

5

Algorithm 1.2:

Step 1: Start.

Step 2: Read the three numbers A,B,C.

Step 3: Compare A and B. If A is greater, store Ain MAX, else store B in MAX.

Step 4: Compare MAX and C. If MAX is greater, output “MAX is greater” else output “C is

 greater”.

Step 5: Stop.

 Both the algorithms accomplish same goal, but in different ways. The

programmer selects the algorithm based on the advantages and disadvantages of each

algorithm. For example, the first algorithm has more number of comparisons, whereas in

second algorithm an additional variable MAX is required.

In the Algorithm 1.1, Algorithm 1.2, step 1 and 2 are in sequence logic and step 3, 4,

and 5 are in selection logic. In order to illustrate iteration logic, consider one more example.

Design an algorithm for calculating total mark of specified number of subjects given

as: 86, 99, 98, 87, 89

Algorithm 1.3:

Step 1: Start

Step 2: Read Number of subjects as N

Step 3: Total = 0, i=1

Step 4: Get single subject mark as mark

Step 5: Total = Total + mark

Step 6: i=i+1

Step 7: If i<=N, THEN go to step 4. Otherwise, go to step 8

Step 8: Output the Total

Step 9: Stop

 In the Algorithm 1.3 step 7 have a go to statement with a back ward step

reference, so it means that iteration logic.

1.3.2 Pseudocode

 Pseudocode ("sort of code") is another way of describing algorithms. It is

called "pseudo" code because of its strong resemblance to "real" program code. Pseudocode

is essentially English with some defined rules of structure and some keywords that make

it appear a bit like program code.

 Some guidelines for writing pseudocode are as follows.

Note: These are not "strict" guidelines. Any words used that have similar form and function

may be used in an emergency - however, it would be best to stick to the pseudocode words

used here.

6

 for start and finish BEGIN MAINPROGRAM, END MAINPROGRAM -

 this is often abbreviated to BEGIN and END - especially in smaller programs

 for initialization INITIALISATION, END INITIALISATION - this part is

 optional, though it makes your program structure clearer

 for subprogram BEGIN SUBPROGRAM, END SUBPROGRAM

 for selection IF, THEN, ELSE, ENDIF

 for multi-way selection CASEWHERE, OTHERWISE, ENDCASE

 for pre-test repetition WHILE, ENDWHILE

 for post-test repetition REPEAT, UNTIL

 Keywords are written in capitals.

 Structural elements come in pairs, eg for every BEGIN there is an END, for

 every IF there is an ENDIF, etc.

 Indenting is used to show structure in the algorithm.

 The names of subprograms are underlined. This means that when refining

 the solution to a problem, a word in an algorithm can be underlined and a

 subprogram developed. This feature is to assist the use of the „top-down‟

 development concept.

1.3.3 Flowcharts

 Flowcharts are a diagrammatic method of representing algorithms. They use

an intuitive scheme of showing operations in boxes connected by lines and arrows that

graphically show the flow of control in an algorithm.

 Table 1.1 lists the flowchart symbol drawing, the name of the flowchart

symbol in Microsoft Office (with aliases in parentheses), and a short description of where and

how the flowchart symbol is used.

Table 1.1: Flowchart Symbols

SYMBOL
NAME

(ALIAS)
DESCRIPTION

Flow Line

(Arrow,

Connector)

Flow line connectors show the direction that the process

flows.

Terminator

(Terminal

Point, Oval)

Terminators show the start and stop points in a process.

Data

(I/O)

The Data flowchart shape indicates inputs to and outputs

from a process. As such, the shape is more often referred

to as an I/O shape than a Data shape.

Document

Pretty self-explanatory - the Document flowchart symbol

is for a process step that produces a document.

Process

Show a Process or action step. This is the most common

symbol in flowcharts.

Decision

Indicates a question or branch in the process flow.

Typically, a Decision flowchart shape is used when there

are 2 options (Yes/No, No/No-Go, etc.)

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

Connector

(Inspection)

This symbol is typically small and is used as a Connector

to show a jump from one point in the process flow to

another. Connectors are usually labeled with capital letters

(A, B, AA) to show matching jump points. They are handy

for avoiding flow lines that cross other shapes and flow

lines. They are also handy for jumping to and from a sub-

processes defined in a separate area than the main

flowchart.

Predefined

Process

(Subroutine)

A Predefined Process symbol is a marker for another

process step or series of process flow steps that are

formally defined elsewhere. This shape commonly depicts

sub-processes (or subroutines in programming flowcharts).

Preparation

As the names states, any process step that is a Preparation

process flow step, such as a set-up operation. Eg, Used in

For Loop.

Magnetic

Disk

(Database)

The most universally recognizable symbol for a data

storage location, this flowchart shape depicts a database.

1.3.4 Control Structures of Pseudocode and Flowcharts

Each control structures can be built from the basic elements as shown below.

Sequence: A sequence is a series of steps that take place one after another. Each step is

represented here by a new line.

Our sequence example of changing gears could be described as follows :

Pseudocode Flowchart

BEGIN

Statement

Statement

END

8

Pseudocode Flowchart

BEGIN

 1st Gear

 2nd Gear

 3rd Gear

 4th Gear

 5th Gear

END

Selection : A Selection is a decision. Some decisions may be answered as Yes or No. These

are called binary selections. Other decisions have more than two answers. These are

called multiway selections.

A binary selection may be described in pseudocode and flow chart as follows :

Pseudocode Flowchart

IF (question) THEN

 statement

ELSE

 statement

ENDIF

An example of someone at a set of traffic lights follows :

Pseudocode Flowchart

IF (lights are green) THEN

 Go

ELSE

 Stop

ENDIF

A Multiway Selection may be described as follows :

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

Pseudocode Flowchart

CASEWHERE (question)

 Alternative 1: Statement

 Alternative 2 : Statement

 OTHERWISE : Statement

ENDCASE

An example of someone at a set of traffic lights follows :

Pseudocode Flowchart

CASEWHERE Lights are :

 Green : Go

 Amber : Slowdown

 Red : Stop

ENDCASE

Repetition: A sequence of steps which are repeated a number of times, is called repetition.

For a repeating process to end, a decision must be made. The decision is usually called a test.

The position of this test divides repetition structures into two types : Pre-test and Post-test

repetitions.

Pre-test repetitions (sometimes called guarded loops) will perform the test before any part

of the loop occurs.

Post-test repetitions (sometimes called un-guarded loops) will perform the test after the

main part of the loop (the body) has been performed at least once.

Pre-test repetitions may be described in as follows :

10

Pseudocode Flowchart

WHILE (question)

 Statement

ENDWHILE

A traffic lights example follows :

Pseudocode Flowchart

WHILE (lights are not green)

 wait

ENDWHILE

Post-test repetitions may be described as follows:

A traffic lights example follows :

Pseudocode Flowchart

REPEAT

 Statement

UNTIL (Question)

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

Pseudocode Flowchart

REPEAT

 Wait

UNTIL lights are green

Sub-Programs: A sub-program is a self-contained part of a larger program. The use of sub-

programs helps with "Top-Down" design of an algorithm, by providing a structure through

which a large and unwieldy solution may be broken down into smaller, more manageable,

components.

A sub-program is described as:

Pseudocode Flowchart

subprogram

Consider the total concept of driving a car. This activity is made up of a number of sub-

processes which each contribute to the driver arriving at a destination. Therefore, driving may

involve the processes of "Starting the car"; "Engaging the gears"; "Speeding up and slowing

down"; "Steering"; and "Stopping the car".

A (not very detailed) description of driving may look something like:

12

Pseudocode Flowchart

BEGIN

 Start Car

 Engage Gears

 Navigate Car

 Stop Car

END

Note that the sub-program "Navigate Car" could be further developed into:

Pseudocode Flowchart

BEGIN SUBPROGRAM Navigate

 Steer Car

 Speed up and slow down car

ENDSUBPROGRAM

In the example above, each of the sub-programs would have whole algorithms of their own,

incorporating some, or all, of the structures discussed earlier.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

1.3.5 Programming Language

 Computers won‟t understand your algorithm as they use a different language.

It will need to be translated into code, which the computer will then follow to complete a

task. This code is written in a programming language. There are many programming

languages available. Some of you may come across are C, C++, Java, Python, etc... Each of

this language is suited to different things. In this book we will learn about Python

programming language.

1.4 RECURSION

 A recursive algorithm is an algorithm which calls itself with "smaller (or

simpler)" input values, and which obtains the result for the current input by applying simple

operations to the returned value for the smaller (or simpler) input. More generally if a

problem can be solved utilizing solutions to smaller versions of the same problem, and the

smaller versions reduce to easily solvable cases, then one can use a recursive algorithm to

solve that problem.

1.4.1 Example

 For positive values of n, let's write n!, as we known n! is a product of numbers

starting from n and going down to 1. n! = n. (n-1)…… 2 .1. But notice that (n-1) ... 2.1 is

another way of writing (n-1)!, and so we can say that n!=n.(n−1)!. So we wrote n! as a

product in which one of the factors is (n−1)!. You can compute n! by computing (n−1)! and

then multiplying the result of computing (n−1)! by n. You can compute the factorial function

on n by first computing the factorial function on n−1. So computing (n−1)! is

a subproblem that we solve to compute n!.

Let's look at an example: computing 5!.

 You can compute 5! as 5⋅4!.

 Now you need to solve the subproblem of computing 4!, which you can compute as 4⋅
3!.

 Now you need to solve the subproblem of computing 3!, which is 3⋅2!.

 Now 2!, which is 2⋅1!.

 Now you need to compute 1!. You could say that 1! =1, because it's the product of all

the integers from 1 through 1. Or you can apply the formula that 1! = 1⋅0!. Let's do it

by applying the formula.

 We defined 0! to equal 1.

 Now you can compute1!=1⋅0!=1.

 Having computed 1!=1, you can compute 2!=2⋅1!=2.

 Having computed 2!=2, you can compute 3!=3⋅2!=6.

 Having computed 3!=6, you can compute 4!=4⋅3!=24.

 Finally, having computed 4!=24, you can finish up by computing 5!=5⋅4!=120.

So now we have another way of thinking about how to compute the value of n!, for all

nonnegative integers n:

14

 If n=0, then declare that n!=1.

 Otherwise, n must be positive. Solve the subproblem of computing (n−1)!, multiply

this result by n, and declare n! equal to the result of this product.

When we're computing n! in this way, we call the first case, where we immediately know the

answer, the base case, and we call the second case, where we have to compute the same

function but on a different value, the recursive case.

Base case is the case for which the solution can be stated non‐recursively (ie. the answer is

known). Recursive case is the case for which the solution is expressed in terms of a smaller

version of itself.

1.4.2 Recursion in Step Form

Recursion may be described as follows:

Syntax for recursive algorithm
Step 1: Start

Step 2: Statement(s)

Step 3: Call Subprogram(argument)

Step 4: Statement(s)

Step 5: Stop

Step 1: BEGIN Subprogram(argument)

Step 2: If base case then return base solution

Step 3: Else return recursive solution, include call subprogram(smaller version of argument)

Recursive algorithm solution for factorial problem

Step 1: Start

Step 2: Read number n

Step 3: Call factorial(n) and store the result in f

Step 4: Print factorial f

Step 5: Stop

Step 1: BEGIN factorial(n)

Step 2: If n==0 then return 1

Step 3: Else Return n*factorial(n-1)

Step 4:END factorial

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

1.4.3 Recursion in Flow Chart

Syntax for recursive flow chart

Figure 1.1 Recursive Flow chart Syntax

Figure 1.2 Recursive flow chart solution for factorial problem

Start

Stop

Read N

Fact=Factorial(N)

Print Fact

Begin Factorial(N)

Is

N==0

Return 1 Return N*Factorial(N-1)

End Factorial

No

Yes

Subprogram

call(argument)

Is

base

Case

Begin

subprogram(argument)

End

Subprogram

Return

recursive

solution with

Subprogram

call(smaller

version of

argument)

No

Yes

Return base solution

16

1.4.4 Recursion in Pseudocode

Syntax for recursive Pseudocode

SubprogramName(argument) BEGIN SUBPROGRAM SubprogramName(argument)

 Is base Case

 Return base case solution

 Else

 Return recursive solution with

 SubprogramName (smaller version of

 argument)

 ENDSUBPROGRAM

Recursive Pseudocode solution for factorial problem

BEGIN Factorial BEGIN SUBPROGRAM Fact(n)

 READ N IF n==0 THEN RETURN 1

 f= Fact(N) ELSE RETURN n*Fact(n-1)

 PRINT f ENDSUBPROGRAM

END

1.5 ALGORITHMIC PROBLEM SOLVING

We can consider algorithms to be procedural solutions to problems. These solutions

are not answers but specific instructions for getting answers. It is this emphasis on precisely

defined constructive procedures that makes computer science distinct from other disciplines.

In particular, this distinguishes it from theoretical mathematics, whose practitioners are

typically satisfied with just proving the existence of a solution to a problem and, possibly,

investigating the solution‟s properties. Let us discuss a sequence of steps one typically goes

through in designing and analysing an algorithm

1. Understanding the problem

2. Ascertain the capabilities of the computational device

3. Exact /approximate solution

4. Decide on the appropriate data structure

5. Algorithm design techniques

6. Methods of specifying an algorithm

7. Proving an algorithms correctness

8. Analysing an algorithm

Understanding the problem:

The problem given should be understood completely. Check if it is similar to some standard

problems & if a Known algorithm exists. Otherwise a new algorithm has to be developed.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

Ascertain the capabilities of the computational device:

Once a problem is understood, we need to Know the capabilities of the computing

device this can be done by Knowing the type of the architecture, speed & memory

availability.

Exact /approximate solution:

Once algorithm is developed, it is necessary to show that it computes answer for all the

possible legal inputs. The solution is stated in two forms, exact solution or approximate

solution. Examples of problems where an exact solution cannot be obtained are i) Finding a

square root of number. ii) Solutions of nonlinear equations.

Decide on the appropriate data structure:

Some algorithms do not demand any ingenuity in representing their inputs. Some others are

in fact are predicted on ingenious data structures. A data type is a well-defined collection of

data with a well-defined set of operations on it. A data structure is an actual implementation

of a particular abstract data type. The Elementary Data Structures are Arrays: These let you

access lots of data fast. (good) .You can have arrays of any other data type. (good) .However,

you cannot make arrays bigger if your program decides it needs more space. (bad). Records:

These let you organize non-homogeneous data into logical packages to keep everything

together. (good) .These packages do not include operations, just data fields (bad, which is

why we need objects) .Records do not help you process distinct items in loops (bad, which is

why arrays of records are used) Sets: These let you represent subsets of a set with such

operations as intersection, union, and equivalence. (good) .Built-in sets are limited to a

certain small size. (bad, but we can build our own set data type out of arrays to solve this

problem if necessary)

Algorithm design techniques:

Creating an algorithm is an art which may never be fully automated. By mastering these

design strategies, it will become easier for you to develop new and useful algorithms.

Dynamic programming is one such technique. Some of the techniques are especially useful in

fields other than computer science such as operation research and electrical engineering.

Some important design techniques are linear, nonlinear and integer programming

Methods of specifying an algorithm:

There are mainly two options for specifying an algorithm: use of natural language or

pseudocode & Flowcharts. A Pseudo code is a mixture of natural language & programming

language like constructs. A flowchart is a method of expressing an algorithm by a collection

of connected geometric shapes.

Proving algorithms correctness:

Once algorithm is developed, it is necessary to show that it computes answer for all the

possible legal inputs .We refer to this process as algorithm validation. The process of

18

validation is to assure us that this algorithm will work correctly independent of issues

concerning programming language it will be written in.

Analysing algorithms:

As an algorithm is executed, it uses the computers central processing unit to perform

operation and its memory (both immediate and auxiliary) to hold the program and data.

Analysis of algorithms and performance analysis refers to the task of determining how much

computing time and storage an algorithm requires. This is a challenging area in which

sometimes requires grate mathematical skill. An important result of this study is that it allows

you to make quantitative judgments about the value of one algorithm over another. Another

result is that it allows you to predict whether the software will meet any efficiency constraint

that exits.

1.6 ILLUSTRATIVE PROBLEMS

1.6.1 Find Minimum in a List

Consider the following requirement specification:

 A user has a list of numbers and wishes to find the minimum value in the list.

An Algorithm is required which will allow the user to enter the numbers, and which will

calculate the minimum value that are input. The user is quite happy to enter a count of the

numbers in the list before entering the numbers.

 Finding the minimum value in a list of items isn‟t difficult. Take the first

element and compare its value against the values of all other elements. Once we find a

smaller element we continue the comparisons with its value. Finally we find the minimum.

Figure 1.3 Steps to Find Minimum Element in a List

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

Step base algorithm to find minimum element in a list

Step 1: Start

Step 2: READ total number of element in the List as N

Step 3: READ first element as E

Step 4: MIN =E

Step 5: SET i=2

Step 6: IF i>n go to Step 11 ELSE go to step 7

Step 7: READ i
th

 element as E

Step 8: IF E < MIN THEN SET MIN = E

Step 9: i=i+1

Step 10: go to step 6

Step 11: Print MIN

Step 12: Stop

Figure 1.4 Flow Chart to Find Minimum Element in a List

20

Pseudocode to find minimum element in a list

READ total number of element in the List as N

READ first element as E

SET MIN =E

SET i=2

WHILE i<=n

 READ i
th

 element as E

 IF E < MIN THEN

 SET MIN = E

 ENDIF

 INCREMENT i by ONE

ENDWHILE

PRINT MIN

1.6.2 Insert a Card in a List of Sorted Cards

Insert a Card in a List of Sorted Cards – is same as inserting an element into a sorted array.

We start from the high end of the array and check to see if that's where we want to insert the

data. If so, fine. If not, we move the preceding element up one and then check to see if we

want to insert x in the “hole” left behind. We repeat this step as necessary.

Thus the search for the place to insert x and the shifting of the higher elements of the array

are accomplished together.

Figure 1.5 Steps to Insert a Card in a List of Sorted Cards

Step base algorithm to Insert a Card in a List of Sorted Cards

Step 1: Start

Step 2: Declare variables N, List[], i, and X.

Step 3: READ Number of element in sorted list as N

Step 4: SET i=0

Step 5: IF i<N THEN go to step 6 ELSE go to step 9

Step 6: READ Sorted list element as List[i]

Step 7: i=i+1

Step 8: go to step 5

Step 9: READ Element to be insert as X

Step 10: SET i = N-1

Step 11: IF i>=0 AND X<List[i] THEN go to step 12 ELSE go to step15

Step 12: List[i+1]=List[i]

Step 13: i=i-1

Position 0 1 2 3 4 5 Element To Be Insert

Original List 4 6 9 10 11 7

7>11 × 4 6 9 10 11

7>10 × 4 6 9 10 11

7>9 × 4 6 9 10 11

7>6 √ 4 6 7 9 10 11

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

Step 14: go to step 11

Step 15: List[i+1]=X

Figure 1.6 Flow Chart to Insert a Card in a List of Sorted Cards

Pseudocode to Insert a Card in a List of Sorted Cards

READ Number of element in sorted list as N

SET i=0

WHILE i<N

 READ Sorted list element as List[i]

22

 i=i+1

ENDWHILE

READ Element to be insert as X

SET i = N-1

WHILE i >=0 and X < List[i]

List[i+1] =List[i]

 i = i – 1

END WHILE

List[i+1] = X

1.6.3 Guess an Integer Number in a Range

 Let's play a little game to give an idea of how different algorithms for the same

problem can have wildly different efficiencies. The computer is going to randomly select an

integer from 1 to N and ask you to guess it. The computer will tell you if each guess is too

high or too low. We have to guess the number by making guesses until you find the number

that the computer chose. Once found the number, think about what technique used, when

deciding what number to guess next?

 Maybe you guessed 1, then 2, then 3, then 4, and so on, until you guessed the

right number. We call this approach linear search, because you guess all the numbers as if

they were lined up in a row. It would work. But what is the highest number of guesses you

could need? If the computer selects N, you would need N guesses. Then again, you could be

really lucky, which would be when the computer selects 1 and you get the number on your

first guess. How about on average? If the computer is equally likely to select any number

from 1 to N, then on average you'll need N/2 guesses.

 But you could do something more efficient than just guessing 1, 2, 3, 4, …,

right? Since the computer tells you whether a guess is too low, too high, or correct, you can

start off by guessing N/2. If the number that the computer selected is less than N/2, then

because you know that N/2 is too high, you can eliminate all the numbers from N/2 to N from

further consideration. If the number selected by the computer is greater than N/2, then you

can eliminate 1 through N/2. Either way, you can eliminate about half the numbers. On your

next guess, eliminate half of the remaining numbers. Keep going, always eliminating half of

the remaining numbers. We call this halving approach binary search, and no matter which

number from 1 to N the computer has selected, you should be able to find the number in at

most log2N+1 guesses with this technique. The following table shows the maximum number

of guesses for linear search and binary search for a few number sizes:

Highest Number Max Linear Search Guesses Max Binary Search Guesses

10 10 4

100 100 7

1,000 1,000 10

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

10,000 10,000 14

100,000 100,000 17

1,000,000 1,000,000 20

Figure 1.7 Flow Chart for Guess an Integer Number in a Range

24

Step base algorithm to Guess an Integer Number in a Range

Step 1: Start

Step 2: SET Count =0

Step 3: READ Range as N

Step 4: SELECT an RANDOMNUMBER from 1 to N as R

Step 5: READ User Guessed Number as G

Step 6: Count = Count +1

Step 7: IF R==G THEN go to step 10 ELSE go to step 8

Step 8: IF R< G THEN PRINT “Guess is Too High” AND go to step 5 ELSE go to step9

Step 9: PRINT “Guess is Too Low” AND go to step 5

Step 10: PRINT Count as Number of Guesses Took

Pseudocode to Guess an Integer Number in a Range

SET Count =0

READ Range as N

SELECT an RANDOM NUMBER from 1 to N as R

WHILE TRUE

 READ User guessed Number as G

 Count =Count +1

 IF R== G THEN

 BREAK

 ELSEIF R<G THEN

 DISPLAY “Guess is Too High”

 ELSE

 DISPLAY “Guess is Too Low”

 ENDIF

ENDWHILE

DISPLAY Count as Number of guesses Took

1.6.4 Tower of Hanoi

 Tower of Hanoi, is a mathematical puzzle which consists of three towers

(pegs) and more than one rings is as depicted in Figure 1.8. These rings are of different sizes

and stacked upon in an ascending order, i.e. the smaller one sits over the larger one.

 Figure 1.8 Tower of Hanoi

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

 The mission is to move all the disks to some another tower without violating

the sequence of arrangement. A few rules to be followed for Tower of Hanoi are:

Rules

 Only one disk can be moved among the towers at any given time.

 Only the "top" disk can be removed.

 No large disk can sit over a small disk.

Figure 1.9 Step by Step Moves in Solving Three Disk Tower of Hanoi Problem

Algorithm:

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem

with lesser amount of disks, say → 1 or 2. We mark three towers with name, source,

destination and aux (only to help moving the disks). If we have only one disk, then it can

easily be moved from source to destination tower.

If we have 2 disks −

 First, we move the smaller (top) disk to aux tower.

 Then, we move the larger (bottom) disk to destination tower.

 And finally, we move the smaller disk from aux to destination tower.

So now, we are in a position to design an algorithm for Tower of Hanoi with more than two

disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one part and

all other (n-1) disks are in the second part.

Our ultimate aim is to move disk n from source to destination and then put all other (n-1)

disks onto it. We can imagine to apply the same in a recursive way for all given set of disks.

26

The steps to follow are −

Step 1 − Move n-1 disks from source to aux

Step 2 − Move nth disk from source to dest

Step 3 − Move n-1 disks from aux to dest

A recursive Step based algorithm for Tower of Hanoi can be driven as follows −

Step 1: BEGIN Hanoi(disk, source, dest, aux)

Step 2: IF disk == 1 THEN go to step 3 ELSE go to step 4

Step 3: move disk from source to dest AND go to step 8

Step 4: CALL Hanoi(disk - 1, source, aux, dest)

Step 5: move disk from source to dest

Step 6: CALL Hanoi(disk - 1, aux, dest, source)

Step 7: END Hanoi

A recursive Pseudocode for Tower of Hanoi can be driven as follows –

Procedure Hanoi(disk, source, dest, aux)

IF disk == 1 THEN

move disk from source to dest

 ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1

move disk from source to dest // Step 2

Hanoi(disk - 1, aux, dest, source) // Step 3

END IF

END Procedure

Figure 1.10 Flow Chart for Tower of Hanoi Algorithm

Tower of Hanoi puzzle with n disks can be solved in minimum 2
n
−1 steps.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

1.7 MORE ILLUSTRATIVE PROBLEMS

1.7.1 Temperature Conversion

 The commonly used scales for representing temperature are the Celsius scale,

denoted in °C and the Fahrenheit scale (°F). Conversion from one scale to another can be

done using the following equation.

 F= (C*1.8)+32

 C=(F-32)*1/1.8

 Let us look at the algorithm, Pseudocode, and flow chart for the Temperature

conversion problem.

Algorithm in step form

Step 1: Start

Step 2: READ the value in Celsius scale as C

Step 3: Use the formula F= (C*1.8)+32 to convert Celsius scale to Fahrenheit scale

Step 4: PRINT F

Step 5: READ the value in Fahrenheit scale as F

Step 6: Use the formula C=(F-32)*1/1.8 to convert Fahrenheit scale to Celsius scale

Step 7: PRINT C

Step 8: Stop

Pseudocode

READ Celsius value as C

COMPUTE F= (C*1.8)+32

PRINT F as Fahrenheit

READ Fahrenheit value as F

COMPUTE C=(F-32)*1/1.8

PRINT C as Celsius

Flow Chart

28

Figure 1.11 Flow Chart for Temperature Conversion

1.7.2 Swap Two Values without Temporary Variable

 Swapping is the process of exchanging values of two variables. It can be

performed in with temporary variable and without temporary variable method. Here we are

going to discuss about the algorithm, Pseudocode, and flow chart for swapping without using

temporary variable.

 Algorithm in step form

Step 1: Start

Step 2: READ the values of A, B

Step 3: A=A+B

Step 4: B= A-B

Step 5: A= A-B

Step 6: PRINT A, B

Step 8: Stop

Pseudocode

READ two values say A, B

COMPUTE A=A+B

COMPUTE B= A-B

COMPUTE A= A-B

PRINT Swapped values of A, B

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

Figure 1.12 Flow Chart for Swapping Two Values without Temporary Variable

1.7.3 Calculate Area and Circumference of a Circle

 Area and Circumference of a Circle can be calculated using following formula

 Area= 3.14*r* r

 Circumference = 2* 3.14 *r

 Where r is the radius of a circle.

 Following are the algorithm, Pseudocode, and flow chart for the calculation of

area and circumference of a circle.

Algorithm in step form

Step1: Start

Step2: READ radius of the circle as r

Step3: CALCULATE area== 3.14*r* r

Step4: CALCULATE circumference = 2* 3.14 *r

Step5: PRINT area

Step6: PRINT circumference

Step 7: Stop

Pseudocode

READ radius of the circle as r

CALCULATE area== 3.14*r* r

CALCULATE circumference = 2* 3.14 *r

PRINT area

PRINT circumference

30

Figure 1.13 Flow Chart for Calculating Area and Circumference of Circle

1.7.4 Eligible for Vote or Not

 If a person‟s age is 18 or greater than 18 then he is eligible to vote, otherwise he is not

eligible to vote. Following are the algorithm, Pseudocode, and flow chart for check whether a

person is eligible to vote or not.
Algorithm in step form

Step1: Start

Step2: READ age of a person as age

Step3: IF age>=18 then go to step 4 otherwise go to step 5

Step4: PRINT “Eligible to Vote” then go to Step 6

Step5: PRINT “Not Eligible to Vote” then go to Step 6

Step6: Stop

Pseudocode

READ age of a person as age

IF age>=18 THEN

 PRINT “Eligible to Vote”

ELSE

 PRINT “Not Eligible to Vote”

END IF

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

31

Figure 1.14 Flow Chart to Check Whether a Person is Eligible to Vote or Not.

1.7.5 Biggest Among Three Numbers

 Following algorithm, Pseudocode, and flow chart are designed to print the

biggest number among the given 3 numbers.

Algorithm in step form

Step 1: Start.

Step 2: Read the three numbers A, B, C.

Step 3: Compare A and B. If A is greater perform step 4 else perform step 5.

Step 4: Compare A and C. If A is greater, output “A is greater” else output “C is greater”.

 Then go to step 6

Step 5: Compare B and C. If B is greater, output “B is greatest” else output “C is greatest”.

 Then go to step 6

Step 6: Stop.

Pseudocode

READ three numbers as A, B, C

IF A>B THEN

 IF A>C THEN

 PRINT “A is Big”

 ELSE

 PRINT “C is Big”

ELSE

 IF B>C THEN

 PRINT “B is Big”

32

 ELSE

 PRINT “C is Big”

END IF

Figure 1.15 Flow Chart to Print Biggest Among Three Numbers

1.7.6 Armstrong Number

 Armstrong numbers are numbers, if the sum of the cubes of its digits is equal

to the number itself. For example, 153 is an Armstrong number since 1^3+5^3+3^3=153

 Following algorithm, Pseudocode, and flow chart are used to check whether

the given number is Armstrong number or not.

Algorithm in step form

Step 1: Start.

Step 2: READ a number as N

Step 3: sum=0

Step 4: temp=N

Step 5: IF temp> 0 go to step 5.1 ELSE go to step 6

 Step 5.1: digit=temp%10

 Step 5.2: sum =sum+digit*digit*digit

 Step 5.3: temp=temp/10

 Step 5.4: go to step 5

Step 6: IF N==sum THEN PRINT “Given Number is Armstrong Number” ELSE PRINT

 “Given Number is Not Armstrong Number”

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

33

Step 7: Stop

Pseudocode

READ a number as N

SET sum=0

ASSIGN temp=N

WHILE temp>0 THEN

 digit=temp%10

 sum =sum+digit*digit*digit

 temp=temp/10

END WHILE

IF N==sum

 PRINT “Given Number is Armstrong Number”

ELSE

 “Given Number is Not Armstrong Number”

34

Figure 1.16 Flow Chart to Check Whether the Given Number is Armstrong Number or Not

1.7.7 Number Palindrome

 Palindrome Number is a number that remains the same when its digits are

reversed. For example 12521 is a Palindrome Number.

 Following algorithm, Pseudocode, and flow chart are used to check whether

the given number is Palindrome Number or not.

Algorithm in step form

Step 1: Start.

Step 2: READ a number as N

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

35

Step 3: reverse=0

Step 4: temp=N

Step 5: IF temp> 0 go to step 5.1 ELSE go to step 6

 Step 5.1: digit=temp%10

 Step 5.2: reverse = reverse*10+digit

 Step 5.3: temp=temp/10

 Step 5.4: go to step 5

Step 6: IF N== reverse THEN PRINT “Given Number is Palindrome Number” ELSE PRINT

 “Given Number is Not Palindrome Number”

Step 7: Stop

Pseudocode

READ a number as N

SET reverse =0

ASSIGN temp=N

WHILE temp>0 THEN

 digit=temp%10

 reverse = reverse*10+digit

 temp=temp/10

END WHILE

IF N== reverse

 PRINT “Given Number is Palindrome Number”

ELSE

 “Given Number is Not Palindrome Number”

36

Figure 1.17 Flow Chart to Check Whether the Given Number is Palindrome Number or Not

1.7.8 Calculate the Total and Average of Marks

 Algorithm, Pseudocode, and flow chart for calculate Total and average of

given number of subjects mark.

Algorithm in step form

Step 1: Start

Step 2: READ Number of subjects as N

Step 3: SET i=0

Step 4: IF i<N THEN go to step 5 ELSE go to step 8

Step 5: READ single subject mark as List[i]

Step 6: i=i+1

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

37

Step 7: go to step 4

Step 8: SET i=0, total=0

Step 9: IF i<N THEN go to step 10 ELSE go to step 12

Step 10: total=total+List[i]

Step 11: i=i+1, go to 9

Step 12: average=total/N

Step 13: PRINT total as Total Marks

Step 14: PRINT average as Average Marks

Pseudocode

READ Number of subjects as N

SET i=0

WHILE i<N

READ single subject mark as List[i]

i=i+1

ENDWHILE

SET i=0, total=0

WHILE i<N

total=total+List[i]

i=i+1

ENDWHILE

COMPUTE average=total/N

PRINT total as Total Marks

PRINT average as Average Marks

38

Figure 1.18 Flow Chart to Calculate the Total and Average of Marks

1.7.9 Check Whether a Number is Prime or Not

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

39

 If a number is divisible only by itself and 1 then it is called prime Number.

Following are the Algorithm, Pseudocode, and flow chart to Check Whether a Number is

Prime or not.

Algorithm in step form

Step 1: Start

Step 2: READ a Number to check as N

Step 3: SET i=2, flag=0

Step 4: IF i<=N/2 THEN go to step 4.1 ELSE go to step 5

 Step 4.1: IF N%i==0 THEN SET flag=1 and go to step 5 ELSE go to step 4.2

 Step 4.2: i=i+1, go to step 4

Step 5: IF flag==1 THEN PRINT “Given Number is Not Prime” ELSE PRINT “Given

Number is Prime”

Step 6: Stop

Pseudocode

READ a Number to check as N

SET i=2, flag=0

WHILE i<=N/2

IF N%i==0 THEN

 flag=1

 break;

ELSE

 i=i+1

END WHILE

IF flag==1 THEN

 PRINT “Given Number is Not Prime”

ELSE

 PRINT “Given Number is Prime”

40

Figure 1.19 Flow Chart to Check Whether a Number is Prime or Not

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 - PROBLEM SOLVING AND PYTHON

PROGRAMMING

REGULATIONS – 2017

UNIT – II

Prepared By :

Mr. Vinu S, ME,

Assistant Professor,

St.Joseph’s College of Engineering,

 Chennai -600119.

2

UNIT II

DATA, EXPRESSIONS, STATEMENTS

2.1 THE PYTHON INTERPRETER

 The Python programming language was conceived in the late 1980s, and its

implementation was started in December 1989 by Guido van Rossum at CWI in the

Netherlands as a successor to the ABC programming language. When he began implementing

Python, Guido van Rossum was also reading the published scripts from “Monty Python’s

Flying Circus‖, a BBC comedy series from the 1970s. Van Rossum thought he needed a

name that was short, unique, and slightly mysterious, so he decided to call the language

Python.

 Python is a cross-platform programming language, meaning, it runs on

multiple platforms like Windows, Mac OS X, Linux, Unix and has even been ported to the

Java and .NET virtual machines. It is free and open source.

2.1.1 Starting the Interpreter

 The Python interpreter is a program that reads and executes Python code.

Even though most of today’s Linux and Mac have Python preinstalled in it, the version might

be out-of-date. So, it is always a good idea to install the most current version.

 After installation, the python interpreter lives in the installed directory.

 By default it is /usr/local/bin/pythonX.X in Linux/Unix and C:\PythonXX in

Windows, where the 'X' denotes the version number. To invoke it from the shell or the

command prompt we need to add this location in the search path.

 Search path is a list of directories (locations) where the operating system

searches for executables. For example, in Windows command prompt, we can type set

path=%path%;c:\python27 (python27 means version 2.7, it might be different in your case) to

add the location to path for that particular session. In Mac OS we need not worry about this

as the installer takes care about the search path.

 Now there are two ways to start Python.

Figure 2.1 Modes of Python Interpreter

Python Mode

Interactive Mode Script Mode

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

2.1.2 Interactive Mode

Typing python in the command line will invoke the interpreter in interactive mode.

When it starts, you should see output like this:

PYTHON 2.7.13 (V2.7.13:A06454B1AFA1, DEC 17 2016, 20:42:59) [MSC V.1500 32 BIT
(INTEL)] ON WIN32
TYPE "COPYRIGHT", "CREDITS" OR "LICENSE()" FOR MORE INFORMATION.
>>>

The first three lines contain information about the interpreter and the operating system

it’s running on, so it might be different for you. But you should check that the version

number, which is 2.7.13 in this example, begins with 2, which indicates that you are running

Python 2. If it begins with 3, you are running Python 3.

The last line is a prompt that indicates that the interpreter is ready for you to enter code.

If you type a line of code and hit Enter, the interpreter displays the result:

>>> 5 + 4
9

This prompt can be used as a calculator. To exit this mode type exit() or quit() and press

enter.

2.1.3 Script Mode

This mode is used to execute Python program written in a file. Such a file is called

a script. Scripts can be saved to disk for future use. Python scripts have the extension .py,

meaning that the filename ends with .py.

For example: helloWorld.py

To execute this file in script mode we simply write python helloWorld.py at the

command prompt.

2.1.4 Integrated Development Environment (IDE)

We can use any text editing software to write a Python script file.

We just need to save it with the .py extension. But using an IDE can make our life a lot

easier. IDE is a piece of software that provides useful features like code hinting, syntax

highlighting and checking, file explorers etc. to the programmer for application development.

Using an IDE can get rid of redundant tasks and significantly decrease the time required for

application development.

IDEL is a graphical user interface (GUI) that can be installed along with the Python

programming language and is available from the official website.

We can also use other commercial or free IDE according to our preference. PyScripter IDE is

one of the Open source IDE.

4

2.1.5 Hello World Example

Now that we have Python up and running, we can continue on to write our first Python

program.

Type the following code in any text editor or an IDE and save it as helloWorld.py

print("Hello world!")

Now at the command window, go to the loaction of this file. You can use the cd command to

change directory.

To run the script, type, python helloWorld.py in the command window. We should be able to

see the output as follows:

Hello world!

If you are using PyScripter, there is a green arrow button on top. Press that button or

press Ctrl+F9 on your keyboard to run the program.

In this program we have used the built-in function print(), to print out a string to the

screen. String is the value inside the quotation marks, i.e. Hello world!.

2.2 VALUES AND TYPES

A value is one of the basic things a program works with, like a letter or a number.

Some example values are 5, 83.0, and 'Hello, World!'. These values belong to different types:

5 is an integer, 83.0 is a floating-point number, and 'Hello, World!' is a string, so-called

because the letters it contains are strung together. If you are not sure what type a value has,

the interpreter can tell you:

>>>type(5)

<class 'int'>

>>>type(83.0)

<class 'float'>

>>>type('Hello, World!')

<class 'str'>

In these results, the word ―class‖ is used in the sense of a category; a type is a

category of values. Not surprisingly, integers belong to the type int, strings belong to str and

floating-point numbers belong to float. What about values like '5' and '83.0'? They look like

numbers, but they are in quotation marks like strings.

>>>type('5')

<class 'str'>

>>>type('83.0')

<class 'str'>

They’re strings. When you type a large integer, you might be tempted to use commas

between groups of digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

>>> 1,000,000

(1, 0, 0)

That’s not what we expected at all! Python interprets 1,000,000 as a comma-separated

sequence of integers. We’ll learn more about this kind of sequence later.

2.2.1 Standard Data Types

Python has various standard data types that are used to define the operations possible

on them and the storage method for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

2.2.1.1 Python Numbers

Number data types store numeric values. Number objects are created when you assign

a value to them. For example –

var1 =1

var2 =10

You can also delete the reference to a number object by using the del statement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For

example −

del var

del var_a,var_b

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers –

Table 2.1: Different number format example

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

6

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase l with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long

integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted

by x + yj, where x and y are the real numbers and j is the imaginary unit.

2.2.1.2 Python Strings

 Strings in Python are identified as a contiguous set of characters represented

in the quotation marks. Python allows for either pairs of single or double quotes. Subsets of

strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the

beginning of the string and working their way from -1 at the end.

 The plus (+) sign is the string concatenation operator and the asterisk (*) is

the repetition operator. For example –

str = 'Python Programming'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[-1] # Prints last character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + " Course" # Prints concatenated string

This will produce the following result –

Python Programming

P

g

tho

thon Programming

Python ProgrammingPython Programming

Python Programming Course

2.2.1.3 Python Lists

 Lists are the most versatile of Python's compound data types. A list contains

items separated by commas and enclosed within square brackets ([]). To some extent, lists

are similar to arrays in C. One difference between them is that all the items belonging to a

list can be of different data type.

 The values stored in a list can be accessed using the slice operator ([] and [:])

with indexes starting at 0 in the beginning of the list and working their way to end -1. The

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

plus (+) sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

For example −

list = ['Hai', 123 , 1.75, 'vinu', 100.25]

smalllist = [251, 'vinu']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[-1] # Prints last element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print smalllist * 2 # Prints list two times

print list + smalllist # Prints concatenated lists

This produces the following result –

['Hai', 123, 1.75, 'vinu', 100.25]

Hai

100.25

[123, 1.75]

[1.75, 'vinu', 100.25]

[251, 'vinu', 251, 'vinu']

['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

2.2.1.4 Python Boolean

 A Boolean type was added to Python 2.3. Two new constants were added to

the __builtin__ module, True and False. True and False are simply set to integer values of 1

and 0 and aren't a different type.

The type object for this new type is named bool; the constructor for it takes any Python value

and converts it to True or False.

>>>bool(1)

True

>>>bool(0)

False

 Python's Booleans were added with the primary goal of making code clearer.

For example, if you're reading a function and encounter the statement return 1, you might

wonder whether the 1 represents a Boolean truth value, an index, or a coefficient that

multiplies some other quantity. If the statement is return True, however, the meaning of the

return value is quite clear.

 Python's Booleans were not added for the sake of strict type-checking. A very

strict language such as Pascal would also prevent you performing arithmetic with Booleans,

and would require that the expression in an if statement always evaluate to a Boolean result.

Python is not this strict and never will be. This means you can still use any expression in

an if statement, even ones that evaluate to a list or tuple or some random object. The Boolean

type is a subclass of the int class so that arithmetic using a Boolean still works.

>>> True + 1

8

2

>>> False + 1

1

>>> False * 85

0

>>> True * 85

85

>>>True+True

2

>>>False+False

0

We will discuss about data types like Tuple, Dictionary in Unit IV.

2.2.2 Data Type Conversion

 Sometimes, you may need to perform conversions between the built-in types.

To convert between types, you simply use the type name as a function.

 There are several built-in functions to perform conversion from one data type

to another. These functions return a new object representing the converted value.

Table 2.2: Data Type Conversion

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) Converts x to a long integer. base specifies the base if x is a

string.

float(x) Converts x to a floating-point number.

complex(real

[,imag])

Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

list(s) Converts s to a list.

chr(x) Converts an integer to a character.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

2.3 VARIABLES

 A variable is a name that refers to a value. Variable reserved memory

locations to store values. This means that when you create a variable you reserve some space

in memory. Based on the data type of a variable, the interpreter allocates memory and

decides what can be stored in the reserved memory.

2.3.1 Assignment Statements

 An assignment statement creates a new variable and gives it a value:

>>>message = 'Introducing Python Variable'

>>>num = 15

>>>radius = 5.4

 This example makes three assignments. The first assigns a string to a new

variable named message; the second gives the integer 15 to num; the third assigns floating

point value 5.4 to variable radius.

2.3.2 Variable Names

 Programmers generally choose names for their variables that are meaningful

The Rules

 Variables names must start with a letter or an underscore, such as:

o _mark

o mark_

 The remainder of your variable name may consist of letters, numbers and underscores.

o subject1

o my2ndsubject

o un_der_scores

 Names are case sensitive.

o case_sensitive, CASE_SENSITIVE, and Case_Sensitive are each a different

variable.

 Can be any (reasonable) length

10

 There are some reserved (KeyWords)words which you cannot use as a variable name

because Python uses them for other things.

 The interpreter uses keywords to recognize the structure of the program, and

they cannot be used as variable names.

Python 3 has these keywords:

False class finally is return None

continue for lambda try True def

from nonlocal while and del global

not with as elif if or

yield assert else import pass break

except in raise

 You don’t have to memorize this list. In most development environments,

keywords are displayed in a different color; if you try to use one as a variable name, you’ll

know.

 If you give a variable an illegal name, you get a syntax error:

>>>1book = 'python'

SyntaxError: invalid syntax

>>>more@ = 1000000

SyntaxError: invalid syntax

>>>class = 'Fundamentals of programming'

SyntaxError: invalid syntax

 1book is illegal because it begins with a number. more@ is illegal because it

contains an illegal character, @. class is illegal because it is a keyword.

Good Variable Name

 Choose meaningful name instead of short name. roll_no is better than rn.

 Maintain the length of a variable name. Roll_no_of_a_student is too long?

 Be consistent; roll_no or orRollNo

 Begin a variable name with an underscore(_) character for a special case.

2.4 EXPRESSIONS AND STATEMENTS

 An expression is a combination of values, variables, and operators. A value

all by itself is considered an expression, and so is a variable, so the following are all legal

expressions:

>>> 50

50

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

>>> 10<5

False

>>> 50+20

70

 When you type an expression at the prompt, the interpreter evaluates it, which

means that it finds the value of the expression.

 A statement is a unit of code that has an effect, like creating a variable or

displaying a value.

>>> n = 25

>>>print(n)

 The first line is an assignment statement that gives a value to n. The second

line is a print statement that displays the value of n. When you type a statement, the

interpreter executes it, which means that it does whatever the statement says. In general,

statements don’t have values.

2.4.1 Difference Between a Statement and an Expression

 A statement is a complete line of code that performs some action, while an

expression is any section of the code that evaluates to a value. Expressions can be combined

―horizontally‖ into larger expressions using operators, while statements can only be

combined ―vertically‖ by writing one after another, or with block constructs. Every

expression can be used as a statement, but most statements cannot be used as expressions.

2.5 OPERATORS

 In this section, you'll learn everything about different types of operators in

Python, their syntax and how to use them with examples.

 Operators are special symbols in Python that carry out computation. The value

that the operator operates on is called the operand.

For example:

>>>10+5

15

Here, + is the operator that performs addition. 10 and 5 are the operands and 15 is the output

of the operation. Python has a number of operators which are classified below.

 Arithmetic operators

 Comparison (Relational) operators

 Logical (Boolean) operators

 Bitwise operators

12

 Assignment operators

 Special operators

2.5.1 Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,

multiplication etc.

Table 2.3: Arithmetic operators in Python

Operator Meaning Example

+ Add two operands or unary plus x + y

+2

- Subtract right operand from the left or unary minus x - y

-2

* Multiply two operands x * y

/ Divide left operand by the right one (always results into

float)

x / y

% Modulus - remainder of the division of left operand by the

right

x % y (remainder

of x/y)

// Floor division - division that results into whole number

adjusted to the left in the number line

x // y

** Exponent - left operand raised to the power of right x**y (x to the

power y)

Example

x = 7

y = 3

print('x + y =',x+y)

print('x - y =',x-y)

print('x * y =',x*y)

print('x / y =',x/y)

print('x // y =',x//y)

print('x % y =',x%y)

print('x ** y =',x**y)

When you run the program, the output will be:

x + y = 10

x - y = 4

x * y = 21

x / y = 2.3333333333333335

x // y = 2

x % y = 1

x ** y = 343

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

2.5.2 Comparison or Relational Operators

 Comparison operators are used to compare values. It either

returns True or False according to the condition.

Table 2.4: Comparison Operators in Python

Operator Meaning Example

> Greater that - True if left operand is greater than the right x > y

< Less that - True if left operand is less than the right x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>= Greater than or equal to - True if left operand is greater than or equal

to the right

x >= y

<= Less than or equal to - True if left operand is less than or equal to the

right

x <= y

Example

x = 5

y = 7

print('x > y is',x>y)

print('x < y is',x<y)

print('x == y is',x==y)

print('x != y is',x!=y)

print('x >= y is',x>=y)

print('x <= y is',x<=y)

When you run the program, the output will be:

x >y is False

x <y is True

x == y is False

x != y is True

x >= y is False

x <= y is True

2.5.3 Logical Operators

Logical operators are the and, or, not operators.

Table 2.5: Logical operators in Python

Operator Meaning Example

and True if both the operands are true x and y

or True if either of the operands is true x or y

not True if operand is false (complements the operand) not x

14

Example

x = True

y = False

print('x and y is',x and y)

print('x or y is',x or y)

print('not x is',not x)

When you run the program, the output will be:

x and y is False

x or y is True

not x is False

2.5.4 Bitwise Operators

 Bitwise operators act on operands as if they were string of binary digits. It

operates bit by bit, hence the name.

For example, 2 is 10 in binary and 7 is 111.

In Table 2.6: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Table 2.6: Bitwise operators in Python

Operator Meaning Example

& Bitwise AND x& y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x>> 2 = 2 (0000 0010)

<< Bitwise left shift x<< 2 = 40 (0010 1000)

Example

x=10

y=4

print('x& y=',x& y)

print('x | y=',x | y)

print('~x=',~x)

print('x ^ y=',x ^ y)

print('x>> 2=',x>> 2)

print('x<< 2=',x<< 2)

When you run the program, the output will be:

x& y= 0

x | y= 14

~x= -11

x ^ y= 14

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

x>> 2= 2

x<< 2= 40

2.5.5 Assignment Operators

Assignment operators are used in Python to assign values to variables.

 a = 10 is a simple assignment operator that assigns the value 10 on the right to

the variable a on the left.

 There are various compound operators in Python like a += 10 that adds to the

variable and later assigns the same. It is equivalent to a = a + 10.

Table 2.7: Assignment operators in Python

Operator Example Equivatent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

2.5.6 Special Operators

 Python language offers some special type of operators like the identity

operator or the membership operator. They are described below with examples.

2.5.6.1 Identity Operators

is and is not are the identity operators in Python. They are used to check if two values (or

variables) are located on the same part of the memory. Two variables that are equal does not

imply that they are identical.

Table 2.8: Identity operators in Python

Operator Meaning Example

is True if the operands are identical (refer to the same object) x is True

is not True if the operands are not identical (do not refer to the same

object)

x is not

True

16

Example

x1 = 7

y1 = 7

x2 = 'Welcome'

y2 = 'Welcome'

x3 = [1,2,3]

y3 = [1,2,3]

print(x1 is not y1)

print(x2 is y2)

print(x3 is y3)

When you run the program, the output will be:

False

True

False

 Here, we see that x1 and y1 are integers of same values, so they are equal as

well as identical. Same is the case with x2 and y2 (strings). But x3 and y3 are list. They are

equal but not identical. Since list are mutable (can be changed), interpreter locates them

separately in memory although they are equal.

2.5.6.2 Membership Operators

in and not in are the membership operators in Python. They are used to test whether a value

or variable is found in a sequence (string, list, tuple, set and dictionary).

Table 2.9: Membership operators in Python

Operator Meaning Example

in True if value/variable is found in the sequence 5 in x

not in True if value/variable is not found in the sequence 5 not in x

Example

x = 'Python Programming'

print('Program' not in x)

print('Program' in x)

print('program' in x)

When you run the program, the output will be:

False

True

False

 Here, ' Program ' is in x but ' program' is not present in x, since Python is case

sensitive.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

2.6 PRECEDENCE OF PYTHON OPERATORS

 The combination of values, variables, operators and function calls is termed as

an expression. Python interpreter can evaluate a valid expression. When an expression

contains more than one operator, the order of evaluation dependson the Precedence of

operations.

 For example, multiplication has higher precedence than subtraction.

>>> 20 – 5*3

5

 But we can change this order using parentheses () as it has higher precedence.

>>> (20 - 5) *3

45

 The operator precedence in Python are listed in the following table. It is in

descending order, upper group has higher precedence than the lower ones.

Table 2.10: Operator precedence rule in Python

Operators Meaning

() Parentheses

** Exponent

+x, -x, ~x Unary plus, Unary minus, Bitwise NOT

*, /, //, % Multiplication, Division, Floor division, Modulus

+, - Addition, Subtraction

<<, >> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==, !=, >, >=, <, <=, is, is not, in, not in Comparisions, Identity, Membership operators

not Logical NOT

and Logical AND

or Logical OR

2.7 ASSOCIATIVITY OF PYTHON OPERATORS

 We can see in the above table that more than one operator exists in the same

group. These operators have the same precedence.

 When two operators have the same precedence, associativity helps to

determine which the order of operations.

 Associativity is the order in which an expression is evaluated that has multiple

operator of the same precedence. Almost all the operators have left-to-right associativity.

18

 For example, multiplication and floor division have the same precedence.

Hence, if both of them are present in an expression, left one is evaluates first.

>>> 10 * 7 // 3

23

>>> 10 * (7//3)

20

>>> (10 * 7)//3

23

We can see that 10 * 7 // 3is equivalent to (10 * 7)//3.

Exponent operator ** has right-to-left associativity in Python.

>>> 5 ** 2 ** 3

390625

>>> (5** 2) **3

15625

>>> 5 **(2 **3)

390625

We can see that 2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).

2.7.1 Non Associative Operators

 Some operators like assignment operators and comparison operators do not

have associativity in Python. There are separate rules for sequences of this kind of operator

and cannot be expressed as associativity.

For example, x < y < z neither means (x < y) < z nor x < (y < z). x < y < z is equivalent to x

< y and y < z, and is evaluates from left-to-right.

Furthermore, while chaining of assignments like x = y = z is perfectly valid, x = y += z will

result into error.

2.8 TUPLE ASSIGNMENT

 It is often useful to swap the values of two variables. With conventional

assignments, you have to use a temporary variable. For example, to swap a and b:

>>>temp = a

>>> a = b

>>> b = temp

 This solution is cumbersome; tuple assignment is more elegant:

>>>a, b = b, a

 The left side is a tuple of variables; the right side is a tuple of expressions.

Each value is assigned to its respective variable. All the expressions on the right side are

evaluated before any of the assignments. The number of variables on the left and the number

of values on the right have to be the

same:

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

>>>a, b = 1, 2, 3

ValueError: too many values to unpack

 More generally, the right side can be any kind of sequence (string, list or

tuple). For example, to split an email address into a user name and a domain, you could write:

>>>addr = 'monty@python.org'

>>>uname, domain = addr.split('@')

 The return value from split is a list with two elements; the first element is

assigned to uname, the second to domain.

>>>uname

'monty'

>>>domain

'python.org'

2.9 COMMENTS

 As programs get bigger and more complicated, they get more difficult to read.

Formal languages are dense, and it is often difficult to look at a piece of code and figure out

what it is doing, or why. For this reason, it is a good idea to add notes to your programs to

explain in natural language what the program is doing. These notes are called comments, and

they start with the # symbol:

compute Area of a triangle using Base and Height

area= (base*height)/2

 In this case, the comment appears on a line by itself. You can also put

comments at the end of a line:

area= (base*height)/2 # Area of a triangle using Base and Height

 Everything from the # to the end of the line is ignored—it has no effect on the

execution of the program. Comments are most useful when they document non-obvious

features of the code. It is reasonable to assume that the reader can figure out what the code

does; it is more useful to explain why.

 This comment is redundant with the code and useless:

base= 5 # assign 5 to base

 This comment contains useful information that is not in the code:

base = 5 # base is in centimetre.

 Good variable names can reduce the need for comments, but long names can

make complex expressions hard to read, so there is a trade off.

 If we have comments that extend multiple lines, one way of doing it is to use

hash (#) in the beginning of each line. For example:

#This is a long comment

#and it extends

#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

These triple quotes are generally used for multi-line strings. But they can be used as multi-

line comment as well. Unless they are not docstrings, they do not generate any extra code.

20

"""This is also a

perfect example of

multi-line comments"""

2.9.1 Docstring in Python

 Docstring is short for documentation string. It is a string that occurs as the

first statement in a module, function, class, or method definition. We must write what a

function/class does in the docstring. Triple quotes are used while writing docstrings. For

example:

def area(r):

 """Compute the area of Circle"""

return 3.14159*r**2

 Docstring is available to us as the attribute __doc__ of the function. Issue the

following code in shell once you run the above program.

>>>print(area.__doc__)

Compute the area of Circle

2.10. MODULES AND FUNCTIONS

2.10.1 Functions
 In the context of programming, a function is a named sequence of statements

that performs a computation. When you define a function, you specify the name and the

sequence of statements. Later, you can ―call‖ the function by name. Functions help break our

program into smaller and modular chunks. As our program grows larger and larger, functions

make it more organized and manageable. Furthermore, it avoids repetition and makes code

reusable.

Figure 2.2 Types of Functions

Functions can be classified into

 Built-in Functions

 User Defined Functions

2.10.1.1 Built-in Functions
 The Python interpreter has a number of functions that are always available for

use. These functions are called built-in functions. We have already seen one example of a

function call:type()

>>>type(25)

<class 'int'>

Functions

User Define Function Built-in Functions

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

 The name of the function is type. The expression in parentheses is called the

argument of the function. The result, for this function, is the type of the argument. It is

common to say that a function ―takes‖ an argument and ―returns‖ a result. The resultis also

called the return value.

 Python provides functions that convert values from one type to another. The

int function takes any value and converts it to an integer, if it can, or complains otherwise:

>>>int('25')

25

>>>int('Python')

ValueError: invalid literal for int(): Python

 int can convert floating-point values to integers, but it doesn’t round off; it

chops off the fraction part:

>>>int(9.999999)

9

>>>int(-2.3)

-2

 float converts integers and strings to floating-point numbers:

>>>float(25)

25.0

>>>float('3.14159')

3.14159

 Finally, str converts its argument to a string:

>>>str(25)

'25'

>>>str(3.14159)

'3.14159'

2.10.1.1.1. range() – function

 The range() constructor returns an immutable sequence object of integers

between the given start integer to the stop integer.

Python's range() Parameters

 The range() function has two sets of parameters, as follows:

range(stop)

 stop: Number of integers (whole numbers) to generate, starting from zero.

eg. range(3) == [0, 1, 2].

range([start], stop[, step])

 start: Starting number of the sequence.

 stop: Generate numbers up to, but not including this number.

 step: Difference between each number in the sequence.

Note that:

22

 All parameters must be integers.

 All parameters can be positive or negative.

>>>range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>range(5,10)

[5, 6, 7, 8, 9]

>>>range(10,1,-2)

[10, 8, 6, 4, 2]

2.10.1.1.2. Printing to the Screen

 In python 3, print function will prints as strings everything in a comma-

separated sequence of expressions, and it will separate the results with single blanks by

default. Note that you can mix types: anything that is not already a string is automatically

converted to its string representation.

Eg.

>>> x=10

>>> y=7

>>>print('The sum of', x, 'plus', y, 'is', x+y)

The sum of 10 plus 7 is 17

You can also use it with no parameters:

print()

to just advance to the next line.

 In python 2, simplest way to produce output is using the print statement

where you can pass zero or more expressions separated by commas. This function converts

the expressions you pass into a string and writes the result to standard output as follows

>>> x=10

>>> y=7

>>>print'The sum of', x, 'plus', y, 'is', x+y

The sum of 10 plus 7 is 17

2.10.1.1.3. Reading Keyboard Input

 Python provides two built-in functions to read a line of text from standard

input, which by default comes from the keyboard. These functions are −

 raw_input

 input

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

The raw_input Function

 The raw_input([prompt]) function reads one line from standard input and

returns it as a string.

>>>str = raw_input("Enter your input: ");

Enter your input: range(0,10)

>>> print "Received input is : ", str

Received input is : range(0,10)

 This prompts you to enter any string and it would display same string on the

screen.

The input Function

 The input([prompt]) function is equivalent to raw_input, except that it

assumes the input is a valid Python expression and returns the evaluated result to you.

>>>str = input("Enter your input: ");

Enter your input: range(0,10)

>>> print "Received input is : ", str

Received input is : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Input data is evaluated and the list is generated

2.10.1.2 User-defined functions
 As you already know, Python gives you many built-in functions like print(),

input(), type() etc. but you can also create your own functions. These functions are

called user-defined functions.

2.10.1.2.1 Function Definition and Use

Syntax of Function definition

def function_name(parameters):

 """docstring"""

 statement(s)

 Above shown is a function definition which consists of following components.

1. Keyword def marks the start of function header.

2. A function name to uniquely identify it. Function naming follows the same rules of

writing identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are

optional.
4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must

have same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

24

Example of a function

def welcome(person_name):

 """This function welcome

 the person passed in as

 parameter"""

 print(" Welcome " , person_name , " to Python Function Section")

Using Function or Function Call

 Once we have defined a function, we can call it from another function,

program or even the Python prompt. To call a function we simply type the function name

with appropriate parameters.

>>> welcome('Vinu')

Welcome Vinu to Python Function Section

The return statement

 The return statement is used to exit a function and go back to the place from

where it was called.

Syntax of return

return [expression_list]

 This statement can contain expression which gets evaluated and the value is

returned. If there is no expression in the statement or the return statement itself is not present

inside a function, then the function will return the None object.

def absolute_value(num):

 """This function returns the absolute

 value of the entered number"""

 if num >= 0:

 return num

 else:

 return -num

print(absolute_value(5))

print(absolute_value(-7))

When you run the program, the output will be:

5

7

2.10.2 Flow of Execution
To ensure that a function is defined before its first use, you have to know the order

statements run in, which is called the flow of execution. Execution always begins at the first

statement of the program. Statements are run one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

statements inside the function don’t run until the function is called. A function call is like a

detour in the flow of execution. Instead of going to the next statement, the flow jumps to the

body of the function, runs the statements there, and then comes back to pick up where it left

off. Figure 2.3 show the flow of execution

 Figure 2.3 Flow of execution when function Call

 That sounds simple enough, until you remember that one function can call

another. While in the middle of one function, the program might have to run the statements in

another function. Then, while running that new function, the program might have to run yet

another function! Fortunately, Python is good at keeping track of where it is, so each time a

function completes, the program picks up where it left off in the function that called it. When

it gets to the end of the program, it terminates.

 In summary, when you read a program, you don’t always want to read from

top to bottom. Sometimes it makes more sense if you follow the flow of execution.

2.10.3 Parameters and Arguments
 Some of the functions we have seen require arguments. For example, when

you call type() you pass a variable or value as an argument. Some functions take more than

one argument: eg, range() function take one or two or three arguments.

 Inside the function, the arguments are assigned to variables called

parameters. Here is a definition for a function that takes an argument:

def welcome(person_name):

print(" Welcome " , person_name , " to Python Function Section")

 This function assigns the argument to a parameter named person_name. When

the function is called, it prints the value of the parameter (whatever it is). This function works

with any value that can be printed.

>>> welcome("Vinu")

Welcome Vinu to Python Function Section

>>> welcome(100)

Welcome 100 to Python Function Section

>>> welcome(50.23)

Welcome 50.23 to Python Function Section

26

 The argument is evaluated before the function is called, so in the below

examples the expressions 'vinu'*3 is evaluated.

>>> welcome('vinu'*3)

Welcome vinuvinuvinu to Python Function Section

You can also use a variable as an argument:

>>> student_name='Ranjith'

>>> welcome(student_name)

Welcome Ranjith to Python Function Section

2.10.4 Function Arguments
 You can call a function by using the following types of formal arguments:

 Required arguments

 Default arguments

 Keyword arguments

 Variable-length arguments

Required Arguments
 Required arguments are the arguments passed to a function in correct

positional order. Here, the number of arguments in the function call should match exactly

with the function definition.

def add(a,b):

 return a+b

a=10

b=20

print "Sum of ", a ,"and ", b, "is" , add(a,b)

 To call the function add(), you definitely need to pass two argument,

otherwise it gives a syntax error as follows

 When the above code is executed, it produces the following result:

Sum of 10 and 20 is 30

 If we miss to give an argument it will show syntax error. Example

def add(a,b):

 return a+b

a=10

b=20

print "Sum of ", a ,"and ", b, "is" , add(a)

It will produce Error message as follows

Sum of 10 and 20 is

Traceback (most recent call last):

 File "G:/class/python/code/required_arguments.py", line 5, in <module>

 print "Sum of ", a ,"and ", b, "is" , add(a)

TypeError: add() takes exactly 2 arguments (1 given)

Default Arguments

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

 A default argument is an argument that assumes a default value if a value is

not provided in the function call for that argument. The following example gives an idea on

default arguments, it add default value of b if it is not passed while calling.

def add(a,b=0):

 print "Sum of ", a ,"and ", b, "is" ,a+b

a=10

b=20

add(a,b)

add(a)

 When the above code is executed, it produces the following result:

Sum of 10 and 20 is 30

Sum of 10 and 0 is 10

 When default argument is used in program, Non default arguments should

come before default arguments.

Keyword Arguments
 Keyword arguments are related to the function calls. When you use keyword

arguments in a function call, the caller identifies the arguments by the parameter name.
 This allows you to skip arguments or place them out of order because the

Python interpreter is able to use the keywords provided to match the values with

parameters. You can also make keyword calls to the add() function in the following ways −

def add(a,b):

 print "Sum of ", a ,"and ", b, "is" ,a+b

a=10

b=20

add(b=a,a=b)

 When the above code is executed, it produces the following result −

Sum of 20 and 10 is 30

Variable-Length Arguments
 You may need to process a function for more arguments than you specified

while defining the function. These arguments are called variable-length arguments and are

not named in the function definition, unlike required and default arguments.

 Syntax for a function with non-keyword variable arguments is this

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

 An asterisk (*) is placed before the variable name that holds the values of all

nonkeyword variable arguments. This tuple remains empty if no additional arguments are

specified during the function call. Following is a simple example

def printvalues(arg1, *vartuple):

 print "Output is: "

 print arg1

 for var in vartuple:

 print var

printvalues(20)

28

printvalues(50, 60, 55)

 When the above code is executed, it produces the following result:-

Output is:

20

Output is:

50

60

55

2.10. 5 The Anonymous Functions or Lambda Functions
 These functions are called anonymous because they are not declared in the

standard manner by using the def keyword. You can use the lambda keyword to create small

anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form

of an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function

stack allocation during invocation for performance reasons.

Syntax

 The syntax of lambda functions contains only a single statement, which is as follows

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works

sum = lambda a, b: a + b;

print "Sum is : ", sum(5, 10)

print "Sum is : ", sum(30, 50)

When the above code is executed, it produces the following result

Sum is: 15

Sum is: 80

2.10.6 Modules
 A module allows you to logically organize your Python code. Grouping

related code into a module makes the code easier to understand and use. A module is a file

that contains a collection of related functions. Python has lot of built-in modules; math

module is one of them. math module provides most of the familiar mathematical functions.

 Before we can use the functions in a module, we have to import it with an

import statement:

>>> import math

 This statement creates a module object named math. If you display the

module object, you get some information about it:

>>> math

<module 'math' (built-in)>

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

 The module object contains the functions and variables defined in the module.

To access one of the functions, you have to specify the name of the module and the name of

the function, separated by a dot (also known as a period). This format is called dot notation.

>>> math.log10(200)

2.3010299956639813

>>> math.sqrt(10)

3.1622776601683795

 Math module have functions like log(), sqrt(), etc… In order to know what are

the functions available in particular module, we can use dir() function after importing

particular module. Similarly if we want to know detail description about a particular module

or function or variable means we can use help() function.

Eg.

>>> import math

>>> dir(math)

['__doc__', '__name__', '__package__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',

'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor',

'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p',

'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(pow)

Help on built-in function pow in module __builtin__:

pow(...)

 pow(x, y[, z]) -> number

 With two arguments, equivalent to x**y. With three arguments,

 equivalent to (x**y) % z, but may be more efficient (e.g. for longs).

2.10.6.1 Writing modules
 Any file that contains Python code can be imported as a module. For example,

suppose you have a file named addModule.py with the following code:

def add(a, b):

 result = a + b

 print(result)

add(10,20)

 If you run this program, it will add 10 and 20 and print 30. We can import it

like this:

>>> import addModule

30

Now you have a module object addModule

>>> addModule

<module 'addModule' from 'G:/class/python/code\addModule.py'>

The module object provides add():

>>> addModule.add(120,150)

270

So that’s how you write modules in Python.

 The only problem with this example is that when you import the module it

runs the test code at the bottom. Normally when you import a module, it defines new

functions but it doesn’t run them.

30

 Programs that will be imported as modules often use the following idiom:

if __name__ == '__main__':

 add(10,20)

 __name__ is a built-in variable that is set when the program starts. If the

program is running as a script, __name__ has the value '__main__'; in that case, the test code

runs. Otherwise, if the module is being imported, the test code is skipped. Modify

addModule.py file as given below.

def add(a, b):

 result = a + b

 print(result)

if __name__ == '__main__':

 add(10,20)

 Now while importing addModule test case is not running

>>> import addModule

 __name__ has module name as its value when it is imported. Warning: If you

import a module that has already been imported, Python does nothing. It does not re-read the

file, even if it has changed. If you want to reload a module, you can use the built-in function

reload, but it can be tricky, so the safest thing to do is restart the interpreter and then import

the module again.

2.11 ILLUSTRATIVE PROGRAMS

2.11.1 Exchange the Value of two Variables
 In python exchange of values of two variables (swapping) can be done in

different ways

 Using Third Variable

 Without Using Third Variable

o Using Tuple Assignment method

o Using Arithmetic operators

o Using Bitwise operators

2.11.1.1 Using Third Variable

1 var1 = input("Enter value of variable1: ")

2 var2 = input("Enter value of variable2: ")

3 temp = var1

4 var1 = var2

5 var2 = temp

6 print("After swapping:")

7 print("First Variable =",var1,)

8 print("Second Variable=",var2,)

When you run the program, the output will be:

Enter value of variable1: 5

Enter value of variable2: 10

After swapping:

First Variable = 10

Second Variable= 5

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

31

In the above program line number 3,4,5, are used to swap the values of two variables. In this

program, we use the temp variable to temporarily hold the value of var1. We then put the

value of var2 in var1 and later temp in var2. In this way, the values get exchanged. In this

method we are using one more variable other than var1,var2. So we calling it as swapping

with the use of third variable.

2.11.1.2 Without Using Third Variable

 We can do the same swapping operation even without the use of third variable,

There are number of ways to do this, they are.

2.11.1.2.1 Using Tuple Assignment method

 In this method in the above program instead of line number 3,4,5 use a single

tuple assignment statement

var1 , var2 = var2 , var1

 The left side is a tuple of variables; the right side is a tuple of expressions.

Each value is assigned to its respective variable. All the expressions on the right side are

evaluated before any of the assignments.

2.11.1.2.2 Using Arithmetic operators

 If the variables are both numbers, Swapping can be performed using simple

mathematical addition subtraction relationship or multiplication division relationship.

Addition and Subtraction

In this method in the above program instead of line number 3,4,5 use the following

code

x = x + y

y = x - y

x = x - y

Multiplication and Division

 In this method in the above program instead of line number 3,4,5 use the following

code

x = x * y

y = x / y

x = x / y

2.11.1.2.3 Using Bitwise operators

 If the variables are integers then we can perform swapping with the help of bitwise

XOR operator. In order to do this in the above program instead of line number 3,4,5 use the

following code

x = x ^ y

y = x ^ y

x = x ^ y

32

2.11.2 Circulate the Value of N Variables

 Problem of circulating a Python list by an arbitrary number of items to the

right or left can be easily performed by List slicing operator.

1 2 3 4 5 6 7

Figure 2.4.a Example List

 Consider the above list Figure 2.4.a; circulation of the above list by n position

can be easily achieved by slicing the array into two and concatenating them. Slicing is done

as n
th

 element to end element + beginning element to n-1
th

element. Suppose n=2 means,

given list is rotated 2 positions towards left side as given in Figure 2.4.b

3 4 5 6 7 1 2

 Figure 2.4.b Left Circulated List

 Suppose n= - 2 means, given list is rotated 2 position towards right side as

given in Figure 2.4.c

6 7 1 2 3 4 5

 Figure 2.4.c Right Circulated List

 So the simple function to perform this circulation operation is

def circulate(list, n):

 return list[n:] + list[:n]

>>> circulate([1,2,3,4,5,6,7], 2)

[3, 4, 5, 6, 7, 1, 2]

>>> circulate([1,2,3,4,5,6,7], -2)

[6, 7, 1, 2, 3, 4, 5]

2.11.3 Test for Leap Year

 In order to check whether a year is leap year or not python provide a isleap()

function in calendar module. So if you want to check whether a year is leap year or not, first

import calendar module. Then use the isleap() function.

>>> import calendar

>>> calendar

<module 'calendar' from 'C:\Python27\lib\calendar.pyc'>

>>> calendar.isleap(2003)

False

>>> import calendar

>>> calendar.isleap(2000)

True

>>> calendar.isleap(2004)

True

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

33

>>> calendar.isleap(2003)

False

>>> calendar.isleap(1900)

False

>>> calendar.isleap(2020)

True

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 - PROBLEM SOLVING AND PYTHON

PROGRAMMING

REGULATIONS – 2017

UNIT – III

Prepared By :

Mr. Vinu S, ME,

Assistant Professor,

St.Joseph’s College of Engineering,

 Chennai -600119.

2

UNIT III

CONTROL FLOW, FUNCTIONS

3.1 CONDITIONALS

 Flow of execution of instruction can be controlled using conditional

statements. Conditional statements have some Boolean expression. Boolean expression can

have relational operators or logical operators or both.

3.1.1 Boolean Expressions

 A boolean expression is an expression it’s result is either true or false. The

following examples use the operator ==, which compares two operands and produces True if

they are equal and False otherwise:

>>> 9 == 9

True

>>> 9 == 6

False

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

 Boolean expression can have relational operators or logical operators. The ==

operator is one of the relational operators; the others are:

 x==y #x is equal to y

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

 More explanation can found in 2.5.2. Although these operations are probably

familiar to you, the Python symbols are different from the mathematical symbols. A common

error is to use a single equal sign (=) instead of a double equal sign (==). Remember that = is

an assignment operator and == is a relational operator. There is no such thing as =< or =>.

3.1.2 Logical operators

 There are three logical operators: and, or, and not. The semantics (meaning)

of these operators is similar to their meaning in English. This was explained in 2.5.3

For example:

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

x > 0 and x < 10 is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either or both of the conditions is true, that is, if the

number is divisible by 2 or 3.

not operator negates a boolean expression, so not (x > y) is true if x > y is false, that

is, if x is less than or equal to y.

Note:- Any nonzero number is interpreted as True

>>>95 and True

True

>>>mark=95

>>>mark>0 and mark<=100

True

>>> mark=102

>>> mark>0 and mark<=100

False

3.2 SELECTION

 In Unit I, you were introduced to the concept of flow of control: the sequence

of statements that the computer executes. In procedurally written code, the computer usually

executes instructions in the order that they appear. However, this is not always the case. One

of the ways in which programmers can change the flow of control is the use of selection

control statements.

 Now we will learn about selection statements, which allow a program to

choose when to execute certain instructions. For example, a program might choose how to

proceed on the basis of the user’s input. As you will be able to see, such statements make a

program more versatile.

In python selection can be achieved through

 if statement

 The elif Statement

 if...elif...else

 Nested if statements

3.2.1 Conditional Execution

 In order to write useful programs, we almost always need the ability to

check conditions and change the behaviour of the program accordingly. Selection or

Conditional statements give us this ability. The simplest form is the if statement:

General Syntax of if statement is

4

if TEST EXPRESSION:

 STATEMENT(S) # executed if condition evaluates to True

 Here, the program evaluates the TEST EXPRESSION and will execute

statement(s) only if the text expression is True. If the text expression is False, the

statement(s) is not executed.

A few important things to note about if statements:

1. The colon (:) is significant and required. It separates the header of the compound

statement from the body.

2. The line after the colon must be indented. It is standard in Python to use four spaces for

indenting.

3. All lines indented the same amount after the colon will be executed whenever the

BOOLEAN_EXPRESSION is true.

4. Python interprets non-zero values as True. None and 0 are interpreted as False.

Figure 3.1 if Statement Flowchart

Here is an example:

mark = 102

if mark >= 100:

print(mark, " is a Not a valid mark.")

print("This is always printed.")

Output will be:

102 is a Not a valid mark.

This is always printed.

 The boolean expression after the if statement (here mark>=100)is called

the condition. If it is true, then all the indented statements get executed.

 There is no limit on the number of statements that can appear in the body, but

there has to be at least one. Occasionally, it is useful to have a body with no statements (usually

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

as a place keeper for code you haven’t written yet). In that case, you can use the pass statement,

which does nothing.

if x < 0:

pass # TODO: need to handle negative values!

3.2.2 Alternative execution

 A second form of the if statement is “alternative execution”, in which there are

two possibilities and the condition determines which one runs. In other words , It is frequently

the case that you want one thing to happen when a condition it true, and something else to

happen when it is false. For that we have if else statement. The syntax looks like this:

General Syntax of if .. else statement is

if TEST EXPRESSION:

 STATEMENTS_1 # executed if condition evaluates to True

else:

 STATEMENTS_2 # executed if condition evaluates to False

 Each statement inside the if block of an if else statement is executed in order if

the test expression evaluates to True. The entire block of statements is skipped if the test

expression evaluates to False, and instead all the statements under the else clause are executed.

Figure 3.2 if..else Flowchart

 There is no limit on the number of statements that can appear under the two

clauses of an if else statement, but there has to be at least one statement in each block.

Occasionally, it is useful to have a section with no statements, for code you haven’t written

yet. In that case, you can use the pass statement, which does nothing except act as a

placeholder.

if True: # This is always true

 pass # so this is always executed, but it does nothing

else:

 pass

6

Here is an example:

age=21 #age=17

if age >= 18:

 print("Eligible to vote")

else:

 print("Not Eligible to vote")

Output will be:

Eligible to vote

 In the above example, when age is greater than 18, the test expression is true

and body of if is executed and body of else is skipped. If age is less than 18, the test

expression is false and body of else is executed and body of if is skipped. If age is equal to

18, the test expression is true and body of if is executed and body of else is skipped.

3.2.3 Chained Conditionals

 Sometimes there are more than two possibilities and we need more than two

branches. One way to express a computation like that is a chained conditional. The syntax

looks like this:

General Syntax of if..elif...else statement is

if TEST EXPRESSION1:

 STATEMENTS_A

elif TEST EXPRESSION2:

 STATEMENTS_B

else:

 STATEMENTS_C

 The elif is short for else if. It allows us to check for multiple expressions. If

the condition for if is False, it checks the condition of the next elif block and so on. If all the

conditions are False, body of else is executed. Only one block among the

several if...elif...else blocks is executed according to the condition. The if block can have only

one else block. But it can have multiple elif blocks.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

Figure 3.3 Flowchart of if...elif...else

 Each condition is checked in order. If the first is false, the next is checked, and

so on. If one of them is true, the corresponding branch executes, and the statement ends. Even if

more than one condition is true, only the first true branch executes.

Here is an example:

time=17 #time=10, time=13, time=17, time=22

if time<12:

 print("Good Morning")

elif time<15:

 print("Good Afternoon")

elif time<20:

 print("Good Evening")

else:

 print("Good Night")

Output will be:

Good Evening

 When variable time is less than 12, Good Morning is printed. If time is less

than 15, Good Afternoon is printed. If time is less than 20, Good Evening is printed. If all

above conditions fails Good Night is printed.

3.2.4 Nested Conditionals

 One conditional can also be nested within another. ie, We can have

a if...elif...else statement inside another if...elif...else statement. This is called nesting in

computer programming.

8

 Any number of these statements can be nested inside one another. Indentation

is the only way to figure out the level of nesting.

General Syntax of Nested if..else statement is

if TEST EXPRESSION1:

 if TEST EXPRESSION2:

 STATEMENTS_B

 else:

 STATEMENTS_C

else:

 if TEST EXPRESSION3:

 STATEMENTS_D

 else:

 STATEMENTS_E

Figure 3.4 Flowchart of Nested if..else

 The outer conditional contains two branches. Those two branches contain

another if… else statement, which has two branches of its own. Those two branches could

contain conditional statements as well.

Here is an example:

a=10

b=20

c=5

if a>b:

 if a>c:

 print("Greatest number is ",a)

 else:

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

 print("Greatest number is ",c)

else:

 if b>c:

 print("Greatest number is ",b)

 else:

 print("Greatest number is ",c)

Output will be :

Greatest number is 20

 Although the indentation of the statements makes the structure apparent, nested

conditionals very quickly become difficult to read. In general, it is a good idea to avoid them

when you can.

 Logical operators often provide a way to simplify nested conditional

statements. For example, we can rewrite the above code using single if…elif…. else statement:

a=10

b=20

c=5

if a>b and a>c:

 print("Greatest number is ",a)

elif b>a and b>c:

 print("Greatest number is ",b)

else:

 print("Greatest number is ",c)

 Another example, we can rewrite the following code using a single conditional:

if 0 < x:

if x < 10:

 print('x is a positive single-digit number. ')

 The print statement runs only if we make it pass both conditionals, so we can

get the same effect with the and operator:

if 0 < x and x < 10:

 print('x is a positive single-digit number. ')

 For this kind of condition, Python provides a more concise option:

if 0 < x < 10:

 print('x is a positive single-digit number. ')

3.3 ITERATION

 Computers are often used to automate repetitive tasks. Repeating identical or

similar tasks without making errors is something that computers do well and people do poorly.

 Repeated execution of a set of statements is called iteration. Python has two

statements for iteration

 for statement

 while statement

Before we look at those, we need to review a few ideas.

10

Reassignmnent

 As we saw back in the variable section, it is legal to make more than one

assignment to the same variable. A new assignment makes an existing variable refer to a new

value (and stop referring to the old value).

age = 26

print(age)

age = 17

print(age)

The output of this program is

26

17

 because the first time age is printed, its value is 26, and the second time, its

value is 17.

Here is what reassignment looks like in a state snapshot:

Figure 3.5 State Diagram for Reassignment

 With reassignment it is especially important to distinguish between an

assignment statement and a boolean expression that tests for equality. Because Python uses the

equal token (=) for assignment, it is tempting to interpret a statement like a = b as a boolean

test. Unlike mathematics, Remember that the Python token for the equality operator is ==.

 Note too that an equality test is symmetric, but assignment is not. For example,

if a == 7 then 7 == a. But in Python, the statement a = 7 is legal and 7 = a is not.

 Furthermore, in mathematics, a statement of equality is always true.

If a == b now, then a will always equal b. In Python, an assignment statement can make two

variables equal, but because of the possibility of reassignment, they don’t have to stay that way:

a = 5

b = a # after executing this line, a and b are now equal

a = 3 # after executing this line, a and b are no longer equal

 The third line changes the value of a but does not change the value of b, so they

are no longer equal.

Updating variables

 When an assignment statement is executed, the right-hand-side expression (i.e.

the expression that comes after the assignment token) is evaluated first. Then the result of that

evaluation is written into the variable on the left hand side, thereby changing it.

 One of the most common forms of reassignment is an update, where the new

value of the variable depends on its old value.

 26

age 17

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

n = 5

n = 3 * n + 1

 The second line means “get the current value of n, multiply it by three and add

one, and put the answer back into n as its new value”. So after executing the two lines

above, n will have the value 16.

If you try to get the value of a variable that doesn’t exist yet, you’ll get an error:

>>> x = x + 1

Traceback (most recent call last):

 File "<interactive input>", line 1, in

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:

>>> x = 0

>>> x = x + 1

 This second statement — updating a variable by adding 1 to it. It is very

common. It is called an increment of the variable; subtracting 1 is called a decrement.

3.3.1 The while statement

 The while loop in Python is used to iterate over a block of code as long as the

test expression (condition) is true. We generally use this loop when we don't know

beforehand, the number of times to iterate.

The general syntax for the while statement :

while TEST_EXPRESSION:

 STATEMENTS

 In while loop, test expression is checked first. The body of the loop is entered

only if the TEST_EXPRESSION evaluates to True. After one iteration, the test expression is

checked again. This process continues until the TEST_EXPRESSION evaluates to False.

 In Python, the body of the while loop is determined through indentation. Body

starts with indentation and the first unindented line marks the end.

 Python interprets any non-zero value as True. None and 0 are interpreted

as False.

12

Flowchart of while Loop

Figure 3.6 Flowchart of while Loop

Example:

Python program to find sum of first n numbers using while loop

n = 20

sum = 0 # initialize sum and counter

i = 1

while i <= n:

 sum = sum + i

 i = i+1 # update counter

print("The sum is", sum) # print the sum

When you run the program, the output will be:

The sum is 210

 In the above program, the test expression will be True as long as our counter

variable i is less than or equal to n (20 in our program).

 We need to increase the value of counter variable in the body of the loop. This

is very important (and mostly forgotten). Failing to do so will result in an infinite loop (never

ending loop). Finally the result is displayed.

3.3.2 The for Statement

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or

other iterable objects. Iterating over a sequence is called traversal.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

The general syntax for the while statement:

for LOOP_VARIABLE in SEQUENCE:

 STATEMENTS

 Here, LOOP_VARIABLE is the variable that takes the value of the item

inside the sequence on each iteration.

 Loop continues until we reach the last item in the sequence. The body of for

loop is separated from the rest of the code using indentation.

Figure 3.7 Flowchart of for Loop

Example

marks = [95,98,89,93,86]

total = 0

for subject_mark in marks:

 total = total+subject_mark

print("Total Mark is ", total)

when you run the program, the output will be:

Total Mark is 461

 We can use the range() function in for loops to iterate through a sequence of

numbers.

Example:

sum=0

for i in range(20):

 sum=sum+i

14

print("Sum is ", sum)

Output will be:

Sum is 190

3.3.3 Break, Continue, Pass

 You might face a situation in which you need to exit a loop completely when

an external condition is triggered or there may also be a situation when you want to skip a

part of the loop and start next execution.

 Python provides break and continue statements to handle such situations and

to have good control on your loop. This section will discuss the break,

continue and pass statements available in Python.

3.3.3.1 The break Statement

 The break statement in Python terminates the current loop and resumes

execution at the next statement. The most common use for break is when some external

condition is triggered requiring a hasty exit from a loop. The break statement can be used in

both while and for loops.

Example:

for letter in 'Welcome': # First Example

 if letter == 'c':

 break

 print('Current Letter :', letter)

var = 10 # Second Example

while var > 0:

 print('Current variable value :', var)

 var = var -1

 if var == 5:

 break

print "End!"

This will produce the following output:

Current Letter : W

Current Letter : e

Current Letter : l

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

End!

3.3.3.2 The continue Statement:

 The continue statement in Python returns the control to the beginning of the

while loop. The continue statement rejects all the remaining statements in the current

iteration of the loop and moves the control back to the top of the loop.

The continue statement can be used in both while and for loops.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

Example:

for letter in 'Welcome': # First Example

 if letter == 'c':

 continue

 print('Current Letter :', letter)

var = 10 # Second Example

while var > 0:

 print('Current variable value :', var)

 var = var -1

 if var == 5:

 continue

print "End!"

This will produce the following output:

Current Letter : W

Current Letter : e

Current Letter : l

Current Letter : o

Current Letter : m

Current Letter : e

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Current variable value : 5

Current variable value : 4

Current variable value : 3

Current variable value : 2

Current variable value : 1

End!

3.3.3.3 The else Statement Used with Loops

Python supports to have an else statement associated with a loop statements.

 If the else statement is used with a for loop, the else statement is executed when the

loop has exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed when the

condition becomes false.

while loop with else

We can have an optional else block with while loop as well. The else part is executed if the

condition in the while loop evaluates to False. The while loop can be terminated with a break

statement. In such case, the else part is ignored. Hence, a while loop's else part runs if no

break occurs and the condition is false.

Here is an example to illustrate this.

counter = 0

16

while counter < 3:

 print("Inside loop")

 counter = counter + 1

else:

 print("Inside else")

Output

Inside loop

Inside loop

Inside loop

Inside else

 Here, we use a counter variable to print the string Inside loop three times. On

the forth iteration, the condition in while becomes False. Hence, the else part is executed.

for loop with else

A for loop can have an optional else block as well. The else part is executed if the items in

the sequence used in for loop exhausts. break statement can be used to stop a for loop. In such

case, the else part is ignored. Hence, a for loop's else part runs if no break occurs.

Here is an example to illustrate this.

digits = [0, 1, 5]

for i in digits:

 print(i)

else:

 print("No items left.")

When you run the program, the output will be:

0

1

5

No items left.

 Here, the for loop prints items of the list until the loop exhausts. When the for

loop exhausts, it executes the block of code in the else and prints

3.3.3.4 The pass Statement

 In Python programming, pass is a null statement. The difference between

a comment and pass statement in Python is that, while the interpreter ignores a comment

entirely, pass is not ignored. However, nothing happens when pass is executed. It results into

no operation (NOP).

Syntax of pass

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

pass

We generally use it as a placeholder.

 Suppose we have a loop or a function that is not implemented yet, but we want

to implement it in the future. They cannot have an empty body. The interpreter would

complain. So, we use the pass statement to construct a body that does nothing.

Example

sequence = {'p', 'a', 's', 's'}

for val in sequence:

 pass

We can do the same thing in an empty function

def function(args):

 pass

3.4 FRUITFUL FUNCTIONS

3.4.1 Return Values

 The built-in functions we have used, such as abs, pow, int, max, and range,

have produced results. Calling each of these functions generates a value, which we usually

assign to a variable or use as part of an expression.

biggest = max(3, 7, 2, 5)

x = abs(3 - 11) + 10

 Here, we are going to write more functions that return values, which we will

call fruitful functions, for want of a better name. The first example is area, which returns the

area of a circle with the given radius:

def area(radius):

 b = 3.14159 * radius**2

 return b

 We have seen the return statement before, but in a fruitful function

the return statement includes a return value. This statement means: evaluate the return

expression, and then return it immediately as the result of this function. The expression

provided can be arbitrarily complicated, so we could have written this function like this:

def area(radius):

 return 3.14159 * radius * radius

On the other hand, temporary variables like b above often make debugging easier.

 Sometimes it is useful to have multiple return statements, one in each branch of

a conditional. We have already seen the built-in abs, now we see how to write our own:

def absolute_value(x):

 if x < 0:

 return -x

18

 else:

 return x

 Another way to write the above function is to leave out the else and just follow

the if condition by the second return statement.

def absolute_value(x):

 if x < 0:

 return -x

 return x

Think about this version and convince yourself it works the same as the first one.

 Code that appears after a return statement, or any other place the flow of

execution can never reach, is called dead code, or unreachable code.

 In a fruitful function, it is a good idea to ensure that every possible path through

the program hits a return statement. The following version of absolute_value fails to do this:

def bad_absolute_value(x):

 if x < 0:

 return -x

 elif x > 0:

 return x

 This version is not correct because if x happens to be 0, neither condition is true,

and the function ends without hitting a return statement. In this case, the return value is a

special value called None:

>>> print(bad_absolute_value(0))

None

All Python functions return None whenever they do not return another value.

It is also possible to use a return statement in the middle of a for loop, in which case control

immediately returns from the function. Let us assume that we want a function which looks

through a list of words. It should return the first 2-letter word. If there is not one, it should

return the empty string:

def find_first_2_letter_word(xs):

 for wd in xs:

 if len(wd) == 2:

 return wd

 return ""

While running output will be:

>>> find_first_2_letter_word(["This", "is", "a", "dead", "parrot"])

'is'

>>> find_first_2_letter_word(["I", "like", "cheese"])

''

 Single-step through this code and convince yourself that in the first test case that

we’ve provided, the function returns while processing the second element in the list: it does not

have to traverse the whole list.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

3.4.2 Incremental Development

 To deal with increasingly complex programs, we are going to suggest a

technique called incremental development. The goal of incremental development is to avoid

long debugging sessions by adding and testing only a small amount of code at a time.

 As an example, suppose we want to find the distance between two points, given

by the coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

 The first step is to consider what a distance function should look like in Python.

In other words, what are the inputs (parameters) and what is the output (return value)?

 In this case, the two points are the inputs, which we can represent using four

parameters. The return value is the distance, which is a floating-point value.

Already we can write an outline of the function that captures our thinking so far:

def distance(x1, y1, x2, y2):

 return 0.0

 Obviously, this version of the function doesn’t compute distances; it always

returns zero. But it is syntactically correct, and it will run, which means that we can test it

before we make it more complicated.

To test the new function, we call it with sample values:

>>> distance(1, 2, 4, 6)

0.0

 We chose these values so that the horizontal distance equals 3 and the vertical

distance equals 4; that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a

function, it is useful to know the right answer.

 At this point we have confirmed that the function is syntactically correct, and

we can start adding lines of code. After each incremental change, we test the function again. If

an error occurs at any point, we know where it must be — in the last line we added.

 A logical first step in the computation is to find the differences x2- x1 and y2- y1.

We will refer to those values using temporary variables named dx and dy.

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 return 0.0

 If we call the function with the arguments shown above, when the flow of

execution gets to the return statement, dx should be 3 and dy should be 4. We can check that

this is the case in PyScripter by putting the cursor on the return statement, and running the

program to break execution when it gets to the cursor (using the F4 key). Then we inspect the

variables dx and dy by hovering the mouse above them, to confirm that the function is getting

the right parameters and performing the first computation correctly. If not, there are only a few

lines to check.

20

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx*dx + dy*dy

 return 0.0

 Again, we could run the program at this stage and check the value

of dsquared (which should be 25).

 Finally, using the fractional exponent 0.5 to find the square root, we compute

and return the result:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx*dx + dy*dy

 result = dsquared**0.5

 return result

 If that works correctly, you are done. Otherwise, you might want to inspect the

value of result before the return statement.

 When you start out, you might add only a line or two of code at a time. As you

gain more experience, you might find yourself writing and debugging bigger conceptual

chunks. Either way, stepping through your code one line at a time and verifying that each step

matches your expectations can save you a lot of debugging time. As you improve your

programming skills you should find yourself managing bigger and bigger chunks: this is very

similar to the way we learned to read letters, syllables, words, phrases, sentences, paragraphs,

etc., or the way we learn to chunk music — from individual notes to chords, bars, phrases, and

so on.

The key aspects of the process are:

1. Start with a working skeleton program and make small incremental changes. At any

point, if there is an error, you will know exactly where it is.

2. Use temporary variables to refer to intermediate values so that you can easily inspect

and check them.

3. Once the program is working, relax, sit back, and play around with your options.

4. You might want to consolidate multiple statements into one bigger compound

expression, or rename the variables you’ve used, or see if you can make the function

shorter. A good guideline is to aim for making code as easy as possible for others to

read.

 Here is another version of the function. It makes use of a square root function

that is in the math module

import math

def distance(x1, y1, x2, y2):

 return math.sqrt((x2-x1)**2 + (y2-y1)**2)

While running output will be:

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

>>> distance(1, 2, 4, 6)

5.0

3.4.3 Debugging with print

 Another powerful technique for debugging (an alternative to single-stepping and

inspection of program variables), is to insert extra print functions in carefully selected places in

your code. Then, by inspecting the output of the program, you can check whether the algorithm

is doing what you expect it to. Be clear about the following, however:

 You must have a clear solution to the problem, and must know what should happen

before you can debug a program. Work on solving the problem on a piece of paper

(perhaps using a flowchart to record the steps you take) before you concern yourself

with writing code. Writing a program doesn’t solve the problem — it

simply automates the manual steps you would take. So first make sure you have a pen-

and-paper manual solution that works. Programming then is about making those manual

steps happen automatically.

 Do not write chatterbox functions. A chatterbox is a fruitful function that, in addition

to its primary task, also asks the user for input, or prints output, when it would be more

useful if it simply shut up and did its work quietly.

 For example, we’ve seen built-in functions like range, max and abs. None of

these would be useful building blocks for other programs if they prompted the user for input, or

printed their results while they performed their tasks.

 So a good tip is to avoid calling print and input functions inside fruitful

functions, unless the primary purpose of your function is to perform input and output. The one

exception to this rule might be to temporarily sprinkle some calls to print into your code to help

debug and understand what is happening when the code runs, but these will then be removed

once you get things working.

3.4.4 Composition

 You can call one function from within another. This ability is

called composition.

 As an example, we’ll write a function that takes two points, the center of the

circle and a point on the perimeter, and computes the area of the circle.

 Assume that the center point is stored in the variables xc and yc, and the

perimeter point is in xp and yp. The first step is to find the radius of the circle, which is the

distance between the two points. Fortunately, we’ve just written a function, distance, that does

just that, so now all we have to do is use it:

radius = distance(xc, yc, xp, yp)

 The second step is to find the area of a circle with that radius and return it.

Again we will use one of our earlier functions:

result = area(radius)

return result

Wrapping that up in a function, we get:

22

def area2(xc, yc, xp, yp):

 radius = distance(xc, yc, xp, yp)

 result = area(radius)

 return result

 We called this function area2 to distinguish it from the area function defined

earlier.

 The temporary variables radius and result are useful for development,

debugging, and single-stepping through the code to inspect what is happening, but once the

program is working, we can make it more concise by composing the function calls:

def area2(xc, yc, xp, yp):

 return area(distance(xc, yc, xp, yp))

3.5 SCOPE: GLOBAL AND LOCAL

 Namespace is a collection of names. In Python, you can imagine a namespace

as a mapping of every name; you have defined, to corresponding objects. Different

namespaces can co-exist at a given time but are completely isolated.

 Although there are various unique namespaces defined, we may not be able to

access all of them from every part of the program. The concept of scope comes into play.

 Scope is the portion of the program from where a namespace can be accessed

directly without any prefix.

At any given moment, there are at least three nested scopes.

1. Scope of the current function which has local names

2. Scope of the module which has global names

3. Outermost scope which has built-in names

 When a reference is made inside a function, the name is searched in the local

namespace, then in the global namespace and finally in the built-in namespace.

If there is a function inside another function, a new scope is nested inside the local scope.

Example

def outer_function():

 b = “India”

 def inner_func():

 c = “TamilNadu”

a = “World”

 Here, the variable a is in the global namespace. Variable b is in the local

namespace of outer_function() and c is in the nested local namespace of inner_function().

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

 When we are in inner_function(), c is local to us, b is nonlocal and a is global.

We can read as well as assign new values to c but can only

read b and a from inner_function().

 If we try to assign as a value to b, a new variable b is created in the local

namespace which is different than the nonlocal b. Same thing happens when we assign a

value to a.

 However, if we declare a as global, all the reference and assignment go to the

global a. Similarly, if we want to rebind the variable b, it must be declared as nonlocal. The

following example will further clarify this.

def outer_function():

 a ="i am in India"

 def inner_function():

 a = "i am in TamilNadu"

 print('a =',a)

 inner_function()

 print('a =',a)

a = "i am in World"

outer_function()

print('a =',a)

As you can see, the output of this program is

a = i am in TamilNadu

a = i am in India

a = i am in World

 In this program, three different variables a are defined in separate namespaces

and accessed accordingly. While in the following program,

def outer_function():

 global a

 a = "i am in India"

 def inner_function():

 global a

 a = "i am in TamilNadu"

 print('a =',a)

 inner_function()

 print('a =',a)

a = "i am in World"

outer_function()

print('a =',a)

The output of the program is.

a = i am in TamilNadu

a = i am in TamilNadu

a = i am in TamilNadu

Here, all reference and assignment are to the global a due to the use of keyword global.

24

3.6 RECURSION

 A recursive function is a function which calls itself with "smaller (or simpler)"

input values. Generally if a problem can be solved utilizing solutions to smaller versions of

the same problem, and the smaller versions reduce to easily solvable cases, then one can use a

recursive function to solve that problem.

3.6.1 Base Condition in Recursion

 Base case is the smallest version of the problem, which cannot expressed in

terms of smaller problems, Also this base case have predefined solution. In recursive

program, the solution to base case is provided and solution of bigger problem is expressed in

terms of smaller problems.

For Example:

Following is an example of recursive function to find the factorial of an integer.

 For positive values of n, let's write n!, as we known n! is a product of numbers

starting from n and going down to 1. n! = n. (n-1)…… 2 .1. But notice that (n-1) ... 2.1 is

another way of writing (n-1)!, and so we can say that n!=n.(n−1)!. So we wrote n! as a

product in which one of the factors is (n−1)!. You can compute n! by computing (n−1)! and

then multiplying the result of computing (n−1)! by n. You can compute the factorial function

on n by first computing the factorial function on n−1. So computing (n−1)! is

a subproblem that we solve to compute n!.

 In the above example, base case for n == 1 is defined and larger value of

number can be solved by converting to smaller one till base case is reached.

Python program to find factorial of a given number using recursive function is.

def factorial(n):

 if n == 1:

 return 1

 else:

 return (n * factorial(n-1))

num = 5

print("The factorial of", num, "is", factorial(num))

Output will be:

The factorial of 7 is 120

 In the above example, factorial() is a recursive functions as it calls itself.

When we call this function with a positive integer, it will recursively call itself by decreasing

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

the number. Each function call multiples the number with the factorial of number 1 until the

number is equal to one. This recursive call can be explained in the following steps.

factorial(5) # 1st call with 5

5 * factorial(4) # 2nd call with 4

5 * 4 * factorial(3) # 3rd call with 3

5 * 4 * 3 * factorial(2) # 4th call with 2

5 * 4 * 3 * 2 * factorial(1) # 5th call with 1

5 * 4 * 3 * 2 * 1 # return from 5th call as n==1

5 * 4 * 3 * 2 # return from 4th call

5 * 4 * 6 # return from 3rd call

5 * 24 # return from 2nd call

120 # return from 1st call

Our recursion ends when the number reduces to 1. This is called the base condition. Every

recursive function must have a base condition that stops the recursion or else the function

calls itself infinitely

Advantages of recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using recursion.

3. Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

3. Recursive functions are hard to debug.

3.7 STRINGS

 A string is a sequence of characters. You can access the characters one at a

time with the bracket operator:

>>> subject = 'python'

>>> letter = subject [1]

 The second statement selects character number 1 from fruit and assigns it to

letter. The expression in brackets is called an index. The index indicates which character in

the sequence you want. But you might not get what you expect:

>>> letter

'y'

26

 For most people, the first letter of 'python' is p, not y. But for computer

scientists, the index is an offset from the beginning of the string, and the offset of the first

letter is zero.

>>> letter = subject [0]

>>> letter

'p'

 So p is the 0th letter (“zero-eth”) of 'python', y is the 1th letter (“one-eth”), and

t is the 2th letter (“two-eth”).

As an index you can use an expression that contains variables and operators:

>>> i = 1

>>> subject [i]

'y'

>>> subject [i+1]

't

But the value of the index has to be an integer. Otherwise you get:

>>> letter =subject [1.5]

TypeError: string indices must be integers

3.7.1 len()
len is a built-in function that returns the number of characters in a string:

>>> subject = 'python'

>>> len(subject)

6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(subject)

>>> last = subject [length]

IndexError: string index out of range

 The reason for the IndexError is that there is no letter in 'python' with the

index 6. Since we started counting at zero, the six letters are numbered 0 to 5. To get the last

character, you have to subtract 1 from length:

>>> last = subject [length-1]

>>> last

't'

 Or you can use negative indices, which count backward from the end of the

string. The expression subject [-1] yields the last letter, subject [-2] yields the second to last,

and so on.

3.7.2 Traversal with a for Loop
 A lot of computations involve processing a string one character at a time.

Often they start at the beginning, select each character in turn, do something to it, and

continue until the end. This pattern of processing is called a traversal. One way to write a

traversal is with a while loop:

index = 0

while index < len(subject):

letter = subjec [index]

print(letter)

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

index = index + 1

 This loop traverses the string and displays each letter on a line by itself. The

loop condition is index < len(subjec), so when index is equal to the length of the string, the

condition is false, and the body of the loop doesn’t run. The last character accessed is the one

with the index len(subjec)-1, which is the last character in the string.

 Another way to write a traversal is with a for loop:

for letter in subject:

print(letter)

subject ‘ p y t h o n ‘

Index 0 1 2 3 4 5

Figure 3.8 Slice indices

 Each time through the loop, the next character in the string is assigned to the

variable letter. The loop continues until no characters are left.

 The following example shows how to use concatenation (string addition) and a

for loop to generate an abecedarian series (that is, in alphabetical order). In Robert

McCloskey’s book MakeWay for Ducklings, the names of the ducklings are Jack, Kack,

Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:

print(letter + suffix)

The output is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

3.7.3 String Slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

>>> s = 'Monty Python'

>>> s[0:5]

'Monty'

>>> s[6:12]

'Python'

 The operator [n:m] returns the part of the string from the “n-eth” character to

the “m-eth” character, including the first but excluding the last. This behavior is

counterintuitive, but it might help to imagine the indices pointing between the characters, as

in Figure 3.8. If you omit the first index (before the colon), the slice starts at the beginning of

the string. If you omit the second index, the slice goes to the end of the string:

>>> subject = 'python'

>>> subject[:3]

. 'pyt'

>>> subject[3:]

'hon'

28

 If the first index is greater than or equal to the second the result is an empty

string, represented by two quotation marks:

>>> subject = 'python'

>>> subject[3:3]

''

 An empty string contains no characters and has length 0, but other than that, it

is the same as any other string.

Continuing this example, subject[:] gives entire string.

>>> subject = 'python'

>>> subject[:]

python

3.7.4 Strings are Immutable
 It is tempting to use the [] operator on the left side of an assignment, with the

intention of changing a character in a string. For example:

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

 The reason for the error is that strings are immutable, which means you can’t

change an existing string. The best you can do is create a new string that is a variation on the

original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> new_greeting

'Jello, world!'

 This example concatenates a new first letter onto a slice of greeting. It has no

effect on the original string.

3.7.5 String Methods
 Strings provide methods that perform a variety of useful operations. A method

is similar to a function it takes arguments and returns a value but the syntax is different. For

example, the method upper takes a string and returns a new string with all uppercase letters.

Instead of the function syntax upper(word), it uses the method syntax word.upper().

>>> word = 'python'

>>> new_word = word.upper()

>>> new_word

'PYTHON

 This form of dot notation specifies the name of the method, upper, and the

name of the string to apply the method to, word. The empty parentheses indicate that this

method takes no arguments.

 A method call is called an invocation; in this case, we would say that we are

invoking upper on word.

 As it turns out, there is a string method named find that is remarkably similar

to the function we wrote:

>>> word = 'python'

>>> index = word.find('t')

>>> index

2

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

 In this example, we invoke find on word and pass the letter we are looking for

as a parameter. Actually, the find method is more general than our function; it can find

substrings, not just characters:

>>> word.find('ho')

3

 By default, find starts at the beginning of the string, but it can take a second

argument, the index where it should start:

>>> word='welcome'

>>> word.find('e')

1

>>> word.find('e',2)

6

 This is an example of an optional argument; find can also take a third

argument, the index where it should stop:

>>> name = 'bob'

>>> name.find('b', 1, 2)

-1

 This search fails because b does not appear in the index range from 1 to 2, not

including 2. Searching up to, but not including, the second index makes find consistent with

the slice operator.

3.7.6 More String Methods

Python includes the following built-in methods to manipulate strings

SN Methods Description

1 capitalize()
Capitalizes first letter of string

2 center(width, fillchar)
Returns a space-padded string with the original

string centered to a total of width columns.

3 count(str, beg= 0,end=len(string))
Counts how many times str occurs in string or

in a substring of string if starting index beg and

ending index end are given.

4 decode(encoding='UTF-

8',errors='strict')

Decodes the string using the codec registered

for encoding. encoding defaults to the default

string encoding.

5 encode(encoding='UTF-

8',errors='strict')

Returns encoded string version of string; on

error, default is to raise a ValueError unless

errors is given with 'ignore' or 'replace'.

6 endswith(suffix,beg=0,

end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are

given) ends with suffix; returns true if so and

false otherwise.

7 expandtabs(tabsize=8)
Expands tabs in string to multiple spaces;

defaults to 8 spaces per tab if tabsize not

provided.

30

8 find(str, beg=0 end=len(string))
Determine if str occurs in string or in a

substring of string if starting index beg and

ending index end are given returns index if

found and -1 otherwise.

9 index(str, beg=0, end=len(string))
Same as find(), but raises an exception if str

not found.

10 isalnum()
Returns true if string has at least 1 character

and all characters are alphanumeric and false

otherwise.

11 isalpha()
Returns true if string has at least 1 character

and all characters are alphabetic and false

otherwise.

12 isdigit()
Returns true if string contains only digits and

false otherwise.

13 islower()
Returns true if string has at least 1 cased

character and all cased characters are in

lowercase and false otherwise.

14 isnumeric()
Returns true if a unicode string contains only

numeric characters and false otherwise.

15 isspace()
Returns true if string contains only whitespace

characters and false otherwise.

16 istitle()
Returns true if string is properly "titlecased"

and false otherwise.

17 isupper()
Returns true if string has at least one cased

character and all cased characters are in

uppercase and false otherwise.

18 join(seq)
Merges (concatenates) the string

representations of elements in sequence seq

into a string, with separator string.

19 len(string)
Returns the length of the string

20 ljust(width[, fillchar])
Returns a space-padded string with the original

string left-justified to a total of width columns.

21 lower()
Converts all uppercase letters in string to

lowercase.

22 lstrip()
Removes all leading whitespace in string.

23 maketrans()
Returns a translation table to be used in

translate function.

24 max(str)
Returns the max alphabetical character from

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

31

the string str.

25 min(str)
Returns the min alphabetical character from

the string str.

26 replace(old, new [, max])
Replaces all occurrences of old in string with

new or at most max occurrences if max given.

27 rfind(str, beg=0,end=len(string))
Same as find(), but search backwards in string.

28 rindex(str,beg=0,end=len(string))
Same as index(), but search backwards in

string.

29 rjust(width,[, fillchar])
Returns a space-padded string with the original

string right-justified to a total of width

columns.

30 rstrip()
Removes all trailing whitespace of string.

31 split(str="",

num=string.count(str))

Splits string according to delimiter str (space if

not provided) and returns list of substrings;

split into at most num substrings if given.

32 splitlines(num=string.count('\n'))
Splits string at all (or num) NEWLINEs and

returns a list of each line with NEWLINEs

removed.

33 startswith(str,

beg=0,end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are

given) starts with substring str; returns true if

so and false otherwise.

34 strip([chars])
Performs both lstrip() and rstrip() on string

35 swapcase()
Inverts case for all letters in string.

36 title()
Returns "titlecased" version of string, that is,

all words begin with uppercase and the rest are

lowercase.

37 translate(table, deletechars="")
Translates string according to translation table

str(256 chars), removing those in the del string.

38 upper()
Converts lowercase letters in string to

uppercase.

39 zfill (width)
Returns original string leftpadded with zeros to

a total of width characters; intended for

numbers, zfill() retains any sign given (less one

zero).

40 isdecimal()
Returns true if a unicode string contains only

decimal characters and false otherwise.

32

3.7.7 The in Operator
 The word in is a boolean operator that takes two strings and returns True if the

first appears as a substring in the second:

>>> 't' in 'python'

True

>>> 'jan' in 'python'

False

 For example, the following function prints all the letters from word1 that also

appear in word2:

def in_both(word1, word2):

for letter in word1:

 if letter in word2:

 print(letter)

 With well-chosen variable names, Python sometimes reads like English. You

could read this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the

second) word, print (the) letter.”

Here’s what you get if you compare 'django' and 'mongodb'

>>> in_both('django','mongodb')

d

n

g

o

3.7.8 String Comparison
The relational operators work on strings. To see if two strings are equal:

if word == 'python':

print('All right, python.')

Other relational operations are useful for putting words in alphabetical order:

if word < ' python ':

print('Your word, ' + word + ', comes before python.')

elif word > ' python ':

print('Your word, ' + word + ', comes after python.')

else:

print('All right, python.')

 Python does not handle uppercase and lowercase letters the same way people

do. All the uppercase letters come before all the lowercase letters, so:

Your word, Python, comes before c language

 A common way to address this problem is to convert strings to a standard

format, such as all lowercase, before performing the comparison.

3.8 LISTS AS ARRAYS

 Most of programs work not only with variables. They also use lists of

variables. For example, a program can handle an information about students in a class by

reading the list of students from the keyboard or from a file. A change in the number of

students in the class must not require modification of the program source code.

 To store such data, in Python you can use the data structure called list (in most

programming languages the different term is used — “array”).

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

33

 Arrays are sequence types and behave very much like lists, except that the

type of objects stored in them is constrained. A list (array) is a set of objects. Individual

objects can be accessed using ordered indexes that represent the position of each object

within the list (array).

 The list can be set manually by enumerating of the elements the list in square

brackets, like here:

Primes = [2, 3, 5, 7, 11, 13]

Rainbow = ['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet']

 The list Primes has 6 elements, namely: Primes[0] == 2, Primes[1] == 3,

Primes[2] == 5, Primes[3] == 7,Primes[4] == 11, Primes[5] == 13. The list Rainbow has 7

elements, each of which is the string.

 Like the characters in the string, the list elements can also have negative

index, for example, Primes[-1] == 13,Primes[-6] == 2. The negative index means we start at

the last element and go left when reading a list.

 You can obtain the number of elements in a list with the

function len (meaning length of the list), e.g.len(Primes) == 6.

 Unlike strings, the elements of a list are changeable; they can be changed by

assigning them new values.

 Consider several ways of creating and reading lists. First of all, you can create

an empty list (the list with no items, its length is 0), and you can add items to the end of your

list using append. For example, suppose the program receives the number of elements in the

list n, and then n elements of the list one by one each at the separate line. Here is an example

of input data in this format:

a = [] # start an empty list

n = int(input('Enter No of Elements')) # read number of element in the list

for i in range(n):

 new_element = int(input('Enter Element :')) # read next element

 a.append(new_element) # add it to the list

 # the last two lines could be replaced by

one:

 # a.append(int(input('Enter Element :')))

print(a)

Output will be

Enter No of Elements5

Enter Element :2

Enter Element :7

Enter Element :4

Enter Element :3

Enter Element :8

[2, 7, 4, 3, 8]

 In the demonstrated example the empty list is created, then the number of

elements is read, then you read the list items line by line and append to the end. The same

thing can be done, saving the variable n:

34

 Next method to creating and reading lists is, first, consider the size of the list

and create a list from the desired number of elements, then loop through the variable i starting

with number 0 and inside the loop read i-th element of the list:

a = [0] * int(input('Enter No of Elements :'))

for i in range(len(a)):

 a[i] = int(input('Enter Element : '))

print (a)

Output will be

Enter No of Elements :3

Enter Element : 2

Enter Element : 4

Enter Element : 3

[2, 4, 3]

 You can print elements of a list a with print(a); this displays the list items

surrounded by square brackets and separated by commands. In general, this is inconvenient;

in common, you are about to print all the elements in one line or one item per line. Here are

two examples of that, using other forms of loop:

a = [1, 2, 3, 4, 5]

for i in range(len(a)):

 print(a[i])

Here the index i is changed, then the element a[i] is displayed.

a = [1, 2, 3, 4, 5]

for elem in a:

 print(elem, end=' ')

 In this example, the list items are displayed in one line separated by spaces,

and it's not the index that is changed but rather the value of the variable itself (for example, in

the loop for elem in ['red', 'green', 'blue'] variable elem will take the values 'red', 'green', 'blue'

successively.

3.9 ILLUSTRATIVE PROGRAMS:

3.9.1 Square Roots
 Loops are often used in programs that compute numerical results by starting

with an approximate answer and iteratively improving it. For example, one way of computing

square roots is Newton’s method. Suppose that you want to know the square root of a. If you

start with almost any estimate, x, you can compute a better estimate with the following

formula:

For example, if a is 4 and x is 3:

>>> a = 4

>>> x = 3

>>> y = (x + a/x) / 2

>>> y

2.16666666667

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

35

 The result is closer to the correct answer (√4 = 2). If we repeat the process

with the new estimate, it gets even closer:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00641025641

After a few more updates, the estimate is almost exact:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00001024003

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right answer,

but we know when we get there because the estimate stops changing:

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.0

>>> x = y

>>> y = (x + a/x) / 2

>>> y

2.0

When y == x, we can stop. Here is a program that starts with an initial estimate, x= 0.5*a,

and improves it until it stops changing:

def square_root(a):

 x=.5*a

 while True:

 print(x)

 y = (x + a/x) / 2

 if y == x:

 break

 x = y

 print("Square Root of ", a , " is ", y)

square_root(25)

Output will be:

12.5

7.25

5.349137931034482

5.011394106532552

5.000012953048684

5.000000000016778

5.0

Square Root of 25 is 5.0

3.9.2 GCD

36

3.9.2.1 Euclidean algorithm

 This algorithm is based on the fact that GCD of two numbers divides their

difference as well. In this algorithm, we divide the greater by smaller and take the remainder.

Now, divide the smaller by this remainder. Repeat until the remainder is 0.

 For example, if we want to find the GCD of 108 and 30, we divide 108 by 30.

The remainder is 18. Now, we divide 30 by 18 and the remainder is 12. Now, we divide 18

by 12 and the remainder is 6. Now, we divide 12 by 6 and the remainder is 0. Hence, 6 is the

required GCD.

def computeGCD(x, y):

 while(y):

 x, y = y, x % y #can also be written as follows

 return x #reminder=x%y

 # x=y

 #y=reminder

a=108

b=30

print('GCD of ',a ,' and ' , b, ' is ',computeGCD(a,b))

Output will be:

GCD of 108 and 30 is 6

 Here we loop until y becomes zero. The statement x, y = y, x % y does

swapping of values in Python. In each iteration, we place the value of y in x and the

remainder (x % y) in y, simultaneously. When y becomes zero, we have GCD in x.

3.9.3 Exponentiation

Simplest way to find the exponentiation of a number x
y
 in python is, the use of ** operator

>>> 4**3

64

 Another way to find the exponentiation of a number x
y
 in python is, the use of

pow() function that is available in math module. eg

>>> import math

>>> math.pow(4,3)

64.0

We can also write our own function to find the exponentiation of a number x
y

 using looping

statement.

def my_pow(x,y):

 powered = x

 if y == 0:

 powered=1

 else:

 while y > 1:

 powered *= x

 y -= 1

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

37

 return powered

a=4

b=3

print(a, ' Power ', b, ' is ', my_pow(a,b))

Output will be:

4 Power 3 is 64

3.9.4 Sum of a List (Array) of Numbers

 Suppose that you want to calculate the sum of a list of numbers such as: [1,

3,5,7,9]. An iterative function that computes the sum is shown in Iterative Summation

program. The function uses an accumulator variable (Sum) to compute a running total of all

the numbers in the list by starting with 00 and adding each number in the list.

Iterative Summation:

def listsum(numList):

 Sum = 0

 for i in numList:

 Sum = Sum + i

 return Sum

my_list=[1,3,5,7,9]

print(listsum(my_list))

Output will be:

25

 Pretend for a minute that you do not have while loops or for loops. How would

you compute the sum of a list of numbers? If you were a mathematician you might start by

recalling that addition is a function that is defined for two parameters, a pair of numbers. To

redefine the problem from adding a list to adding pairs of numbers, we could rewrite the list

as a fully parenthesized expression. Such an expression looks like this:

 ((((1+3)+5)+7)+9)

 We can also parenthesize the expression the other way around,

 (1+(3+(5+(7+9))))

Notice that the innermost set of parentheses, (7+9), is a problem that we can solve without a

loop or any special constructs. In fact, we can use the following sequence of simplifications

to compute a final sum.

total= (1+(3+(5+(7+9))))

total= (1+(3+(5+16)))

total= (1+(3+21))

total= (1+24)

total= 25

 How can we take this idea and turn it into a Python program? First, let’s

restate the sum problem in terms of Python lists. We might say the sum of the list numList is

38

the sum of the first element of the list (numList[0]), and the sum of the numbers in the rest of

the list (numList[1:]). To state it in a functional form:

 listSum(numList)=first(numList)+listSum(rest(numList))

I n this equation first(numList)) returns the first element of the list

and rest(numList) returns a list of everything but the first element. This is easily expressed in

Python as shown in Recursive Summation program.

Recursive Summation:

def listsum(numList):

 if len(numList) == 1:

 return numList[0]

 else:

 return numList[0] + listsum(numList[1:])

my_list=[1,3,5,7,9]

print(listsum(my_list))

Output will be:

25

 There are a few key ideas in this listing to look at. First, on line 2 we are

checking to see if the list is one element long. This check is crucial and is our escape (base

case) clause from the function. The sum of a list of length 1 is trivial; it is just the number in

the list. Second, on line 5 our function calls itself! This is the reason that we call

the listsum algorithm recursive. A recursive function is a function that calls itself.

 Figure 3.9 shows the series of recursive calls that are needed to sum the

list [1,3,5,7,9]. You should think of this series of calls as a series of simplifications. Each

time we make a recursive call we are solving a smaller problem, until we reach the point

where the problem cannot get any smaller.

Figure 3.9 Recursive Calls in List Sum

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

39

 When we reach the point where the problem is as simple as it can get, we

begin to piece together the solutions of each of the small problems until the initial problem is

solved. Figure 3.10 shows the additions that are performed as listsum works its way

backward through the series of calls. When listsum returns from the topmost problem, we

have the solution to the whole problem.

Figure 3.10 Recursive Return for List Sum

3.9.5 Linear Search

Given an array arr[] of n elements, write a function to search a given element x in arr[].

A simple approach is to do linear search, i.e

 Start from the leftmost element of arr[] and one by one compare x with each element

of arr[]

 If x matches with an element, return the index.

 If x doesn’t match with any of elements, return -1.

40

Example:

Figure 3.11 Linear Search : Searching for 9 in 10 Element Array.

def linear_search(arr, x):

 for i in range(len(arr)):

 if arr[i] == x:

 return i

 return -1

data = []

n = int(input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 data.append(input('Enter the Element :'))

x = input('Enter the Element to be Search ')

found=linear_search(data,x)

if found!=-1:

 print('Element ', x,' Found at Position ',found+1)

else:

 print('Element ',x,' is Not Found in the Array ')

Output will be:

Enter Number of Elements in the Array: 5

Enter the Element : 2

Enter the Element : 7

Enter the Element : 4

Enter the Element : 9

Enter the Element : 1

Enter the Element to be Search 9

Element 9 Found at Position 4

The time complexity of above algorithm is O(n).

 Linear search is rarely used practically because other search algorithms such

as the binary search algorithm and hash tables allow significantly faster searching comparison

to Linear search.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

41

3.9.6 Binary Search

 Given a sorted array arr[] of n elements, write a function to search a given

element x in arr[]. A simple approach is to do linear search. The time complexity of above

algorithm is O(n). Another approach to perform the same task is using Binary Search.

 Binary Search: Search a sorted array by repeatedly dividing the search

interval in half. Begin with an interval covering the whole array. If the value of the search

key is less than the item in the middle of the interval, narrow the interval to the lower half.

Otherwise narrow it to the upper half. Repeatedly check until the value is found or the

interval is empty.

Example:

Figure 3.12 Binary Search: Searching for 23 in 10 Element Array.

 The idea of binary search is to use the information that the array is sorted and

reduce the time complexity to O(Logn).

We basically ignore half of the elements just after one comparison.

1. Compare x with the middle element.

2. If x matches with middle element, we return the mid index.

3. Else If x is greater than the mid element, then x can only lie in right half subarray after

the mid element. So we recur for right half.

4. Else (x is smaller) recur for the left half.

Recursive implementation of Binary Search

def binarySearch (arr, left, right, x):

 if right >= left:

 mid = left + (right - left)/2

 if arr[mid] == x:

 return mid

 elif arr[mid] > x:

 return binarySearch(arr, left, mid-1, x)

 else:

 return binarySearch(arr, mid+1, right, x)

 else:

 return -1

data = []

n = int(input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 data.append(input('Enter the Element :'))

42

x = input('Enter the Element to be Search ')

result = binarySearch(data, 0, len(data), x)

if result != -1:

 print ("Element is present at index ", result+1)

else:

 print ("Element is not present in array")

Output will be:

Enter Number of Elements in the Array: 5

Enter the Element :2

Enter the Element :7

Enter the Element :9

Enter the Element :11

Enter the Element :14

Enter the Element to be Search 11

Element is present at index 4

Iterative Implementation of Binary Search

def binarySearch(arr, left, right, x):

 while left <= right:

 mid = left + (right - left)/2;

 if arr[mid] == x:

 return mid

 elif arr[mid] < x:

 left = mid + 1

 else:

 right = mid - 1

 return -1

data = []

n = int(input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 data.append(input('Enter the Element :'))

x = input('Enter the Element to be Search ')

result = binarySearch(data, 0, len(data), x)

if result != -1:

 print ("Element is present at index ", result+1)

else:

 print ("Element is not present in array")

Auxiliary Space: O(1) in case of iterative implementation. In case of recursive

implementation, O(Logn) recursion call stack space.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 - PROBLEM SOLVING AND PYTHON

PROGRAMMING

REGULATIONS – 2017

UNIT – IV

Prepared By :

Mr. Vinu S, ME,

Assistant Professor,

St.Joseph’s College of Engineering,

 Chennai -600119.

2

UNIT IV

LISTS, TUPLES, DICTIONARIES

 In this Unit we will discuss about Python‘s built-in compound types like Lists,

Tuples, Dictionaries and their use.

4.1 LISTS

 Like a string, a list is a sequence of values. In a string, the values are

characters; in a list, they can be any type. The values in a list are called elements or

sometimes items. There are several ways to create a new list; the simplest is to enclose the

elements in square brackets ([and]): It can have any number of items and they may be of

different types (integer, float, string etc.).

Syntax

 [] # empty list

 [1, 2, 3] # list of integers

 ['physics', 'chemistry',‘computer‘] # list of strings

 [1, "Hello", 3.4] # list with mixed datatypes

Also, a list can even have another list as an item. This is called nested list.

my_list = ["mouse", [8, 4, 6], ['a']] # nested list

As you might expect, you can assign list values to variables:

>>>subject= ['physics', 'chemistry','computer']

>>>mark=[98,87,94]

>>>empty=[]

>>> print(Subject,mark,empty)

['physics', 'chemistry', 'computer'], [98, 87, 94], []

4.1.1 Lists are Mutable

 The syntax for accessing the elements of a list is the same as for accessing the

characters of a string—the bracket operator. The expression inside the brackets specifies the

index. Remember that the indices start at 0:

>>> subject[0]

'physics'

 Unlike strings, lists are mutable. When the bracket operator appears on the left

side of an assignment, it identifies the element of the list that will be assigned.

>>>mark=[98,87,94]

>>> mark[2]=100

>>> mark

[98, 87, 100]

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

Figure 4.1 State diagrams

 Figure 4.1 shows the state diagram for the lists subject, mark, and empty. 2
nd

element of mark,

which used to be 94, is now 100

List indices work the same way as string indices:

 Any integer expression can be used as an index.

 If you try to read or write an element that does not exist, you get an IndexError.

 If an index has a negative value, it counts backward from the end of the list.

The in operator also works on lists.

>>> subject= ['physics', 'chemistry', 'computer']

>>> 'chemistry' in subject

True

>>> 'english' in subject

False

4.1.2 Traversing a List, List Loop

The most common way to traverse the elements of a list is with a for loop.

The Syntax is :

for VARIABLE in LIST:

 STATEMENT(S) USING VARIABLE

 Elements in the List are stores in VARIABLE one by one for each iteration.

WE can use the element stored in VARIABLE for further processing inside the loop body

Example:

>>> for s in subject:

 print(s)

physics

chemistry

computer

0 98

1 87

2 94

 100

0 'physics'

1 'chemistry'

2 'computer'

subject

mark

empt

y

4

 This works well if you only need to read the elements of the list. But if you

want to write or update the elements, you need the indices. A common way to do that is to

combine the built-in functions range and len:

The Syntax is :

for ITERATION_VARIABLE in range(len(LIST_NAME)):

 STATEMENT(S) Using LIST_NAME[ITERATION_VARIABLE]

ITERATION_VARIABLE holds value from 0 to length of LIST_NAME one by one.

Using that ITERATION_VARIABLE we can access individual element of LIST_NAME for

reading and writing

>>> for i in range(len(mark)):

 mark[i] = mark[i] * 2

>>> mark

[196, 174, 200]

 This loop traverses the list and updates each element. len returns the number

of elements in the list. range returns a list of indices from 0 to n-1, where n is the length of

the list. Each time through the loop i gets the index of the next element. The assignment

statement in the body uses i to read the old value of the element and to assign the new value.

A for loop over an empty list never runs the body:

for x in []:

print('This never happens.')

 Although a list can contain another list, the nested list still counts as a single

element. The length of the following list is 3:

>>> my_list = ["mouse", [8, 4, 6], ['a']]

>>> len(my_list)

3

4.1.3 List Operations

The + operator concatenates lists:

>>> first=[100,200,300]

>>> second=[55,65]

>>> third=first+second

>>> third

[100, 200, 300, 55, 65]

The * operator repeats a list a given number of times:

>>> [5]*3

[5, 5, 5]

>>> [55,65]*3

[55, 65, 55, 65, 55, 65]

4.1.4 List Slices

The slice operator also works on lists:

>>> w=['w','e','l','c','o','m','e']

>>> w[2:5]

['l', 'c', 'o']

>>> w[:3]

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

['w', 'e', 'l']

>>> w[5:]

['m', 'e']

>>> w[:]

['w', 'e', 'l', 'c', 'o', 'm', 'e']

 If you omit the first index, the slice starts at the beginning. If you omit the

second, the slice goes to the end. So if you omit both, the slice is a copy of the whole list.

4.1.5 List Methods

Python includes following list methods.

SN Methods with Description Example

1 list.append(obj)

Appends object obj to list

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> t

['a', 'b', 'c', 'd']

2 list.count(obj)

Returns count of how many times obj

occurs in list

>>> aList = [123, 'xyz', 'zara', 'abc', 123]

>>> aList.count(123)

2

>>> aList.count('xyz')

1

3 list.extend(seq)

Appends the contents of seq to list

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> t1

['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

4 list.index(obj)

Returns the lowest index in list that obj

appears

aList = [123, 'xyz', 'zara', 'abc', 123]

>>> aList.index(123)

0

>>> aList.index('xyz')

1

5 list.insert(index, obj)

Inserts object obj into list at offset index

>>> aList.insert(3, 2009)

>>> aList

[123, 'xyz', 'zara', 2009, 'abc', 123]

6 list.pop(obj=list[-1])

Removes and returns last object or obj

from list

>>> aList = [123, 'xyz', 'zara', 'abc']

>>> aList.pop()

'abc'

>>> aList.pop(2)

'zara'

>>> aList

[123, 'xyz']

7 list.remove(obj)

>>> aList = [123, 'xyz', 'zara', 'abc']

>>> aList.remove('xyz')

>>> aList

6

Removes object obj from list [123, 'zara', 'abc']

8 list.reverse()

Reverses objects of list in place

>>> aList = [123, 'xyz', 'zara', 'abc', 'xyz']

>>> aList.reverse()

>>> aList

['xyz', 'abc', 'zara', 'xyz', 123]

9 list.sort([func])

Sorts objects of list, use compare func if

given

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> t

['a', 'b', 'c', 'd', 'e']

4.1.6 Deleting Elements

 There are several ways to delete elements from a list. If you know the index of

the element you want to delete, you can use pop:

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> t

['a', 'c']

>>> x

'b'

 pop modifies the list and returns the element that was removed. If you don‘t

provide an index, it deletes and returns the last element. If you don‘t need the removed value,

you can use the del operator:

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> t

['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> t

['a', 'c']

The return value from remove is None. To remove more than one element, you can use del

with a slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> t

['a', 'f']

As usual, the slice selects all the elements up to but not including the second index.

4.1.7 Aliasing

 If one is a refers to an object and you assign two = one, then both variables

refer to the same object:

>>> one = [10, 20, 30]

>>> two = one

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

>>> two is one

True

The state diagram looks like Figure 4.2

Figure 4.2 State diagrams

>>>two[1]=40

>>>one

[10, 40, 30]

 Although this behavior can be useful, it is error-prone. In general, it is safer to

avoid aliasing when you are working with mutable objects.

4.1.8 Cloning Lists

 If we want to modify a list and also keep a copy of the original, we need to be

able to make a copy of the list itself, not just the reference. This process is sometimes

called cloning, to avoid the ambiguity of the word copy.

 The easiest way to clone a list is to use the slice operator. Taking any slice

of a creates a new list. In this case the slice happens to consist of the whole list.

Example.

a = [81, 82, 83]

b = a[:] # make a clone using slice

print(a == b)

print(a is b)

b[0] = 5

print(a)

print(b)

Output will be

True

False

[81, 82, 83]

[5, 82, 83]

Now we are free to make changes to b without worrying about a. Again, we can clearly see

that a and b are entirely different list objects.

But the problem is if the list is a nested one this method won‘t work.

Example

a = [81, 82, [83,84]]

0 10

1 20

2 30

one

two

8

b = a[:] # make a clone using slice

print(a == b)

print(a is b)

b[2][0] = 5

print(a)

print(b)

Output will be:

True

False

[81, 82, [5, 84]]

[81, 82, [5, 84]]

Change in list b affect list a. In order to overcome this issue python provide a module called

copy. This module provides generic shallow and deep copy operations.

4.1.8.1 Copy Module

Interface summary:

copy.copy(x)

 Return a shallow copy of x.

copy.deepcopy(x)

 Return a deep copy of x.

The difference between shallow and deep copying is only relevant for compound objects

(objects that contain other objects, like lists or class instances):

 A shallow copy constructs a new compound object and then (to the extent possible)

inserts references into it to the objects found in the original.

 A deep copy constructs a new compound object and then, recursively,

inserts copies into it of the objects found in the original.

Shallow copy Example:

import copy

a = [81, 82, [83,84]]

b = copy.copy(a) # make a clone using shallow copy()

print(a == b)

print(a is b)

b[1]=10

b[2][0] = 5

print(a)

print(b)

Output will be:

True

False

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

[81, 82, [5, 84]]

[81, 10, [5, 84]]

Deep copy Example:

import copy

a = [81, 82, [83,84]]

b = copy.deepcopy(a) # make a clone using deepcopy()

print(a == b)

print(a is b)

b[1]=10

b[2][0] = 5

print(a)

print(b)

Output will be:

True

False

[81, 82, [83, 84]]

[81, 10, [5, 84]]

 We can notice the difference between shallow copy and deep copy from the

above examples. In shallow copy method change made in nested list b affect list a also it is

same as copying using slice operator. But in deep copy method changes made in nested list b

does not affect list a.

4.1.9 List Parameters

 When you pass a list to a function, the function gets a reference to the list. If

the function modifies the list, the caller sees the change. For example, delete_head removes

the first element from a list:

def delete_head(t):

 del t[0]

Here‘s how it is used:

>>> letters = ['x', 'y', 'z']

>>> delete_head(letters)

>>> letters

['y', 'z']

 The parameter t and the variable letters are aliases for the same object. It is

important to distinguish between operations that modify lists and operations that create new

lists. For example, the append method modifies a list, but the + operator creates a new list.

Here‘s an example using append:

>>> t1 = [10, 20]

>>> t2 = t1.append(30)

>>> t1

[10, 20, 30]

>>> t2

None

10

The return value from append is None.

Here‘s an example using the + operator:

>>> t3 = t1 + [40]

>>> t1

[10, 20, 30]

>>> t3

[10, 20, 30, 40]

 The result of the operator is a new list, and the original list is unchanged. This

difference is important when you write functions that are supposed to modify lists. For

example, this function does not delete the head of a list:

def bad_delete_head(t):

 t = t[1:] # WRONG!

 The slice operator creates a new list and the assignment makes t refer to it, but

that doesn‘t affect the caller.

>>> t4 = [10, 20, 30]

>>> bad_delete_head(t4)

>>> t4

[10, 20, 30]

 At the beginning of bad_delete_head, t and t4 refer to the same list. At the end,

t refers to a new list, but t4 still refers to the original, unmodified list. An alternative is to

write a function that creates and returns a new list. For example, tail returns all except first

element of a list:

def tail(t):

 return t[1:]

 This function leaves the original list unmodified. Here‘s how it is used:

>>> letters = ['x', 'y', 'z']

>>> rest = tail(letters)

>>> rest

['y', 'z']

4.2 TUPLES

 A tuple is a sequence of immutable Python objects. Tuples are sequences, just

like lists. The differences between tuples and lists are, the tuples cannot be changed unlike

lists and tuples use parentheses, whereas lists use square brackets.

4.2.1 Creating Tuples

 Similar to List, Tuple is a sequence of values. The values can be any type, and

they are indexed by integers. The important difference is that tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>>message= 'h','a','i'

>>> type(message)

<type 'tuple'>

Although it is not necessary, it is common to enclose tuples in parentheses:

>>> message= ('h','a','i')

>>> type(message)

<type 'tuple'>

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

To create a tuple with a single element, you have to include a final comma:

>>> t1 = 'a',

>>> type(t1)

<class 'tuple'>

A value in parentheses is not a tuple:

>>> t2 = ('a')

>>> type(t2)

<class 'str'>

Another way to create a tuple is the built-in function tuple. With no argument, it creates

an empty tuple:

>>> t = tuple()

>>> t

()

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of

the sequence:

>>> course=tuple('python')

>>> course

('p', 'y', 't', 'h', 'o', 'n')

Because tuple is the name of a built-in function, you should avoid using it as a variable name.

Most list operators also work on tuples. The square bracket operator indexes an element:

>>> course = ('p', 'y', 't', 'h', 'o', 'n')

>>> cource[0]

'p'

And the slice operator selects a range of elements.

>>> course[3:5]

('h', 'o')

But if you try to modify one of the elements of the tuple, you get an error:

>>> course[0]='P'

TypeError: 'tuple' object does not support item assignment

Because tuples are immutable, you can‘t modify the elements. But you can replace one tuple

with another:

>>> course=('P',)+course[1:]

>>> course

('P', 'y', 't', 'h', 'o', 'n')

This statement makes a new tuple and then makes course refer to it. The relational operators

work with tuples and other sequences; Python starts by comparing the first element from each

sequence. If they are equal, it goes on to the next elements, and so on, until it finds elements

that differ. Subsequent elements are not considered, even if they are really big.

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

12

4.2.2 Tuple Assignment

 It is often useful to swap the values of two variables. With conventional

assignments, you have to use a temporary variable. For example, to swap a and b:

>>> temp = a

>>> a = b

>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:

>>> a, b = b, a

 The left side is a tuple of variables; the right side is a tuple of expressions.

Each value is assigned to its respective variable. All the expressions on the right side are

evaluated before any of the assignments. The number of variables on the left and the number

of values on the right have to be the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

 More generally, the right side can be any kind of sequence (string, list or

tuple). For example, to split an email address into a user name and a domain, you could write:

>>> email='hodcse@stjosephs.ac.in'

>>> username,domain=email.split('@')

 The return value from split is a list with two elements; the first element is

assigned to username, the second to domain.

>>> username

'hodcse'

>>> domain

'stjosephs.ac.in'

4.2.3 Tuples as return Values

 Strictly speaking, a function can only return one value, but if the value is a

tuple, the effect is the same as returning multiple values. For example, if you want to divide

two integers and compute the quotient and remainder, it is inefficient to compute x/y and then

x%y. It is better to compute them both at the same time.

 The built-in function divmod takes two arguments and returns a tuple of two

values, the quotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

Here is an example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

 max and min are built-in functions that find the largest and smallest elements

of a sequence. min_max computes both and returns a tuple of two values.

>>> quot

2

>>> rem

1

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

4.2.4 Variable-Length Argument Tuples

 Functions can take a variable number of arguments. A parameter name that

begins with * gathers arguments into a tuple. For example, displayall takes any number of

arguments and prints them:

>>> def displayall(*args):

 print(args)

 The gather parameter can have any name you like, but args is conventional.

Here‘s how the function works:

>>> displayall('python',355.50,3)

('python', 355.5, 3)

 The complement of gather is scatter. If you have a sequence of values and

you want to pass it to a function as multiple arguments, you can use the * operator. For

example, divmod takes exactly two arguments; it doesn‘t work with a tuple:

>>> t = (7, 3)

>>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)

(2, 1)

 Many of the built-in functions use variable-length argument tuples. For

example, max and min can take any number of arguments:

>>> max(55,72,38)

72

But sum does not.

>>> sum(1, 2, 3)

TypeError: sum expected at most 2 arguments, got 3

4.2.5 Lists and Tuples

 zip is a built-in function that takes two or more sequences and returns a list of

tuples where each tuple contains one element from each sequence. The name of the function

refers to a zipper, which joins and interleaves two rows of teeth.

This example zips a string and a list:

>>> s='hai'

>>> t=[0,1,2]

>>> zip(s,t)

[('h', 0), ('a', 1), ('i', 2)]

 The result is a zip object that knows how to iterate through the pairs. The

most common use of zip is in a for loop:

>>> for pair in zip(s, t):

 print(pair)

('h', 0)

14

('a', 1)

('i', 2)

 A zip object is a kind of iterator, which is any object that iterates through a

sequence. Iterators are similar to lists in some ways, but unlike lists, you can‘t use an index to

select an element from an iterator.

If you want to use list operators and methods, you can use a zip object to make a list:

>>> list(zip(s, t))

[('h', 0), ('a', 1), ('i', 2)]

 The result is a list of tuples; in this example, each tuple contains a character

from the string and the corresponding element from the list.

If the sequences are not the same length, the result has the length of the shorter one.

>>> list(zip('Vinu', 'Ranjith'))

[('V', 'R'), ('i', 'a'), ('n', 'n'), ('u', 'j')]

You can use tuple assignment in a for loop to traverse a list of tuples:

>>> t=[('h',0),('a',1),('i',2)]

>>> for letter,number in t:

 print(number,letter)

(0, 'h')

(1, 'a')

(2, 'i')

 Each time through the loop, Python selects the next tuple in the list and

assigns the elements to letter and number.

 If you combine zip, for and tuple assignment, you get a useful idiom for

traversing two (or more) sequences at the same time. For example, has_match takes two

sequences, t1 and t2, and returns True if there is an index i such that t1[i] == t2[i]:

def has_match(t1, t2):

for x, y in zip(t1, t2):

 if x == y:

 return True

 return False

 If you need to traverse the elements of a sequence and their indices, you can

use the built-in function enumerate:

>>> for index, element in enumerate('hai'):

 print(index, element)

(0, 'h')

(1, 'a')

(2, 'i')

 The result from enumerate is an enumerate object, which iterates a sequence

of pairs; each pair contains an index (starting from 0) and an element from the given

sequence.

4.3 DICTIONARIES

 Dictionaries are one of Python‘s best features; they are the building blocks of

many efficient and elegant algorithms.

4.3.1 A Dictionary is a Mapping
 A dictionary is like a list, but more general. In a list, the indices have to be

integers; in a dictionary they can be (almost) any type.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

 A dictionary contains a collection of indices, which are called keys, and a

collection of values. Each key is associated with a single value. The association of a key and

a value is called a key-value pair or sometimes an item.

 In mathematical language, a dictionary represents a mapping from keys to

values, so you can also say that each key ―maps to‖ a value. As an example, we‘ll build a

dictionary that maps from English to Tamil words, so the keys and the values are all strings.

 The function dict creates a new dictionary with no items. Because dict is the

name of a built-in function, you should avoid using it as a variable name.

4.3.2 Creates Dictionary

>>> eng_tam=dict()

>>> eng_tam

{}

 The squiggly-brackets, {}, represent an empty dictionary. To add items to the

dictionary, you can use square brackets:

>>> eng_tam['two']='irantu'

 This line creates an item that maps from the key 'two' to the value 'irantu'. If

we print the dictionary again, we see a key-value pair with a colon between the key and

value:

>>> eng_tam

{'two': 'irantu'}

 This output format is also an input format. For example, you can create a new

dictionary with three items:

>>> eng_tam={'two':'irantu','three':'munru','four':'nanku'}

But if you print eng_tam, you might be surprised:

>>> eng_tam

{'four': 'nanku', 'two': 'irantu', 'three': 'munru'}

 The order of the key-value pairs might not be the same. If you type the same

example on your computer, you might get a different result. In general, the order of items in a

dictionary is unpredictable.

 But that‘s not a problem because the elements of a dictionary are never

indexed with integer indices. Instead, you use the keys to look up the corresponding values:

>>> eng_tam['two']

'irantu'

 The key 'two' always maps to the value ' irantu ' so the order of the items

doesn‘t matter. If the key isn‘t in the dictionary, you get an exception:

>>> eng_tam['five']

KeyError: 'five'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng_tam)

3

 The in operator works on dictionaries, too; it tells you whether something

appears as a key in the dictionary (appearing as a value is not good enough).

>>> 'two'in eng_tam

True

>>> 'irantu' in eng_tam

False

16

 To see whether something appears as a value in a dictionary, you can use the

method values, which returns a collection of values, and then use the in operator:

>>> meaning = eng_tam.values()

>>> 'irantu' in meaning

True

 The in operator uses different algorithms for lists and dictionaries. For lists, it

searches the elements of the list in order. As the list gets longer, the search time gets longer in

direct proportion. For dictionaries, Python uses an algorithm called a hashtable that has a

remarkable property: the in operator takes about the same amount of time no matter how

many items are in the dictionary.

4.3.3 Dictionary as a Collection of Counters

 Suppose you are given a string and you want to count how many times each

letter appears.

There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you could

traverse the string and, for each character, increment the corresponding counter,

probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character to a

number (using the built-in function ord), use the number as an index into the list, and

increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the

corresponding values. The first time you see a character, you would add an item to the

dictionary. After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that

computation in a different way.

 An implementation is a way of performing a computation; some

implementations are better than others. For example, an advantage of the dictionary

implementation is that we don‘t have to know ahead of time which letters appear in the string

and we only have to make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):

 d = dict()

 for c in s:

 if c not in d:

 d[c] = 1

 else:

 d[c] += 1

 return d

 The name of the function is histogram, which is a statistical term for a

collection of counters (or frequencies). The first line of the function creates an empty

dictionary. The for loop traverses the string. Each time through the loop, if the character c is

not in the dictionary, we create a new item with key c and the initial value 1 (since we have

seen this letter once). If c is already in the dictionary we increment d[c].

Here‘s how it works:

>>> h=histogram('python programmimg')

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

>>> h

{'a': 1, ' ': 1, 'g': 2, 'i': 1, 'h': 1, 'm': 3, 'o': 2, 'n': 1, 'p': 2, 'r': 2, 't': 1, 'y': 1}

 The histogram indicates that the letters 'a ' and ' ' appear once; 'g' appears

twice, and so on. Dictionaries have a method called get that takes a key and a default value. If

the key appears in the dictionary, get returns the corresponding value; otherwise it returns the

default value. For example:

>>> h = histogram('a')

>>> h

{'a': 1}

>>> h.get('a', 0)

1

>>> h.get('b', 0)

0

>>>

4.3.4 Looping and Dictionaries

 If you use a dictionary in a for statement, it traverses the keys of the

dictionary. For example, print_hist prints each key and the corresponding value:

def print_hist(h):

 for c in h:

 print(c, h[c])

Here‘s what the output looks like:

>>> h = histogram('programming')

>>> print_hist(h)

('a', 1)

('g', 2)

('i', 1)

('m', 2)

('o', 1)

('n', 1)

('p', 1)

('r', 2)

 Again, the keys are in no particular order. To traverse the keys in sorted order,

you can use the built-in function sorted:

>>> for key in sorted(h):

 print(key, h[key])

('a', 1)

('g', 2)

('i', 1)

('m', 2)

('n', 1)

('o', 1)

('p', 1)

('r', 2)

4.3.5 Reverse Lookup

 Given a dictionary d and a key k, it is easy to find the corresponding value v =

d[k]. This operation is called a lookup.

18

 But what if you have v and you want to find k? You have two problems: first,

there might be more than one key that maps to the value v. Depending on the application, you

might be able to pick one, or you might have to make a list that contains all of them. Second,

there is no simple syntax to do a reverse lookup; you have to search.

 Here is a function that takes a value and returns the first key that maps to that

value:

def reverse_lookup(d, v):

 for k in d:

 if d[k] == v:

 return k

 raise LookupError()

 This function is yet another example of the search pattern, but it uses a feature

we haven‘t seen before, raise. The raise statement causes an exception; in this case it

causes a LookupError, which is a built-in exception used to indicate that a lookup operation

failed.

 If we get to the end of the loop, that means v doesn‘t appear in the dictionary

as a value, so we raise an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram('programming')

>>> key = reverse_lookup(h, 2)

>>> key

'g'

And an unsuccessful one:

>>> key = reverse_lookup(h, 3)

Traceback (most recent call last):

 File "<pyshell#38>", line 1, in <module>

 key = reverse_lookup(h, 3)

 File "G:\class\python\code\dictionary.py", line 22, in reverse_lookup

 raise LookupError()

LookupError

 The effect when you raise an exception is the same as when Python raises one:

it prints a traceback and an error message. The raise statement can take a detailed error

message as an optional argument. For example:

>>> raise LookupError('value does not appear in the dictionary')

Traceback (most recent call last):

File "<stdin>", line 1, in ?

LookupError: value does not appear in the dictionary

 A reverse lookup is much slower than a forward lookup; if you have to do it

often, or if the dictionary gets big, the performance of your program will suffer.

4.3.6 Dictionaries and Lists

 Lists can appear as values in a dictionary. For example, if you are given a

dictionary that maps from letters to frequencies, you might want to invert it; that is, create a

dictionary that maps from frequencies to letters. Since there might be several letters with the

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

same frequency, each value in the inverted dictionary should be a list of letters. Here is a

function that inverts a dictionary:

def invert_dict(d):

 inverse = dict()

 for key in d:

 val = d[key]

 if val not in inverse:

 inverse[val] = [key]

 else:

 inverse[val].append(key)

 return inverse

 Each time through the loop, key gets a key from d and val gets the

corresponding value. If val is not in inverse, that means we haven‘t seen it before, so we

create a new item and initialize it with a singleton (a list that contains a single element).

Otherwise we have seen this value before, so we append the corresponding key to the list.

Here is an example:

>>> hist = histogram('programming')

>>> hist

{'a': 1, 'g': 2, 'i': 1, 'm': 2, 'o': 1, 'n': 1, 'p': 1, 'r': 2}

>>> inverse = invert_dict(hist)

>>> inverse

{1: ['a', 'i', 'o', 'n', 'p'], 2: ['g', 'm', 'r']}

 Lists can be values in a dictionary, as this example shows, but they cannot be

keys. Here‘s what happens if you try:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'oops'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

4.3.7 Advanced List Processing - List Comprehension

 Python supports a concept called "list comprehensions". It can be used to

construct lists in a very natural, easy way, like a mathematician is used to do. Following

function takes a list of strings, maps the string method capitalize to the elements, and returns

a new list of strings:

def capitalize_all(t):

res = []

for s in t:

 res.append(s.capitalize())

return res

We can write this more concisely using a list comprehension:

def capitalize_all(t):

 return [s.capitalize() for s in t]

 The bracket operators indicate that we are constructing a new list. The

expression inside the brackets specifies the elements of the list, and the for clause indicates

what sequence we are traversing.

20

 The syntax of a list comprehension is a little awkward because the loop

variable, s in this example, appears in the expression before we get to the definition.

 List comprehensions can also be used for filtering. For example, this function

selects only the elements of t that are upper case, and returns a new list:

def only_upper(t):

res = []

for s in t:

 if s.isupper():

 res.append(s)

return res

We can rewrite it using a list comprehension

def only_upper(t):

return [s for s in t if s.isupper()]

 List comprehensions are concise and easy to read, at least for simple

expressions. And they are usually faster than the equivalent for loops, sometimes much

faster.

4.4 ILLUSTRATIVE PROGRAMS

4.4.1 Sorting
 It is an operation in which all the elements of a list are arranged in a

predetermined order. The elements can be arranged in a sequence from smallest to largest

such that every element is less than or equal to its next neighbour in the list. Such an

arrangement is called ascending order. Assuming an array or List containing N elements, the

ascending order can be defined by the following relation:

 List[i] <= List [i+1], 0 < i < N-1

 Similarly in descending order, the elements are arranged in a sequence from

largest to smallest such that every element is greater than or equal to its next neighbor in the

list. The descending order can be defined by the following relation:

 List[i] >= List [i+1], 0 < i <N-1

 It has been estimated that in a data processing environment, 25 per cent of the

time is consumed in sorting of data. Many sorting algorithms have been developed. Some of

the most popular sorting algorithms that can be applied to arrays are in-place sort algorithm.

An in-place algorithm is generally a comparison- based algorithm that stores the sorted

elements of the list in the same array as occupied by the original one. A detailed discussion

on sorting algorithms is given in subsequent sections.

4.4.2 Selection Sort
 It is a very simple and natural way of sorting a list. It finds the smallest

element in the list and exchanges it with the element present at the head of the list as shows in

Figure 4.3

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

Figure 4.3 Selection sort (first pass)

 It may be note from Figure 4.3 that initially, whole of the list was unsorted.

After the exchange of the smallest with the element on the list, the list is divided into two

parts: sorted and unsorted.

 Now the smallest is searched in the unsorted part of the list, i.e., ‗2‘ and

exchange with the element at the head of unsorted part, i.e., ‗20‘ as shown in Figure 4.4.

Figure 4.4 Selection sort (second pass)

 This process of selection and exchange (i.e., a pass) continues in this fashion

until all the elements in the list are sorted (see Figure 4.5.). Thus, in selection sort, two steps

are important – selection and exchange.

 From Figure 4.4 and Figure 4.5, it may be observed that it is a case of nested

loops. The outer loop is required for passes over the list and inner loop for searching smallest

element within the unsorted part of the list. In fact, for N number of elements, N-1 passes are

made.

 An algorithm for selection sort is given below. In this algorithm, the elements

of a list stored in an array called LIST[] are sorted in ascending order. Two variables called

Small and Pos are used to locate the smallest element in the unsorted part of the list. Temp is

the variable used to interchange the selected element with the first element of the unsorted

part of the list.

22

 Algorithm SelectionSort()

1. For I= 1 to N-1 #Outer Loop

1.1 small = List[I]

1.2 Pos = I

1.3 For J=I+1 to N # Inner Loop

1.3.1 if (List[J] < small)

1.3.1.1 small = List[J]

 1.3.1.2 Pos = J #Note the position of the smallest

1.4 Temp= List[I] #Exchange Smallest with the

Head

1.5 List[I] = List [Pos]

1.6 List [Pos] = Temp

 2. Print the sorted list

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

Figure 4.5 Selection sort

Program to sort a List in ascending order using Selection Sort

data = []

print('Selection Sort :')

n = int(raw_input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 x = raw_input('Enter the Element %d :' %(i+1))

 data.append(x)

print('Original Array :')

print(data)

print('Intermediate Steps :')

for i in range(0,n-1):

 small=int(data[i])

 pos=i

24

 for j in range(i+1,n):

 if int(data[j])<small:

 small=int(data[j])

 pos=j

 temp=data[i]

 data[i]=data[pos]

 data[pos]=temp

 print(data)

print('Sorted Array :')

print(data)

Output

Selection Sort :

Enter Number of Elements in the Array: 5

Enter the Element 1 :4

Enter the Element 2 :3

Enter the Element 3 :6

Enter the Element 4 :8

Enter the Element 5 :1

Original Array :

['4', '3', '6', '8', '1']

Intermediate Steps :

['1', '3', '6', '8', '4']

['1', '3', '6', '8', '4']

['1', '3', '4', '8', '6']

['1', '3', '4', '6', '8']

Sorted Array :

['1', '3', '4', '6', '8']

4.4.3 Insertion Sort
 This algorithm mimics the process of arranging a pack of playing cards; the

first two cards are put in correct relative order. The third is inserted at correct place relative to

the first two. The fourth card is inserted at the correct place relative to the first three, and so

on.

 Given a list of numbers, it divides the list into two part – sorted part and

unsorted part. The first element becomes the sorted part and the rest of the list becomes the

unsorted part as Shown in Figure 4.6. It picks up one element from the front of the unsorted

part as shown in Figure 4.6. It picks up one element from the front of the unsorted part and

inserts it in proper position in the sorted part of the list. The insertion action is repeated till

the unsorted part is exhausted.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

Figure 4.6 Insertion sort

It may be noted that the insertion operation requires following steps:

Step

1. Scan the sorted part to find the place where the element, from unsorted part, can

be inserted. While scanning, shift the elements towards right to create space.

2. Insert the element, from unsorted part, into the created space.

This algorithm for the insertion sort is given below. In this algorithm, the elements of

a list stored in an array called List[] are sorted in an ascending order. The algorithm uses two

loops – the outer For loop and inner while loop. The inner while loop shifts the elements of

the sorted part by one step to right so that proper place for incoming element is created. The

outer For loop inserts the element from unsorted part into the created place and moves to next

element of the unsorted part.

Algorithm insertSort()

 1. For I = 2 to N #The first element becomes the sorted part

1.1 Temp = List[I] #Save the element from unsorted part into temp

1.2 J = I-1

1.3 While(Temp < = List[J] AND J >=0)

 1.3.1 List[J+I] = List[J] #Shift elements towards right

 1.3.2 J = J-I

 1.4 List [J+I] = Temp

 2. Print the list

26

 3. Stop

Program to sort a List in ascending order using Selection Sort

data = []

print('Insertion Sort :')

n = int(raw_input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 x = raw_input('Enter the Element %d :' %(i+1))

 data.append(x)

print('Original Array :')

print(data)

print('Intermediate Steps :')

for i in range(1,n):

 temp=int(data[i])

 j=i-1

 while temp<int(data[j]) and j>=0:

 data[j+1]=data[j]

 j=j-1

 data[j+1]=temp

 print(data)

print('Sorted Array is:')

print(data)

Output

Insertion Sort :

Enter Number of Elements in the Array: 5

Enter the Element 1 :3

Enter the Element 2 :5

Enter the Element 3 :2

Enter the Element 4 :8

Enter the Element 5 :1

Original Array :

['3', '5', '2', '8', '1']

Intermediate Steps :

['3', '5', '2', '8', '1']

['2', '3', '5', '8', '1']

['2', '3', '5', '8', '1']

['1', '2', '3', '5', '8']

Sorted Array is:

['1', '2', '3', '5', '8']

4.4.4 Merge Sort
This method uses following two concepts:

 If a list is empty or it contains only one element, then the list is already sorted. A list

that contains only one element is also called singleton.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

27

 It uses old proven technique of ‗divide and conquer‘ to recursively divide the list into

sub-lists until it is left with either empty or singleton lists.

 In fact, this algorithm divides a given list into two almost equal sub-lists. Each

sub-list, thus obtained, is recursively divided into further two sub-lists and so on till

singletons or empty lists are left as shown in Figure 4.7.

 Since the singleton and empty list are inherently sorted, the only step left is to

merge the singletons into sub-lists containing two elements each (see figure 4.7) which are

further merged into sub-lists containing four elements each and so on. This merging operation

is recursively carried out till a final merged list is obtained as shown in figure 4.8.

Figure 4.7 First step of merge sort (divide)

Figure 4.8 Second step of merge sort (merge)

28

Note: The merge operation is a time consuming and slow operation. The working of merge

operation is discussed in the next section.

Merging of lists It is an operation in which two ordered lists are merged into a single

ordered list. The merging of two lists PAR1 and PAR2 can be done by examining the

elements at the head of two lists and selecting the smaller of the two. The smaller element is

then stored into a third list called mergeList. For example, consider the lists PAR1 and PAR2

given the figure 4.9. Let Ptr1, Ptr2, and Ptr3 variables point to the first locations of lists

PAR1, PAR2 and PAR3, respectively. The comparison of PAR1[Ptr1] and PAR2[Ptr2]

shows that the element of PAER1 (i.e., ‗2‘) is smaller. Thus, this element will be placed in

the mergeList as per the following operation:

Figure 4.9 Merging of lists (first step)

mergeList[Ptr3] S= PAR1[Ptr1];

Ptr1++;

Ptr3++;

 Since an element from the list PAR1 has been taken to mergeList, the variable

Ptr1 is accordingly incremented to point to the next location in the list. The variable Ptr3 is

also incremented to point to next vacant location in mergeList.

 This process of comparing, storing and shifting is repeated till both the lists

are merged and stored in mergeList as shown in figure 4.10.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

29

Figure 4.10 Merging of lists (second step)

 It may be noted here that during this merging process, a situation may arise

when we run out of elements in one of the lists. We must, therefore, stop the merging process

and copy rest of the elements from unfinished list into the final list.

 The algorithm for merging of lists is given below. In this algorithm, the two

sub-lists are part of the same array List[]. The first sub-list in locations List[lb] to List[mid]

and the second sub-list is stored in locations List [mid+1] to List [ub] where lb and ub mean

lower and upper bounds of the array, respectively.

Algorithm merge (List, lb, mid, ub)

1. ptr1 =lb # index of first list

2. ptr2 = mid # index of second list

3. ptr3 = lb #index of merged list

4. while ((ptr1 < mid) && ptr2 <= ub) #merge the lists

4.1 if (List[ptr1 <= List[ptr2])

4.1.1 mergeList[ptr3] = List[ptr1] #element from firstlist is taken

4.1.2 ptr1++ #move to next element in the list

4.1.3 ptr3++

4.2 else

4.2.1 mergeList[ptr3] = List[ptr2] #element from second list is taken

4.2.2 ptr2++ #move to next element in the list

4.2.3 ptr3++

5. while(ptr1 < mid) #copy remaining first list

5.1 mergeList [ptr3] = List[ptr1]

30

5.2 ptr1++

5.3 ptr3++

}

6. while (ptr2 <= ub) #copy remaining second list

6.1 mergeList [ptr3] = List[ptr2]

6.2 ptr2++

6.3 ptr3++

7. for(i=lb; i<ptr3; i++) #copy merged list back into original list

7.1 List[i] = mergeList[i]

8. Stop

 It may be noted that an extra temporary array called mergedList is required to

store the intermediate merged sub-lists. The contents of the mergeList are finally copied back

into the original list.

 The algorithm for the merge sort is given below. In this algorithm, the

elements of a list stored in a array called List[] are sorted in an ascending order. The

algorithm has two parts- mergeSort and merge. The merge algorithm, given above, merges

two given sorted lists into a third list, which is also sorted. The mergeSort algorithm takes a

list and stores into an array called List[]. It uses two variables lb and ub to keep track of lower

and upper bounds of list or sub-lists as the case may be. It recursively divides the list into

almost equal parts till singleton or empty lists are left. The sub-lists are recursively merged

through merge algorithm to produce final sorted list.

Algorithm mergeSort (List, lb, ub)

 1. if (lb<ub)

 1.1mid = (lb+ub)/2 #divide the list into two sub-lists

 1.2 mergeSort(List, lb, mid) #sort the left sub-list

 1.3 mergeSort(List, mid+1, ub) #sort the right sub-list

 1.4 merge(List, lb, mid+1, ub) #merge the lists

 2. Stop

Program to sort a List in ascending order using Merge Sort

def mergeSort(alist):

 print("Splitting ",alist)

 if len(alist)>1:

 mid = len(alist)//2

 lefthalf = alist[:mid]

 righthalf = alist[mid:]

 mergeSort(lefthalf)

 mergeSort(righthalf)

 i=0

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

31

 j=0

 k=0

 while i < len(lefthalf) and j < len(righthalf):

 if int(lefthalf[i]) < int(righthalf[j]):

 alist[k]=lefthalf[i]

 i=i+1

 else:

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 while i < len(lefthalf):

 alist[k]=lefthalf[i]

 i=i+1

 k=k+1

 while j < len(righthalf):

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 print("Merging ",alist)

data = []

print('Merge Sort :')

n = int(raw_input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 x = raw_input('Enter the Element %d :' %(i+1))

 data.append(x)

print('Original Array :')

print(data)

print('Intermediate Steps :')

mergeSort(data)

print('Sorted Array is:')

print(data)

Output

Merge Sort :

Enter Number of Elements in the Array: 5

Enter the Element 1 :4

Enter the Element 2 :8

Enter the Element 3 :2

Enter the Element 4 :9

Enter the Element 5 :1

Original Array :

['4', '8', '2', '9', '1']

Intermediate Steps :

('Splitting ', ['4', '8', '2', '9', '1'])

('Splitting ', ['4', '8'])

('Splitting ', ['4'])

('Merging ', ['4'])

('Splitting ', ['8'])

('Merging ', ['8'])

32

('Merging ', ['4', '8'])

('Splitting ', ['2', '9', '1'])

('Splitting ', ['2'])

('Merging ', ['2'])

('Splitting ', ['9', '1'])

('Splitting ', ['9'])

('Merging ', ['9'])

('Splitting ', ['1'])

('Merging ', ['1'])

('Merging ', ['1', '9'])

('Merging ', ['1', '2', '9'])

('Merging ', ['1', '2', '4', '8', '9'])

Sorted Array is:

['1', '2', '4', '8', '9']

4.4.5 Quick Sort
 This method also uses the techniques of ‗divide and conquer‘. On the

basis of a selected element (pivot) from of the list, it partitions the rest of the list into two

parts- a sub-list that contains elements less than the pivot and other sub-list containing

elements greater than the pivot. The pivot is inserted between the two sub-lists. The algorithm

is recursively applied to the sub-lists until the size of each sub-list becomes 1, indicating that

the whole list has become sorted.

 Consider the list given in figure 4.11. Let the first element (i.e., 8) be the

pivot. Now the rest of the list can be divided into two parts- a sub-list that contains elements

less ‗8‘ and the other sub-list that contains elements greater than‘8‘ as shown in figure 4.11.

 Now this process can be recursively applied on the two sub-lists to completely

sort the whole list. For instance, ‗7‘ becomes the pivot for left sub-lists and ‗19‘ becomes

pivot for the right sub-lists.

Note: Two sub-lists can be safely joined when every element in the first sub-list is smaller

than every element in the second sub-list. Since ‗join‘ is a faster operation as compared to a

‗merge‘ operation, this sort is rightly named as a ‗quick sort‘.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

33

Figure 4.11 Quick Sort

The algorithm for the quick sort is given below:

 In this algorithm, the elements of a list, stored in an array called List[], are

sorted in an ascending order. The algorithm has two parts- quicksort and partition. The

partition algorithm divides the list into two sub-lists around a pivot. The quick sort algorithm

takes a list and stores it into an array called List[]. It uses two variables lb and ub to keep

track of lower and upper bounds of list or sub-lists as the case may be. It employs partition

algorithm to sort the sub-lists.

Algorithm quickSort()

1. Lb 50 #set lower bound

2. ub = N-1 #set upper bound

3. pivot = List[lb]

4. lb++

5. partition (pivot, List, lb, ub)

Algorithm partition (pivot, List, lb, ub)

1. i = lb

2. j=ub

3. while(i<=j)

34

#travel the list from lb till an element greater than the pivot is found

3.1 while (List[i] <= pivot) i++

travel the list from ub till an element smaller than the pivot is found

3.2 while (List[j]> pivot) j--

3.3 if (i <= j) #exchange the elements

3.3.1 temp = List[i]

3.3.2 List[i] = List[j]

3.3.3 List[j] = temp

4. temp =List[j] #place the pivot at mid of the sub-lists

5. List[j] = List[lb-1]

6. List[lb-1] = temp

7. if (j>lb) quicksort (List, lb, j-1) #sort left sub-list

8. if(j<ub) quicksort (List, j+1, ub) #sort the right sub-lists

Program to sort a List in ascending order using

def quicksort(myList, start, end):

 if start < end:

 pivot = partition(myList, start, end)

 print(myList)

 quicksort(myList, start, pivot-1)

 quicksort(myList, pivot+1, end)

 return myList

def partition(myList, start, end):

 pivot = int(myList[start])

 left = start+1

 right = end

 done = False

 while not done:

 while left <= right and int(myList[left]) <= pivot:

 left = left + 1

 while int(myList[right]) >= pivot and right >=left:

 right = right -1

 if right < left:

 done= True

 else:

 temp=myList[left]

 myList[left]=myList[right]

 myList[right]=temp

 temp=myList[start]

 myList[start]=myList[right]

 myList[right]=temp

 return right

data = []

print('Quick Sort :')

n = int(raw_input('Enter Number of Elements in the Array: '))

for i in range(0, n):

 x = raw_input('Enter the Element %d :' %(i+1))

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

35

 data.append(x)

print('Original Array :')

print(data)

print('Intermediate Steps :')

quicksort(data,0,n-1)

print('Sorted Array is:')

print(data)

Output

Quick Sort :

Enter Number of Elements in the Array: 8

Enter the Element 1 :8

Enter the Element 2 :5

Enter the Element 3 :6

Enter the Element 4 :9

Enter the Element 5 :4

Enter the Element 6 :19

Enter the Element 7 :7

Enter the Element 8 :2

Original Array :

['8', '5', '6', '9', '4', '19', '7', '2']

Intermediate Steps :

['7', '5', '6', '2', '4', '8', '19', '9']

['4', '5', '6', '2', '7', '8', '19', '9']

['2', '4', '6', '5', '7', '8', '19', '9']

['2', '4', '5', '6', '7', '8', '19', '9']

['2', '4', '5', '6', '7', '8', '9', '19']

Sorted Array is:

['2', '4', '5', '6', '7', '8', '9', '19']

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

1

GE8151 - PROBLEM SOLVING AND PYTHON

PROGRAMMING

REGULATIONS – 2017

UNIT – V

Prepared By :

Mr. Vinu S, ME,

Assistant Professor,

St.Joseph’s College of Engineering,

 Chennai -600119.

2

UNIT V

FILES, MODULES, PACKAGES

5.1 FILES

 Most of the programs we have seen so far are transient in the sense that they

run for a short time and produce some output, but when they end, their data disappears. If you

run the program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at least

some of their data in permanent storage (a hard drive, for example); and if they shut down

and restart, they pick up where they left off.

 One of the simplest ways for programs to maintain their data is by reading and

writing text files. An alternative is to store the state of the program in a database.

5.1.1 Text Files

 A text file is a sequence of characters stored on a permanent medium like a

hard drive, flash memory, or CD-ROM. Text file contain only text, and has no special

formatting such as bold text, italic text, images, etc. Text files are identified with the .txt file

extension.

5.1.2 Reading and Writing to Text Files

 Python provides inbuilt functions for creating, writing and reading files. There

are two types of files that can be handled in python, normal text files and binary files (written

in binary language,0s and 1s).

 Text files: In this type of file, each line of text is terminated with a special character

called EOL (End of Line), which is the new line character („\n‟) in python by default.

 Binary files: In this type of file, there is no terminator for a line and the data is stored

after converting it into machine understandable binary language.

In order to perform some operations on files we have to follow below steps

 Opening

 Reading or writing

 Closing

Here we are going to discusses about opening, closing, reading and writing data in a text file.

5.1.2.1 File Access Modes

 Access modes govern the type of operations possible in the opened file. It

refers to how the file will be used once its opened. These modes also define the location of

the File Handle in the file. File handle is like a cursor, which defines from where the data has

to be read or written in the file. There are 6 access modes in python.

 Read Only (‘r’) : Open text file for reading. The handle is positioned at the beginning

of the file. If the file does not exists, raises I/O error. This is also the default mode in

which file is opened.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

3

 Read and Write (‘r+’) : Open the file for reading and writing. The handle is

positioned at the beginning of the file. Raises I/O error if the file does not exists.

 Write Only (‘w’) : Open the file for writing. For existing file, the data is truncated

and over-written. The handle is positioned at the beginning of the file. Creates the file

if the file does not exists.

 Write and Read (‘w+’) : Open the file for reading and writing. For existing file, data

is truncated and over-written. The handle is positioned at the beginning of the file.

 Append Only (‘a’) : Open the file for writing. The file is created if it does not exist.

The handle is positioned at the end of the file. The data being written will be inserted

at the end, after the existing data.

 Append and Read (‘a+’) : Open the file for reading and writing. The file is created if

it does not exist. The handle is positioned at the end of the file. The data being written

will be inserted at the end, after the existing data.

5.1.3 Opening a File

 It is done using the open() function. No module is required to be imported for

this function.

Syntax:

File_object = open(r"File_Name","Access_Mode")

 The file should exist in the same directory as the python program file else, full

address (path will be discussed in later section of this unit) of the file should be written on

place of filename. Note: The r is placed before filename to prevent the characters in filename

string to be treated as special character. For example, if there is \temp in the file address, then

\t is treated as the tab character and error is raised of invalid address. The r makes the string

raw, that is, it tells that the string is without any special characters. The r can be ignored if the

file is in same directory and address is not being placed.

Example:

>>> f1 = open("sample.txt","a")

>>> f2 = open(r"G:\class\python\sample3.txt","w+")

 Here, f1 is created as object for sample.txt and f3 as object for sample3.txt

(available in G:\class\python directory)

5.1.4 Closing a File

 close() function closes the file and frees the memory space acquired by that

file. It is used at the time when the file is no longer needed or if it is to be opened in a

different file mode.

Syntax:

File_object.close()

Example:

>>> f1 = open("smapl.txt","a")

>>> f1.close()

 After closing a file we can‟t perform any operation on that file. If want to do

so, we have to open the file again.

4

5.1.5 Reading from a File

To read the content of a file, we must open the file in reading mode.

There are three ways to read data from a text file.

1. read() : Returns the read bytes in form of a string. Reads n bytes, if no n specified,

reads the entire file.

File_object.read([n])

2. readline() : Reads a line of the file and returns in form of a string.For specified n, reads

at most n bytes. However, does not reads more than one line, even if n exceeds the

length of the line.

File_object.readline([n])

3. readlines() : Reads all the lines and return them as each line a string element in a list.

File_object.readlines()

Example:

Consider the content of file sample.txt that is present in location G:\class\python\code\ as

Read Only

Read and Write

Write OnlyWrite and Read

Append Only

Append and Read

Now execute the following file reading script.

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.read()

'Read Only\nRead and Write\nWrite Only\nWrite and Read\nAppend Only\nAppend and

Read'

 Here \n denotes next line character. If you again run the same script, you will

get empty string. Because during the first read statement itself file handler reach the end of

the file. If you read again it will return empty string

>>> f1.read()

''

 So in order to take back the file handler to the beginning of the file you have

to open the file again or use seek() function. We will discuss about seek function in

upcoming section.

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.read(10)

'Read Only\n'

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.readline()

'Read Only\n'

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.readlines()

['Read Only\n', 'Read and Write\n', 'Write Only\n', 'Write and Read\n', 'Append Only\n',

'Append and Read']'

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

5

5.1.6 File Positions

 tell(): The tell() method tells you the current position within the file; in other

words, the next read or write will occur at that many bytes from the beginning of the file.

 seek(): The seek(offset[, from]) method changes the current file position.

The offset argument indicates the number of bytes to be moved. The from argument specifies

the reference position from where the bytes are to be moved.

 If from is set to 0, it means use the beginning of the file as the reference

position and 1 means use the current position as the reference position and if it is set to 2

then the end of the file would be taken as the reference position. If the second argument is

omitted, it also means use the beginning of the file as the reference position.

Example:

>>> f1=open("G:\class\python\code\sample.txt","r")

>>> f1.tell()

0L

>>> f1.readline()

'Read Only\n'

>>> f1.tell()

11L

>>> f1.seek(0)

>>> f1.tell()

0L

>>> f1.seek(5)

>>> f1.tell()

5L

>>> f1.readline()

'Only\n'

5.1.7 Writing to a File

 In order to write into a file we need to open it in write 'w' or append 'a'. We

need to be careful with the 'w' mode as it will overwrite into the file if it already exists. All

previous data are erased.

There are two ways to write in a file.

1. write() : Inserts the string str1 in a single line in the text file.

File_object.write(str1)

2. writelines() : For a list of string elements, each string is inserted in the text file.Used to

insert multiple strings at a single time.

File_object.writelines(L) for L = [str1, str2, str3]

Example:

>>> f4=open("fruit.txt","w")

6

>>> fruit_list=['Apple\n','Orange\n','Pineapple\n']

>>> f4.writelines(fruit_list)

>>> f4.write('Strawberry\n')

>>> f4.close()

>>> f4=open("fruit.txt","r")

>>> f4.read()

'Apple\nOrange\nPineapple\nStrawberry\n'

5.1.8 Appending to a File

 Adding content at the end of a file is known as append. In order to do

appending operation, we have to open the file with append mode.

Example:

>>> f4=open('fruit.txt','a')

>>> f4.write('Banana')

>>> f4.close()

>>> f4=open('fruit.txt','r')

>>> f4.read()

'Apple\nOrange\nPineapple\nStrawberry\nBanana\n'

5.1.9 The File Object Attributes

 Once a file is opened and you have one file object, you can get various

information related to that file. Here is a list of all attributes related to file object:

Attribute Description

File_object.closed Returns true if file is closed, false otherwise.

File_object.mode Returns access mode with which file was opened.

File_object.name Returns name of the file.

File_object.softspace Returns false if space explicitly required with print, true otherwise.

5.1.10 Format Operator

 The argument of write has to be a string, so if we want to put other values in a

file, we have to convert them to strings. The easiest way to do that is with str:

>>> f5=open('stringsample.txt','w')

>>> f5.write(5)

TypeError: expected a string or other character buffer object

>>> f5.write(str(5))

 An alternative is to use the format operator, %. When applied to integers, %

is the modulus operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, which contains one or more format sequences, which

specify how the second operand is formatted. The result is a string.

For example, the format sequence '%d' means that decimal value is converted to string.

>>> run=8

>>> '%d'%run

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

7

'8'

 The result is the string '8', which is not to be confused with the integer value 8.

Some other format strings are.

Conversion Meaning

d Signed integer decimal.

i Signed integer decimal.

o Unsigned octal.

u Unsigned decimal.

x Unsigned hexadecimal (lowercase).

X Unsigned hexadecimal (uppercase).

e Floating point exponential format (lowercase).

E Floating point exponential format (uppercase).

f Floating point decimal format.

F Floating point decimal format.

g Same as "e" if exponent is greater than -4 or less than precision, "f" otherwise.

G Same as "E" if exponent is greater than -4 or less than precision, "F" otherwise.

c Single character (accepts integer or single character string).

r String (converts any python object using repr()).

s String (converts any python object using str()).

% No argument is converted, results in a "%" character in the result.

 A format sequence can appear anywhere in the string, so you can embed a

value in a sentence:

>>> 'India need %d runs'%3

'India need 3 runs'

 If there is more than one format sequence in the string, the second argument

has to be a tuple. Each format sequence is matched with an element of the tuple, in order.

>>> 'India need %d runs in %d balls'%(3,5)

'India need 3 runs in 5 balls'

 The following example uses '%d' to format an integer, '%g' to format a

floating-point number, and '%s' to format a string:

>>> '%d %s price is %g rupees'%(5,'apple',180.50)

'5 apple price is 180.500000 rupees'

 The number of elements in the tuple has to match the number of format

sequences in the string. Also, the types of the elements have to match the format sequences:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'apple'

TypeError: %d format: a number is required, not str

 In the first example, there aren‟t enough elements; in the second, the element

is the wrong type.

5.1.11 Filenames and Paths

 Files are organized into directories (also called “folders”). Every running

program has a “current directory”, which is the default directory for most operations. For

example, when you open a file for reading, Python looks for it in the current directory.

 The os module provides functions for working with files and directories (“os”

stands for “operating system”). os.getcwd returns the name of the current directory:

8

>>> import os

>>> os.getcwd()

'C:\\Python27'

 cwd stands for “current working directory”. A string like 'C:\\Python27' that

identifies a file or directory is called a path.

 A simple filename, like 'stringsample.txt' is also considered a path, but it is a

relative path because it relates to the current directory.

 If the current directory 'C:\\Python27', the filename 'stringsample.txt' would

refer to 'C:\\Python27\\stringsample.txt '.

 A path that begins with drive letter does not depend on the current directory; it

is called an absolute path. To find the absolute path to a file, you can use os.path.abspath:

>>> os.path.abspath('stringsample.txt')

'C:\\Python27\\stringsample.txt'

 os.path provides other functions for working with filenames and paths. For

example, os.path.exists checks whether a file or directory exists:

>>> os.path.exists('memo.txt')

True

 If it exists, os.path.isdir checks whether it‟s a directory:

>>> os.path.isdir('memo.txt')

False

>>> os.path.isdir ('C:\\Python27')

True

Similarly, os.path.isfile checks whether it‟s a file.

 os.listdir returns a list of the files (and other directories) in the given directory:

>>> cwd=os.getcwd()

>>> os.listdir(cwd)

['DLLs', 'Doc', 'include', 'infinitLoop.py', 'Lib', 'libs', 'LICENSE.txt', 'NEWS.txt',

'parameter.py', 'python.exe', 'pythonw.exe', 'README.txt', 'sample.txt', 'sample2.txt',

'Scripts', 'stringsample.txt', 'swapwith third.py', 'tcl', 'Tools', 'w9xpopen.exe', 'wc.py', 'wc.pyc']

 To demonstrate these functions, the following example “walks” through a

directory, prints the names of all the files, and calls itself recursively on all the directories.

>>> def walk(dirname):

for name in os.listdir(dirname):

 path = os.path.join(dirname, name)

 if os.path.isfile(path):

 print(path)

 else:

 walk(path)

>>> cwd=os.getcwd()

>>> walk(cwd)

Output:

C:\Python27\DLLs\bz2.pyd

C:\Python27\DLLs\py.ico

C:\Python27\DLLs\pyc.ico

C:\Python27\DLLs\pyexpat.pyd

C:\Python27\DLLs\select.pyd

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

9

C:\Python27\DLLs\sqlite3.dll

C:\Python27\DLLs\tcl85.dll

C:\Python27\include\abstract.h

C:\Python27\include\asdl.h

C:\Python27\include\ast.h

 os.path.join takes a directory and a file name and joins them into a complete

path.

>>> os.path.join(cwd,'stringsample.txt')

'C:\\Python27\\stringsample.txt'

5.2 COMMAND LINE ARGUMENTS

 It is possible to pass some values from the command line to your python

programs when they are executed. These values are called command line arguments and

many times they are important for your program especially when you want to control your

program from outside instead of hard coding those values inside the code.

 The command line arguments are handled using sys module. We can access

command-line arguments via the sys.argv. This serves two purposes −

 sys.argv is the list of command-line arguments.

 len(sys.argv) is the number of command-line arguments.

Here sys.argv[0] is the program name ie. script name.

Example 1

Consider the following script command_line.py

import sys

print 'There are %d arguments'%len(sys.argv)

print 'Argument are', str(sys.argv)

print 'File Name is: ', sys.argv[0]

Now run above script as follows – in Command prompt:

C:\Python27>python.exe command_line.py vinu ranjith

This produce following result –

There are 3 arguments

Argument are ['command_line.py', 'vinu', 'ranjith']

File Name is: command_line.py

NOTE: As mentioned above, first argument is always script name and it is also being

counted in number of arguments. Here „vinu‟ and „ranjith‟ are extra inputs passed to

program through command line argument method while running python program

command_line.py.

10

Example 2

 This is a Python Program to copy the contents of one file into another. Source

and destination file names are given through command line argument while running the

program.

In order to do this we have to follow the following steps

1) Open file name with command line argument one as read mode (input file).

2) Open file name with command line argument two as write mode (output file).

3) Read each line from the input file and write it into the output file until the input file

data gets over.

4) Exit.

Program

import sys

source=open(sys.argv[1],'r')

destination=open(sys.argv[2],'w')

while(True):

 new_line=source.readline()

 if new_line=='':

 break

 destination.write(new_line)

source.close()

destination.close()

Now run above script as follows – in Command prompt:

C:\Python27>python.exe copy_file.py input_file.txt output_file.txt

5.3 ERRORS AND EXCEPTIONS

 There are two distinguishable kinds of errors: syntax errors and exceptions.

5.3.1 Syntax Errors

 Syntax errors, also known as parsing errors, are perhaps the most common kind of

complaint you get while you are still learning Python. Syntax error is an error in the syntax of a

sequence of characters or tokens that is intended to be written in python. For compiled languages,

syntax errors are detected at compile-time. A program will not compile until all syntax errors are

corrected. For interpreted languages, however, a syntax error may be detected during program

execution, and an interpreter's error messages might not differentiate syntax errors from errors of

other kinds.

5.3.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is

made to execute it. Errors detected during execution are called exceptions. You will soon learn how

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

11

to handle them in Python programs. Most exceptions are not handled by programs, however, and

result in error messages as shown here:

>>> 55+(5/0)

Traceback (most recent call last):

 File "<pyshell#12>", line 1, in <module>

 55+(5/0)

ZeroDivisionError: integer division or modulo by zero

>>> 5+ repeat*2

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 5+ repeat*2

NameError: name 'repeat' is not defined

>>> '5'+5

Traceback (most recent call last):

 File "<pyshell#14>", line 1, in <module>

 '5'+5

TypeError: cannot concatenate 'str' and 'int' objects

 The last line of the error message indicates what happened. Exceptions come

in different types, and the type is printed as part of the message: the types in the example

are ZeroDivisionError, NameError and TypeError. The string printed as the exception type

is the name of the built-in exception that occurred. This is true for all built-in exceptions, but

need not be true for user-defined exceptions (although it is a useful convention). Standard

exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

 The preceding part of the error message shows the context where the

exception happened, in the form of a stack traceback. In general it contains a stack traceback

listing source lines; however, it will not display lines read from standard input.

Python’s built-in exceptions lists and their meanings.

EXCEPTION NAME DESCRIPTION

Exception Base class for all exceptions

StopIteration Raised when the next() method of an iterator does not point to any object.

SystemExit Raised by the sys.exit() function.

StandardError Base class for all built-in exceptions except StopIteration and SystemExit.

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionError Raised when division or modulo by zero takes place for all numeric types.

AssertionError Raised in case of failure of the Assert statement.

AttributeError Raised in case of failure of attribute reference or assignment.

12

EOFError Raised when there is no input from either the raw_input() or input() function

and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually by pressing

Ctrl+c.

LookupError Base class for all lookup errors.

IndexError Raised when an index is not found in a sequence.

KeyError Raised when the specified key is not found in the dictionary.

NameError Raised when an identifier is not found in the local or global namespace.

UnboundLocalError Raised when trying to access a local variable in a function or method but no

value has been assigned to it.

EnvironmentError Base class for all exceptions that occur outside the Python environment.

IOError Raised when an input/ output operation fails, such as the print statement or

the open() function when trying to open a file that does not exist.

OSError Raised for operating system-related errors.

SyntaxError Raised when there is an error in Python syntax.

IndentationError Raised when indentation is not specified properly.

SystemError Raised when the interpreter finds an internal problem, but when this error is

encountered the Python interpreter does not exit.

SystemExit Raised when Python interpreter is quit by using the sys.exit() function. If not

handled in the code, causes the interpreter to exit.

TypeError Raised when an operation or function is attempted that is invalid for the

specified data type.

ValueError Raised when the built-in function for a data type has the valid type of

arguments, but the arguments have invalid values specified.

RuntimeError Raised when a generated error does not fall into any category.

NotImplementedError Raised when an abstract method that needs to be implemented in an inherited

class is not actually implemented.

5.4 HANDLING EXCEPTIONS

 Python provides two very important features to handle any unexpected error

in your Python programs and to add debugging capabilities in them.

 Exception Handling:

 Assertions:

5.4.1 Exception Handling

 An exception is an event, which occurs during the execution of a program that

disrupts the normal flow of the program's instructions. In general, when a Python script

encounters a situation that it cannot cope with, it raises an exception. An exception is a

Python object that represents an error.

 When a Python script raises an exception, it must either handle the exception

immediately otherwise it terminates and quits.

 If you have some suspicious code that may raise an exception, you can defend

your program by placing the suspicious code in a try: block. After the try: block, include

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

13

an except: statement, followed by a block of code which handles the problem as elegantly as

possible.

Syntax:

Here is simple syntax of try....except...else blocks −

try:

 You do your operations here;

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when the

try block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need the try: block's protection.

Example:

 This example opens a file with write mode, writes content in the file and comes

out gracefully because there is no problem at all

try:

 fp = open("test_exception.txt", "w")

 fp.write("Exception handling")

except IOError:

 print "Error: File don\'t have read permission"

else:

 print "Written successfully"

fp.close()

This produces the following result:

Written successfully

14

Example:

 This example opens a file with read mode, and tries to write the file where you

do not have write permission, so it raises an exception

try:

 fp = open("test_exception.txt", "r")

 fp.write("Exception handling")

except IOError:

 print "Error: File don\'t have read permission"

else:

 print "Written successfully"

 fp.close()

This produces the following result

Error: File don't have read permission

5.4.2 The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows −

try:

 You do your operations here;

except:

 If there is any exception, then execute this block.

else:

 If there is no exception then execute this block.

 This kind of a try-except statement catches all the exceptions that occur.

Using this kind of try-except statement is not considered a good programming practice

though, because it catches all exceptions but does not make the programmer identify the root

cause of the problem that may occur.

5.4.3 The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows −

try:

 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list, then execute this block.

else:

 If there is no exception then execute this block.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

15

5.4.4 The try-finally Clause

 You can use a finally: block along with a try: block. The finally block is a

place to put any code that must execute, whether the try-block raised an exception or not.

The syntax of the try-finally statement is this −

try:

 You do your operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

You cannot use else clause as well along with a finally clause.

Example

 This example opens a file with write mode, writes content in the file and comes

out gracefully because there is no problem at all

try:

 fp = open("test_exception.txt", "w")

 fp.write("Exception handling")

except IOError:

 print "Error: File don\'t have read permission"

else:

 print "Written successfully"

finally:

 print "Closing file"

 fp.close()

This produces the following result

Written successfully

Closing file

Example

 This example opens a file with read mode, and tries to write the file where you

do not have write permission, so it raises an exception

try:

 fp = open("test_exception.txt", "r")

 fp.write("Exception handling")

except IOError:

 print "Error: File don\'t have read permission"

else:

 print "Written successfully"

finally:

16

 print "Closing file"

 fp.close()

This produces the following result

Error: File don't have read permission

Closing file

 In the above two examples, one script didn‟t raise exception and another

script raise exception. But we can see that in both cases finally block gets executed.

5.4.5 Argument of an Exception

 An exception can have an argument, which is a value that gives additional

information about the problem. The contents of the argument vary by exception. You

capture an exception's argument by supplying a variable in the except clause as follows −

try:

 You do your operations here;

except ExceptionType, Argument:

 You can print value of Argument here...

 If you write the code to handle a single exception, you can have a variable

follow the name of the exception in the except statement. If you are trapping multiple

exceptions, you can have a variable follow the tuple of the exception.

 This variable receives the value of the exception mostly containing the cause

of the exception. The variable can receive a single value or multiple values in the form of a

tuple. This tuple usually contains the error string, the error number, and an error location.

Example

Following is an example for a single exception

def temp_convert(var):

 try:

 return int(var)

 except ValueError, Argument:

 print "The argument is not a numbers\n", Argument

temp_convert("abc")

This produces the following result

The argument is not a numbers

invalid literal for int() with base 10: 'abc'

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

17

5.4.6 Hierarchical Exceptions Handle

 Exception handlers don‟t just handle exceptions if they occur immediately in the try

clause, but also if they occur inside functions that are called (even indirectly) in the try clause. For

example:

def this_fails():

 x = 1/0

try:

 this_fails()

except ZeroDivisionError, detail:

 print 'Handling run-time error:', detail

This produces the following result

Handling run-time error: integer division or modulo by zero

 In this example exception is raised in this_fails() function. But, because of

this_fails() function don‟t have except block exception is thrown to the caller function. As there

is a except block, it will handle the exception.

5.4.7 Raising an Exceptions

 You can raise exceptions in several ways by using the raise statement. The

general syntax for the raise statement is as follows.

Syntax

raise [Exception [, args [, traceback]]]

 Here, Exception is the type of exception (for example, NameError)

and argument is a value for the exception argument. The argument is optional; if not

supplied, the exception argument is None.

 The final argument, traceback, is also optional (and rarely used in practice),

and if present, is the traceback object used for the exception.

Example

 An exception can be a string, a class or an object. Most of the exceptions that

the Python core raises are classes, with an argument that is an instance of the class. Defining

new exceptions is quite easy and can be done as follows −

def functionName(level):

 if level < 1:

 raise "Invalid level!", level

if we raise the exception, code below to this not executed

18

Note: In order to catch an exception, an "except" clause must refer to the same exception

thrown either class object or simple string. For example, to capture above exception, we

must write the except clause as follows

try:

 Business Logic here...

except "Invalid level!":

 Exception handling here...

else:

 Rest of the code here...

5.4.8 Assertions in Python

 An assertion is a sanity-check that you can turn on or turn off when you are

done with your testing of the program.

 The easiest way to think of an assertion is to liken it to a raise-if statement (or

to be more accurate, a raise-if-not statement). An expression is tested, and if the result

comes up false, an exception is raised.

 Assertions are carried out by the assert statement, the newest keyword to

Python, introduced in version 1.5.

 Programmers often place assertions at the start of a function to check for valid

input, and after a function call to check for valid output.

The assert Statement

 When it encounters an assert statement, Python evaluates the accompanying

expression, which is hopefully true. If the expression is false, Python raises

an AssertionError exception.

The syntax for assert is

assert Expression[, Arguments]

 If the assertion fails, Python uses ArgumentExpression as the argument for

the AssertionError. AssertionError exceptions can be caught and handled like any other

exception using the try-except statement, but if not handled, they will terminate the program

and produce a traceback.

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

19

Example

 Here is a function that converts a temperature from degrees Kelvin to degrees

Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the function bails out if it sees a

negative temperature

def KelvinToFahrenheit(Temperature):

 assert (Temperature >= 0),"Colder than absolute zero!"

 return ((Temperature-273)*1.8)+32

print KelvinToFahrenheit(275)

print int(KelvinToFahrenheit(509.25))

print KelvinToFahrenheit(-7)

When the above code is executed, it produces the following result

35.6

457

Traceback (most recent call last):

 File "G:/class/python/code/assertion.py", line 6, in <module>

 print KelvinToFahrenheit(-7)

 File "G:/class/python/code/assertion.py", line 2, in KelvinToFahrenheit

 assert (Temperature >= 0),"Colder than absolute zero!"

AssertionError: Colder than absolute zero!

5.5 MODULES

 A module allows you to logically organize your Python code. Grouping

related code into a module makes the code easier to understand and use. A module is a file

that contains a collection of related functions. Python has lot of built-in modules; math

module is one of them. math module provides most of the familiar mathematical functions.

Before we can use the functions in a module, we have to import it with an import statement:

>>> import math

 This statement creates a module object named math. If you display the

module object, you get some information about it:

>>> math

<module 'math' (built-in)>

 The module object contains the functions and variables defined in the module.

To access one of the functions, you have to specify the name of the module and the name of

the function, separated by a dot (also known as a period). This format is called dot notation.

>>> math.log10(200)

2.3010299956639813

20

>>> math.sqrt(10)

3.1622776601683795

 Math module have functions like log(), sqrt(), etc… In order to know what are

the functions available in particular module, we can use dir() function after importing

particular module. Similarly if we want to know detail description about a particular module

or function or variable means we can use help() function.
Example

>>> import math

>>> dir(math)

['__doc__', '__name__', '__package__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',

'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor',

'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p',

'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(pow)

Help on built-in function pow in module __builtin__:

pow(...)

 pow(x, y[, z]) -> number

 With two arguments, equivalent to x**y. With three arguments,

 equivalent to (x**y) % z, but may be more efficient (e.g. for longs).

5.5.1Writing Modules

 Any file that contains Python code can be imported as a module. For example,

suppose you have a file named addModule.py with the following code:

def add(a, b):

 result = a + b

 print(result)

add(10,20)

If you run this program, it will add 10 and 20 and print 30. We can import it like this:

>>> import addModule

30

Now you have a module object addModule

>>> addModule

<module 'addModule' from 'G:/class/python/code\addModule.py'>

The module object provides add():

>>> addModule.add(120,150)

270

So that‟s how you write modules in Python.

 The only problem with this example is that when you import the module it

runs the test code at the bottom. Normally when you import a module, it defines new

functions but it doesn‟t run them.

Programs that will be imported as modules often use the following idiom:

if __name__ == '__main__':

 add(10,20)

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

21

 __name__ is a built-in variable that is set when the program starts. If the

program is running as a script, __name__ has the value '__main__'; in that case, the test code

runs. Otherwise, if the module is being imported, the test code is skipped. Modify

addModule.py file as given below.

def add(a, b):

 result = a + b

 print(result)

if __name__ == '__main__':

 add(10,20)

Now while importing addModule test case is not running

>>> import addModule

 __name__ has module name as its value when it is imported. Warning: If you

import a module that has already been imported, Python does nothing. It does not re-read the

file, even if it has changed. If you want to reload a module, you can use the built-in function

reload, but it can be tricky, so the safest thing to do is restart the interpreter and then import

the module again.

5.6 PACKAGES

 Packages are namespaces which contain multiple packages and modules

themselves. They are simply directories, but with a twist.

 Each package in Python is a directory which must contain a special file

called __init__.py. This file can be empty, and it indicates that the directory it contains is a

Python package, so it can be imported the same way a module can be imported.

 If we create a directory called sample_package, which marks the package

name, we can then create a module inside that package called sample_module. We also must

not forget to add the __init__.py file inside the sample_package directory.

To use the module sample_module, we can import it in two ways:

>>> import sample_package. sample_module

or:

>>> from sample_package import sample_module

In the first method, we must use the sample_package prefix whenever we access the

module sample_module. In the second method, we don't, because we import the module to our

module's namespace.

The __init__.py file can also decide which modules the package exports as the API, while keeping

other modules internal, by overriding the __all__ variable, like so:

__init__.py:

__all__ = ["sample_module "]

22

5.7 WORD COUNT

Example.

 Following program print each word in the specified file occurs how many times.

import sys

def word_count(file_name):

 try:

 file=open(file_name,"r")

 wordcount={}

 entier_words=file.read().split()

 for word in entier_words:

 if word not in wordcount:

 wordcount[word] = 1

 else:

 wordcount[word] += 1

 file.close();

 print ("%-30s %s " %('Words in the File' , 'Count'))

 for key in wordcount.keys():

 print ("%-30s %d " %(key , wordcount[key]))

 except IOError:

 print ("No file found with name %s" %file_name)

 fname=raw_input("Enter New File Name:")

 word_count(fname)

try:

 word_count(sys.argv[1])

except IndexError:

 print("No file name passed as command line Argument")

 fname=raw_input("Enter File Name:")

 word_count(fname)

Content of a sample file word_count_input.txt is:

word count is the program which count each word in file appears how many times.

This produces the following result

c:\Python27>python wordcount1.py

No file name passed as command line Argument

Enter File Name:word_count_input

No file found with name word_count_input

Enter New File Name:word_count_input.txt

Words in the File Count

count 2

word 2

file 1

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

23

many 1

is 1

in 1

times 1

how 1

program 1

which 1

each 1

the 1

appears 1

 Above program shows the file handling with exception handling and

command line argument. While running, if you give command line like below, it will read

the text file with the name, that is specifies by command line argument one and calculate the

count of each word and print it.

c:\Python27>python wordcount1.py word_count_input.txt

 While running, if you give command line like below(ie, no command line

argument), On behalf of exception handling it will ask for file name and then do the same

operation on the newly entered file.

c:\Python27>python wordcount1.py

 Program also handle file not found exception, if wrong file name is entered. It

will ask for new file name to enter and proceed.

Example.

 Following program counts number of words in the given file.

import sys

def word_count(file_name):

 count=0

 try:

 file=open(file_name,"r")

 entier_words=file.read().split()

 for word in entier_words:

 count=count+1

 file.close();

 print ("%s File have %d words" %(file_name,count))

 except IOError:

 print ("No file found with name %s" %file_name)

 fname=raw_input("Enter New File Name:")

 word_count(fname)

try:

 word_count(sys.argv[1])

except IndexError:

 print("No file name passed as command line Argument")

24

 fname=raw_input("Enter File Name:")

 word_count(fname)

This produces the following result

c:\Python27>python wordcount2.py

No file name passed as command line Argument

Enter File Name:word_count_input

No file found with name word_count_input

Enter New File Name:word_count_input.txt

word_count_input.txt File have 15 words

 Above program also shows the file handling with exception handling and

command line argument. While running, if you give command line like below, it will read

the text file with the name, that is specifies by command line argument one and count

number of word present in it and print it.

c:\Python27>python wordcount2.py word_count_input.txt

 While running, if you give command line like below (ie, no command line

argument), On behalf of exception handling it will ask for file name and then do the same

word counting operation on the newly entered file.

c:\Python27>python wordcount2.py

 Program also handle file not found exception, if wrong file name is entered. It

will ask for new file name to enter and proceed.

5.8 COPY FILE

This is a Python Program to copy the contents of one file into another. In order to perform

the copying operation we need to follow the following steps.

1. Open source file in read mode.

2. Open destination file in write mode.

3. Read each line from the input file and write it into the output file.

4. Exit.

Also we include command line argument for passing source and destination file names to

program. Also exception handling is used to handle exception that occurs when dealing with

files.

import sys

def copy(src,dest):

 try:

 source=open(src,'r')

 destination=open(dest,'w')

 while(True):

 new_line=source.readline()

 if new_line=='':

 break

 destination.write(new_line)

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

25

 source.close()

 destination.close()

 except IOError:

 print ("Problem with Source or Destination File Name ")

 source_name=raw_input("Enter New Source File Name:")

 destination_name=raw_input("Enter New Destination File Name:")

 copy(source_name,destination_name)

try:

 copy(sys.argv[1],sys.argv[2])

except IndexError:

 print("Insufficent Command line argument!")

 source_name=raw_input("Enter Source File Name:")

 destination_name=raw_input("Enter Destination File Name:")

 copy(source_name,destination_name)

finally:

 print("Copying Done.....")

This produces the following result

C:\Python27>python copy_file_exception.py input_file.txt

Insufficent Command line argument!

Enter Source File Name:input_file.tx

Enter Destination File Name:output_file.txt

Problem with Source or Destination File Name

Enter New Source File Name:input_file.txt

Enter New Destination File Name:output_file.txt

Copying Done.....

.

.

STUCOR A
PP

DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP

