ‘\n’ character:

print("This is First Line” \n This is Second Line ")

OUTPUT

This is First Line

This is Second Line

In Python strings, the backslash "\" is a special character, also called the "escape" character. It is used in

representing certain whitespace characters: "\t" is a tab, "\n" is a newline, and "\r" is a carriage return.

Print variables

To print variables:

x = 3

print(x)

OUTPUT

3

To print multiple variables on one line:

x = 2

y = 3

print("x = {}, y = {}".format(x,y))

OUTPUT:

x = 2, y = 3

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

30

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

