MA3251 STATISTICS AND NUMERICAL METHODS LTPC 3104 OBJECTIVES:

• This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

UNIT I TESTING OF HYPOTHESIS 9+3

Large sample test based on Normal distribution for single mean and difference of means – Tests based on t^2 and F distributions for testing means and variances – Contingency table (Test for Independency) – Goodness of fit.

UNIT II DESIGN OF EXPERIMENTS 9+3

One way and two way classifications - Completely randomized design – Randomized block design –Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9+3

Newton Raphson method – Gauss elimination method – pivoting – Gauss Jordan methods – Iterative methods of Gauss Jacobi and Gauss Seidel – Matrix inversion by Gauss Jordan method – Eigen values of a matrix by power method.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9+3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3 Taylor's series method – Euler's method – Modified Euler's method – Fourth order Runge-Kutta method for solving first order equations – Milne's predictor corrector methods for

solving first order equations – Finite difference methods for solving second order equations. TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES

• It helps the students to have a clear perception of the power of statistical and numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXT BOOKS

1. Johnson. R.A., and Gupta. C.B., "Miller and Freund's Probability and Statistics for Engineers", 11th Edition, Pearson Education, , Asia, 2011.

2. Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna Publishers, New Delhi, 2007.

REFERENCES

1. Walpole. R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.

2. Spiegel. M.R., Schiller. J., and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 2004.

3. Chapra. S.C., and Canale. R.P, "Numerical Methods for Engineers", 5th Edition, Tata McGrawHill, New Delhi, 2007.

4. Gerald. C.F., and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, NewDelhi, 2006.

STUCOR APP

DOWNLOADED FROM STUCOR APPAIT -- I

SOLUTION OF EQUATIONS AND ELGENVALUE PROBLEMS

(i.

<u>method</u> <u>ob</u> <u>Falle</u> <u>position</u> (or) <u>Regula</u> <u>Falsi</u> <u>method</u> (or) <u>linear</u> <u>interpolation</u> <u>method</u>. <u>2.6</u> $t(a_1) + (a) \ge 0$, then a_2 lies between x_1 and a $x_2 = \frac{a + (a_1) - x_1 + (a)}{f(x_1) - (a_1)}$

@ Find the positive hoot of 213-22-5=0 by the Regula Fallsi method. Soln:

Let $f(x) = x^3 - 2x - 5 = 0$

There is only one poistive scot by pescarte's rule of signs

$$f(0) = -5 = -ve$$

 $f(1) = 1-2-5 = -6 = -ve$

Therefore the populities hoot lies between 2 and 3. It is closer

to
$$2 \ also.$$

 $R_1 = \frac{ab(5) - bb(a)}{b(b) - b(a)}$
 $= \frac{2b(5) - 3b(2)}{b(3) - b(2)}$
 $= \frac{2(1b) - 3(-1)}{1b - (-1)}$
 $= \frac{32 + 3}{17} = \frac{35}{17}$
 $= 2.0598 [correct to 4 docimal places]$
 $b(11) = b(2.0588) = (2.0588)^3 - 2(2.0588) - 5$
 $= 8.7265 - 4.1176 - 5$

DOWNLOAD FOR PROVOCITU CORS APpetween 2.0588 and 30

DOWNLOADED FROM STUR OK 3 + (2.0588) f(3) - f(2.0588)= 2.0588(16) - 3(-0.3911)16 - (-0.3991) $= 32.9408 + 1.1733 = \frac{34.1141}{16.3911}$ = 2.0813 $f(x_2) = f(2.0813) = (2.0813)^3 - 2(2.0813) - 5$ = 9-0158 - 4-1626-5 = -0.1468 . The root lies between 2.0813 and 3 az = 2.0813 6(3) - 36(2.0813) 6(3) -+(2.0813) 2.0813(16) - 3(-0.1468) 16 - (-0.1468)33.3008 + 0.4404 = 33.7412 16.14-68 16.1468

2.08965

= 2.0897 (bour decimal places)

 $f(x_3) = f(2.0897) = (2.0897)^3 - 2(2.0897) - 5$

= - 0.054 = - Ve

1

STUCOR APP

... The nort lies between 2.0897 and 3 $a_4 = (2.0897) + (3) - 3 + (2.0897)$ f(3) - f(2.0897) = (2.0897)(16) - 3(-0.054)16 - (-0.054)

DOWNLOADED FROM STUCOR APP

DOWNLOAD

$$16.054$$

$$= \frac{33.5972}{16.054} = 2.0928$$

$$t(x_4) = t(2.0928) = (2.0928)^3 - 2(2.0928) - 5$$

$$= 9.1661 - 4.1856 - 5$$

$$= -0.0195 = -Ve$$

3

. The root les between 2, 0928 and 3

$$a_{8} = \frac{2 \cdot 0928 \pounds(3) - 3 \pounds(2 \cdot 0928)}{\pounds(3) - \pounds(2 \cdot 0928)}$$
$$= \frac{(2 \cdot 0928)(16) - 3(-0.0195)}{16 - (-0.0195)}$$

 $= \frac{33.4848 + 0.0585}{16.0195}$

= 2.0939

 $f(x_5) = f(2.0939) = (2.0939)^3 - 2(2.0939) - 5$ $= 9 \cdot 1805 - 4 \cdot 1878 - 5$ $= -0 \cdot 0073$

= -ve

$$from STUCOR HP.0073 = \frac{33.5243}{16.0073} = \frac{33.5243}{16.0073} = \frac{33.5243}{16.0073} = \frac{33.5243}{16.0073} = \frac{33.5243}{16.0073} = \frac{33.5243}{16.0073}$$

DOWNLOADED FROM STUCOR APP $f(26) = f(2.0943) = (2.0943)^2 - 2(2.0943) - 5$

$$= 9.1868 - 4.1886 - 5$$

= -0.0028
= $-Ve$

" The good lies between 2.0943 and 3

$$27 = (2 \cdot 0943) + (3) - 8 + (2 \cdot 0943) \\ + (3) - + (2 \cdot 0943) \\ = (2 \cdot 0943) (16) - 3(-0.0028) \\ - (-0.0028) \\ = \frac{33 \cdot 5088 + 0.0084}{16.0028} \\ = \frac{33 \cdot 5172}{16.0028} = 2.0945 \\ + (2.0945) = (2.0945)^{3} - 2(2.0945) - 5 \\ + (2.0945) = (2.0945)^{3} - 2(2.0945) - 5 \\ = 9 \cdot 1884 - 4 \cdot 189 - 5 \\ = -0.0006 = - Ve$$

.". The root lies between 2.0945 and 3

STUCOR APP

DOWNLOADED FROMSTUGOR APP= 2.0945 Correct to 4 places () of decemals.

Hence the required root correct to town places of decimals is 2.0945

The results of the complete working are tablilated selow.

		A		
steration(a)	a	Ь	1 29	Sign of Alta)
p1	2	3	2.0588	-0.3911
2	2.0588	3	2.0813	-0.1468
3	2.0813	3	2.0897	- 0.054
4	2.0897	3	2.0928	-0.0195
5	2.0928	3	2.0939	-0.0073
6	2.0939	3	2.0943	-0.0028
7	2.0943	3	2.0945	- 0.0006
8	2.0945	3	2.0945	

$$Formula a_g = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

we observe that $x_7 = x_8 = 2.0945$ Hence the required root is 2.0945

I using method of table position find a root of the equation $\pi^3 - 3x - 5 = 0$

COR APP

Sohn: - Gu

Even
$$f(x) = x^3 - 3x - 5$$

 $f(0) = 0 - 0 - 5 = -5 = -ve$
 $f(1) = 1 - 3 - 5 = 1 - 8 = -7 = -ve$
 $f(2) = 8 - 6 - 5 = 8 - 11 = -3 = -ve$
 $f(3) = 27 - 9 - 5 = 27 - 14 = 13 = +ve$

DOWNLOADED FROM STUCOPLAREN 2 and 3

Let
$$a = 2$$
, $b = 3$
 $a_{1} = \frac{a f(5) - b f(a)}{f(b) - f(a)}$
 $= \frac{2(13) - 3(-3)}{13 - (-3)}$
 $= \frac{2b+9}{16} - \frac{35}{16} = 2 \cdot 1875$
 $f(x_{1}) = f(2 \cdot 1875) = (2 \cdot 1875)^{2} - 9(2 \cdot 1875) - 5$
 $= 10 \cdot 4675 - 6 \cdot 5625 - 5$
 $= -1 \cdot c95$
 $\therefore cons.$ Sect lies between 2 · 1875 and 3
 $x_{2} = \frac{(2 \cdot 1875) f(3) - 3 f(2 - 1875)}{6(3) - f(2 - 1875)}$
 $= \frac{(2 \cdot 1875)(13) - 3(-4 \cdot 1975)}{13 - (-1 \cdot c975)}$
 $= \frac{28 \cdot 4 \cdot 875}{14 \cdot c975} = 2 \cdot 2506$
 $f(x_{2}) = f(2 \cdot 256) = (2 \cdot 2506)^{3} - 3(2 \cdot 2506) - 5$
 $= 11 \cdot 3197 - 6 \cdot 7518 - 5$
 $= -0 \cdot 3521 = -ve$
 $\therefore The Sheet Lies between 2 \cdot 2566 and 3$
 $x_{3} = \frac{2 \cdot 2506 f(3) - 3 \cdot f(2 \cdot 2506)}{13 - (-0 \cdot 3521)}$
 $= \frac{(2 \cdot 2506)(13) - 3(-0 \cdot 3521)}{13 - (-0 \cdot 3521)}$
 $= \frac{3 \cdot (314)}{29 \cdot 2578} + 1 \cdot 0563 = \frac{30 \cdot 3141}{20 \cdot 521} = -2 \cdot 2704$

DOWNLOADED FROM STUCOB.A352-1

Doy Reg A Dip (BREAM +) I = C(24 2.1744)
$$\stackrel{2}{3}$$
 3(2-2704) - 5
= 11.7033 - 6.81(2-5
= -0.1079 = -VE
 \therefore The Soft Lies between 2.2704 and 3
 $a_{4} = \frac{2 \cdot 2.704 f(3) - 3 f(2 \cdot 2.704)}{f(3) - 3(2 \cdot 2.704)}$
= $\frac{(2 \cdot 2.704) (13) - 3(-0.1077)}{13 - (-0.1077)}$
= $\frac{2.9.5152 + 6.3237}{13.1077} = \frac{2.9.8389}{13.1077} = 2.2764$
 $f(3a) = f(2 \cdot 2.764) = (2 \cdot 2.764)^{3} - 3(2 \cdot 2.764) + 5$
= 11.7963 - 6.8292 - 5
= -0.0329 = -VE
 \therefore The Soot Lies between 2.2764 and 3
 $a_{5} = \frac{(2 \cdot 2.764) f(3) - 3((2 \cdot 2.764))}{f(3) - 4(2 \cdot 2.764)}$
= $\frac{(2 \cdot 2.764) (13) - 3(-0.03924)}{13 - (-0.03924)}$
= $\frac{25 \cdot 5.932 + 0.0781}{13 - (-0.0297)} = \frac{27.6119}{13 - 0329} = 2.2782$
 $f(76) = f(2 \cdot 2.782) = (2 \cdot 2.782)^{5} - 3((2 \cdot 2.782)) - 5$
= 11.8243 - 6.8346 - 5
= -0.0103 = -VE

(2-2782) \$(3) - 35(2-2782) \$(3) - \$(2-2782)

STI

PF

DOWNLOADED EXAMPLES (13) R. 43(-0.0103)

$$I_3 - (-0.0103)$$

$$= \frac{29.6166 \pm 0.030}{13.0103} = \frac{99.6475}{13.0103} = 2.2788$$

$$f_{(26)} = f_{(2.2788)} = (2.2788)^6 - 3(2.2788) - 5$$

$$= 11.8336 - 6.8304 - 5$$

$$= -0.0028 = -Ve$$

$$\therefore The Scort Lies between 2.2788 and 3$$

$$a_7 = \frac{2.2788 f_{(3)} - 3f_{(2.2788)}}{13 - (-0.0028)}$$

$$= \frac{(2.2788)(13) - 3(-0.0028)}{13 - (-0.0028)}$$

$$= \frac{29.6244 \pm 0.0028}{13.0028}$$

$$= \frac{29.6328}{13.0028}$$

$$= \frac{29.6328}{13.0028}$$

$$= 2.2790$$

$$f_{(27)} = f_{(2.2790)} = (2.2790)^6 - 3(2.2790) - 5$$

$$= 11.8367 - 6.837 - 5$$

$$= -0.0003 = -Ve$$

$$\therefore The Scort Lies between 2.279 and 3$$

$$x_8 = \frac{2 \cdot 279 \ 6(3) - 3f(2 \cdot 279)}{f(3) - f(2 \cdot 279)}$$

$$= \frac{(2 - 279)(13) - 3(-0.0003)}{13 - (-0.0003)}$$

$$= \frac{29 \cdot 627 \ f 0.0009}{13 \cdot 0003}$$

STUCOR

APF

DOWNLOADED FROM STUCOR APP = 29.6279

13.0003

we observe that x7=28 = 2.2790 correct to tour places of decimals.

C - 163 16 161 161

Hence the required root is 2.2790.

			A 1 4 1 4 1 4 1 4	the first of the second second
R. I	$f(n) = n^{3}$	-3x-5 F	ormula 2g = -	f(b) - b f(a) f(b) - f(a)
Iteration(7)	a	6	I.g.	\$(2)
1	2. 1875	33	2.1875	-1.095
3	2.2506	3	2.2704	-0.3521
4	2.2704	3	2.2764	-0.1079
5	2.2764	3	2.2782	- 0. 0329
6	2.2782	3	2.2788	0.0103
7	2.2788	3	2.2190	-0.0028
8	2.2790	3	2-2790	-0.0005

TABLE

Hence the rognised root is 2.2790

I Find an approximate root of a log x - 1.2 = 0 by Regula Falsi method.

f(1) = 0-1.2 = -1.2 = -ve

f(2) = 2(0.30103) -1-2 = -0.5979 = -ve

Hence a Root lies between 2 and 3

$$\mathcal{H}_{1} = \frac{2 f(3) - 3 f(2)}{f(3) - 5 (2)}$$

= $\frac{2(0.2314) - 3(-0.5979)}{0.2314 - (-0.5979)} = \frac{0.4628 + 1.7937}{0.8293}$
STUCOR

DOWNLOADED ERGMESTICOR APP

$$0.8293 = 2.7210$$

 $f(x_1) = f(2.7210) = (2.7210) Ag_{10}^{2.7210} -1.2$
 $= -0.0171 = -Ve$
Therefore the hast lies between 2.7210 and 3
 $a_{12} = (2.7210) f(3) - 36(2.7210)$
 $= \frac{0.68934}{0.2485} = 2.7402$
 $f(x_2) = f(2.7402) = (2.7402) Ag_{10}^{2.7402} -1.2$
 $= -0.0004 = -Ve$
 \therefore The hoot lies between 2.7402 and 3
 $x_3 = \frac{2.7402}{6(3) - 4(2.7402)}$
 $= (2.7402 f(3) - 36(9.7402))$
 $= (2.7407) (0.92314) - 3(-0.0004))$
 $(0.2314) - (-0.0004)$
 $= 2.7407$
 $f(x_3) = f(2.7407) = 2.7407 Ag_{10} 2.7407 -1.2$
 $= 0.0001 = tVR$

 $\therefore The Root lies between 2.7402 and 2.7407$ $<math display="block">x_{4} = \frac{2.7402 \ 6(2.7407) - (2.7407) \ 6(2.7402)}{6(2.7407) - 6(2.7402)}$ $= \frac{(2.7402) (0.0001) - (2.7407) (-0.0004)}{(0.0001) - (2.7407) (-0.0004)}$ DOWNLOADED FROM STUCOR APP

DOWNLOADED (R. 442 Style COBRIDER (2.7407) (0.0004)

$$0.0001 + 0.0004$$

 $= 2.7406$
 $b(x_4) = b(2.7406) = 2.7406 log_{10} 2.7406 - 1.2$
 $= -0.0004 = -Ve$
 $x_5 = \frac{2.7406 b(2.7407) - 2.7407 b(2.7406)}{b(2.7407) - b(2.7406)}$
 $= \frac{(2.7406)(0.0001) - (2.7407)(-0.00004)}{0.0001 - (0.00004)} = 2.7406$
 $b(0.0001 + 0.00004)$
 $= \frac{(2.7406)(0.0001) + (2.7407)(0.00004)}{0.0001 + 0.00004} = 2.7406$
We observe that $z_4 - z_5 = 2.7406$
 $b(z, z) = 2.7406$

Hence in required root is 2-7406

6(x) =	or log 10 x	-1.2 F	ormula sig = "	$\frac{1}{6(3)} - \frac{1}{6t(a)}$
Foration(27)	a	6	x g	6(2(g))
	2	3	2.7210	-0.0171
2	2.7210	3	2.7402	- 0.0004
3	2.7402	3	2. 7407	0.0001
4	2 + 7402	2.7407	2.7406	-0.00004
5	2.7406	2 + 7407	2-7406	

we toud that \$(2.7406) is approaching zero

S

Hence the required root is 2.7406.

DOWNLOADED FROM STUCOR APP METHOD [Newton - Raphson method]

$$formula::$$

 $\chi_{n+1} = \lambda_n - \frac{f(\lambda_n)}{f'(\lambda_n)}, n = 0, 1, 2 - ...$

O Find the positive root of 214-22 = 10 Correct to three decimal places using Newton - Raphson method.

$$\frac{g_{0}h_{1}}{f_{1}} = 4t + \frac{1}{2} + \frac{1}{2$$

DOWNLOADED FROM STUCOR APP 25.199

STUCOR APP

decimal places]

DOWNLOADED FROM STUCOR(AP) $x_3 = \frac{1}{8^3} \left(\frac{1}{856} - \frac{5(1.856)}{6(1.856)} + \frac{1}{856} - \frac{1}{856} + \frac{1}{$

$$1.856 - 0.010$$

24.574

= 1.856

The better approximate root is 1.856

(2) using Newton's iterative method : find the root between o and 1
(4) 31³ = 6x−4 correct to two decimal places.

Solution Let
$$b(0) = 2^{2} - 6x + 4$$

 $f(x) = 32^{2} - 6$
 $f(0) = 4 = + \sqrt{2}$
 $f(1) = 1 - 6 + 4 = -1 = -\sqrt{2}$
 $f(1) = 1 - 6 + 4 = -1 = -\sqrt{2}$
 $f(1) = 1 - 6 + 4 = -1 = -\sqrt{2}$
 $f(1) = 1 - 6 + 4 = -1 = -\sqrt{2}$

$$\mathfrak{I}(n+1) = \mathfrak{I}(n) - \frac{\mathfrak{f}(\mathfrak{I}(n))}{\mathfrak{f}(\mathfrak{I}(n))}$$

$$\begin{aligned} x_{1} = \gamma_{0} - \frac{f(\gamma_{0})}{f^{1}(\gamma_{0})} \\ &= 1 - \frac{f(\gamma_{0})}{f^{1}(\gamma_{0})} = 1 - \left[\frac{(\gamma_{0}^{3} - 6(\gamma_{0}) + 4)}{3(\gamma_{0}^{2} - 6)}\right] \end{aligned}$$

DOWNLOADED FROM STUCOR APP = 0.67 Correct to two decemal

DOWNL₂₂ = 0 & QM (FPGCOR APP

$$\frac{1}{4^{1}(x_{1})}$$

= 0.67 - $\frac{6(0.67)}{4^{1}(0.67)}$
= 0.67 - $\left[\frac{9.47)^{2}-6(0.67)+4}{3(0.67)^{2}-6}\right]$
= 0.67 - $\frac{0.28}{-4r.65}$
= 0.67 + $\frac{0.28}{4r.65}$
= 0.713
 $x_{5} = x_{2} - \frac{6(x_{2})}{4^{1}(x_{1})}$
= 0.73 - $\frac{6(0.73)}{4^{1}(x_{1})}$
= 0.73 - $\left[\frac{(0.73)^{3}-4(0.73)+4}{3(0.73)^{2}-6}\right]$
= 0.73 - $\left[\frac{0.009}{-4r.4013}\right]$
= 0.73 + $\frac{0.009}{4.4013}$
= 0.73 [Losseet to two desimal places]
Here $x_{2} = x_{3} = 0.73$

3 Find the head positive host of 3x - coss by Newton's method correct to b decimal places.

places]

STUCOR APP

John

let f(x) = 3x - loex -1 DOWNLOADED FROMSOUCOR APP' -ve DOWNLOADED FROMMESTUCOR APP2 - Ces 1 = 1.459698 = +ve

(15)

: a host lies between o and i

$$|f(0)| > |f(0)|$$

Hence the host is nearbor to 1.
 $|t = 10 - \frac{f(10)}{f(00)}$
 $= 0.6 - \frac{f(0.6)}{g(0.6)}$
 $= 0.6 - \left[\frac{3(0.6) - cos(0.6) - 1}{3 + 8in(0.6)}\right]$
 $= 0.6 - \left[-\frac{3(0.6) - cos(0.6) - 1}{3 + 8in(0.6)}\right]$
 $= 0.6 - (-0.007101)$
 $= 0.6 - (-0.007101)$
 $= 0.607108$
 $\pi_2 = \pi_1 - \frac{f(\pi_1)}{f(\pi_1)}$
 $= 0.607108 - \left[-\frac{3(0.607108) - cos(0.607108)}{8 + 8in(0.607108)} - \frac{cos(0.607108)}{8 + 8in(0.607108)}\right]$
 $= 0.607102$
 $\pi_3 = \pi_2 - \frac{f(\pi_2)}{f(\pi_2)}$
 $= 0.607102 - \frac{f(0.607102)}{g^1(0.607102)}$
 $= 0.607102 - \left[-\frac{3(0.607102)}{8 + 8in(0.607102)} - \frac{1}{8}\right]$
 $= 0.607102 - \left[-\frac{3(0.607102)}{8 + 8in(0.607102)} - \frac{1}{8}\right]$

= 0.607102

DOWNLOADED FROM STUCOR APP The roct is 0: 601102 Correct to Six decimals DO AND ME MEANISTICO BAPP of 2 log 2 = 12.34 Start with DIO= 10.

Soh:

Let
$$f(x) = x \log_{10} x - 12 \cdot 34$$

 $f_{1}^{1}(x) = x \int_{X} \log_{10} e^{e} + \log_{10} x$
 $= \log_{10} e^{e} + \log_{10} x$
Criticen $x_{0} = 10$
 $\boxed{2n+1} = 2(n - \frac{f(2n)}{6!(2n)})$
 $x_{1} = x_{0} - \frac{f(2n)}{6!(2n)}$
 $= 10 - \frac{f(10)}{6!(10)}$
 $= 10 - \left[\frac{10\log_{10} e^{-12 \cdot 34}}{\log_{10} e^{-4} \log_{10} 10}\right]$
 $= 10 - \left[\frac{-2 \cdot 34}{1 \cdot 43 4 \cdot 3}\right]$
 $= 10 + \frac{2 \cdot 34}{1 \cdot 43 4 \cdot 3}$
 $= 11 \cdot 6315$
 $x_{2} = x_{1} - \frac{f(x_{1})}{6!(2n)}$
 $= 11 \cdot 6315 - \frac{f(11 \cdot 6315)}{6!(11 \cdot 6315)}$
 $= 11 \cdot 6315 - \left[\frac{11 \cdot 6315 \log_{10} 11 \cdot 6315 - 12 \cdot 34}{\log_{10} e^{-4} \log_{10} 11 \cdot 6315}\right]$

= 11. 5949

DOWNLOADED FROM STACOR APP

From 22 and 23 we bend out the root is 11.5949.

FIXED POINT ITERATION 2 = 9(21) method. Solve the equation of - 201-3 =0 tor the positive root by O Iteration method

 $\frac{80 \text{ hm}}{100 \text{ set } 6(x)} = 90^2 - 201 - 3 = 0$

for is easy to tarkon to show poots at x=-1 and x=3

Rearrange equation (1)

let 20 = 4

$$p(1 = g(x_0) = \sqrt{2x_0 + 3} = \sqrt{8 + 3} = \sqrt{11} = 3.31662$$

$$x_2 = g(x_1) = \sqrt{2x_1 + 3} = \sqrt{9.63325} = 3.10375$$

$$x_3 = g(x_2) = \sqrt{2x_2 + 3} = \sqrt{9.20750} = \sqrt{9.20750} = 3.03439$$

$$x_4 = g(x_3) = \sqrt{2x_3 + 3} = \sqrt{9.06877} = 3.01144$$

$$x_5 = g(x_4) = \sqrt{2x_4 + 3} = \sqrt{9.02288} = 3.00381$$

$$x_6 = g(x_6) = \sqrt{2x_6 + 3} = 3.00127$$
DOWNIQAPED FROM 2014 2007 APR .00042

DOWNLOADED FROM STUCOR APP $\chi_8 = g(\pi_7) = \sqrt{2\chi_7 + 3} = 3.00014$

$$\chi q = g(\chi_{6}) = \sqrt{2\chi_{8} + 3} = 3,00005$$

$$\chi_{10} = g(\chi_{10}) = \sqrt{2\chi_{10} + 3} = 3,00002.$$

$$\chi_{11} = g(\chi_{10}) = \sqrt{2\chi_{10} + 3} = 3,00000$$

$$\chi_{12} = g(\chi_{11}) = \sqrt{2\chi_{10} + 3} = 3,00000$$

$$\chi_{13} = g(\chi_{12}) = \sqrt{2\chi_{10} + 3} = 3,00000$$

Here $\chi_{12} = \chi_{13} = 3$ [correct 5 decimal places]
Here $\chi_{12} = \chi_{13} = 3$ [correct 5 decimal places]
Here $\chi_{12} = \chi_{13} = 3$ [correct 5 decimal places]
Here $\chi_{12} = \chi_{13} = -98 = -900$

$$f(w) = -100 = -98 = -900$$

$$f(w) = -100 = -98 = -900$$

$$f(w) = 27+9 - 100 = -64 = -900$$

$$f(w) = 27+9 - 100 = -64 = -900$$

$$f(w) = 125 + 25 - 100 = 50 = +900$$

$$f(w) = 125 + 25 - 100 = 50 = +900$$

$$\chi_{14} = 64 + 16 = 1000 = -20 = -900$$

$$\chi_{15} = 125 + 25 - 100 = 50 = +900$$

$$\chi_{16} = 90000 \quad \text{equation can be written as}$$

$$\chi^{2}(\chi + 1) = 1000$$

$$\chi = \frac{10}{\sqrt{2\pi 1}} = 9(\chi)$$

$$g'(\chi) = 10 \frac{\Gamma - \chi_{1}}{2} = \frac{-5}{(\chi + 1)^{3}}$$

$$1g'(\chi_{1}) = \frac{5}{(\chi + 1)^{3}}$$

 $(2^{(+1)})^{72}$ $|9'(4)| = \frac{5}{5^{3/2}} \leq 1$ DOWNLOADED FROM STUCOR APP

50

 $\frac{M_{\rm STUCOR}}{\sqrt{3}}$ " [g'(a)] is less than 1 in the interval (4,5) So the method Can be applied Let 20= 4.2 $x_1 = g(x_0) = \frac{10}{\sqrt{x_0+1}} = \frac{10}{\sqrt{4\cdot 2\cdot 11}} = 4\cdot 38529$ $P_{2} = g(a_{1}) = \frac{10}{\sqrt{a_{1}+1}} = \frac{10}{\sqrt{4\cdot 38529+1}} = 4\cdot 30919$ - = 4.33996 $a_3 = 9(a_2) = \frac{10}{\sqrt{a_2+1}} = \frac{10}{\sqrt{4.30919+1}}$ $y(4 = g(x_3) = \frac{10}{\sqrt{x_3 + 1}} = \frac{10}{\sqrt{4 \cdot 33976 + 1}} = 4 \cdot 32744$ $25 = 9(24) = \frac{10}{\sqrt{24+1}} = 4.33252$ $n_6 = g(n_5) = \frac{10}{\sqrt{n_5+1}} = 4 \cdot 33046$ $917 = 9(36) = \frac{10}{\sqrt{26+1}} = 4.33129$ $P(g = g(x_7) = \frac{10}{\sqrt{x_7 + 1}} = 4.33096$ $2q = 9(28) = \frac{10}{10} = 4.33109$ $X_{10} = 9(x9) = \frac{10}{\sqrt{26}+1} = 4.33104$ $\chi_{11} = g(16_{10}) = 10 = 4.33106$ $\sqrt{2_{10+1}} = 4.33106$ $\chi_{12} = g(\chi_{11}) = \frac{10}{\sqrt{\chi_{11}+1}} = 4.33105$ $\lambda_{13} = 9(\lambda_{12}) = \frac{10}{\sqrt{2}(2+1)} = \frac{4}{\sqrt{2}(2+1)}$ Hore 242 = 213 = 4.3310B correct to 5 decimal places.

STUCOR APP

Gaussian Flimination method. 8

& Gauss - Jorelan method

O Solve the system of equations by (i) Grange elimination method (ii) Grange - Joordan method.

$$10 \ x - 2y + 3z = 23$$

271 + 10y - 57 = -33
3 x - 4y + 10z = 41

Soh:

(i) braves elimination method.

The given system is equivalent to

$$\begin{bmatrix} 10 & -2 & 3 \\ 2 & 10 & -5 \\ 3 & -4 & 10 \end{bmatrix} \begin{bmatrix} 2 \\ y \\ z \end{bmatrix} = \begin{bmatrix} 23 \\ -33 \\ 41 \end{bmatrix}$$
Here $[A, B] = \begin{bmatrix} 10 & -2 & 3 & 23 \\ 2 & 10 & -5 & -33 \\ 3 & -4 & 10 & 41 \end{bmatrix}$

NOW, we will make the matrix A as a upper priangular

Find the fillst now, change 2 and 3 now what new
$$remains remains rem$$

$$\begin{bmatrix} 10 & -2 & 3 & 23 \\ 0 & 52 & -28 & -188 \\ 0 & 0 & 3780 & 11340 \end{bmatrix}$$
 R₃ \leftrightarrow 52R₃ + 34R₂

From (1) we get [by back substitution]

 $\frac{z}{1} = 3$ DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP 52y - 28z = -188 52y - 28(3) = -188 y = -2 10x - 2y + 3z = 23 10x - 2(-2) + 3(3) = 23 10x + 4 + 9 = 23 10x + 13 = 23 10x + 13 = 23 10x = 102t = 1

Hence the Solution is x=1, y=-2, Z=3

(ii) Graves - Jordan method.
Take bue equation (1)

$$(A, B) \sim \begin{bmatrix} 10 & -2 & 2 & 23 \\ 0 & 52 & -28 & -188 \\ 0 & 0 & 3780 & 11340 \end{bmatrix}$$
 $R_1 \leftrightarrow 1260 R_1 - R_3$
 $R_2 \leftrightarrow 135 R_2 + R_3$
Now we will make the method A a diagonal matrix
Fix the third how and themse 2nd how and
drivet how
 $\sim \begin{bmatrix} 12600 & -2520 & 0 & 17640 \\ 0 & 7020 & 0 & -14040 \\ 0 & 0 & 3780 & 11340 \end{bmatrix}$
 $\overline{P12}$ the 2 and 3 how change 1 how with 2 nd how
 $\sim \begin{bmatrix} 88452000 & 0 & 0 & 82452000 \\ 0 & 7020 & 0 & -14040 \\ 0 & 0 & 3780 & 11340 \end{bmatrix}$
 $R_1 \leftrightarrow 7020R_1 + 2520R_2$
 $\approx \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 340 \end{bmatrix}$; $\chi = 1, \ \gamma = -2, \ \overline{Discorrel}$

21

OWNLOADED STUGAR APPres by Gauss - dimination method.

$$5x_{1} + x_{2} + x_{3} + x_{4} = 4$$

$$x_{1} + 7x_{2} + x_{3} + x_{4} = 12$$

$$x_{1} + x_{2} + 6x_{3} + x_{4} = -5$$

$$x_{1} + x_{2} + x_{3} + 4x_{4} = -6$$

Soln !.

The given system is equivalent to

$$\begin{bmatrix} 5 & 1 & 1 & 1 \\ 1 & 7 & 1 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 1 & 6 & 1 \\ 1 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 2_{1} \\ 3_{2} \\ 3_{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ -5 \\ -6 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 & 1 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 6 & 1 \\ 1 & 1 & 6 & 1 \\ -5 \\ 1 & 1 & 1 & 4 \\ 0 & 34 & 4 & 4 \\ 0 & 4 & 29 & 4 \\ 0 & 4 & 4 & 19 \\ 0 & 4 & 4 & 19 \\ -34 \end{bmatrix} \begin{bmatrix} R_{2} \leftrightarrow 5R_{2} - R_{1} \\ R_{3} \leftrightarrow 5R_{3} - R_{1} \\ R_{2} \leftrightarrow 5R_{4} - R_{1} \\ R_{4} \rightarrow 34R_{4} - 4R_{2} \\ R_{4} \rightarrow 34R_{4} - 4R_{2} \\ R_{4} \rightarrow 34R_{4} - 4R_{2} \\ R_{4} \rightarrow \frac{R_{4}}{10} \\ R_{5} \rightarrow \frac{R_{5}}{10} \\ R_{5} \rightarrow \frac{R_{5}}{10} \\ R_{1} \rightarrow \frac{R_{4}}{10} \\ R_{2} \rightarrow \frac{R_{5}}{10} \\ R_{4} \rightarrow \frac{R_{7}}{10} \\ R_{5} \rightarrow \frac{R_{5}}{10} \\ R_{6} \rightarrow \frac{R_{7}}{10} \\ R_{7} \rightarrow \frac{R_{5}}{10} \\ R_{7} \rightarrow \frac{R_{7}}{10} \\ R_{7} \rightarrow \frac{R_{7}}$$

15967 214 = - 11934

194 = -2

DOWNLOADED FROM STUCOR APP

$$9793 + 12(-2) = -121$$

$$9793 - 24 = 121$$

$$9793 = -121 + 24$$

$$9793 = -97$$

$$9783 = -97$$

$$9783 = -97$$

$$1782 + 2x3 + 2x4 = 28$$

$$1782 + 2(-1) + 2(-2) = 28$$

$$1782 - 2 - 4 = 28$$

$$1782 - 6 = 28$$

$$1782 - 6 = 28$$

$$1782 = 28 + 6$$

$$1782 = 28 + 6$$

$$1782 = 34$$

$$912 = 2$$

521+2+1-1)+(-2)=4

$$5x_{1} - 1 = 4$$

 $5x_{1} = 5$
 $5x_{1} = 5$

Hence the solution is 21=1, 22=2, 23=-1, 242-2

() using the Groups - Jordan method Solve the following equations

- 292 +104+2=13
- a + y + 5z = 7

Soln !:

Interchanging the first and the last agnathor than

$$\begin{bmatrix} A, B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 5 \\ 2 & 10' & 1 \\ 10 & 1 & 1 \\ 12 \end{bmatrix}$$

Fish the phot element now and make the other elements zero in the pivot clament column.

DOWNLOADED FRGM ST4 COR APP
$$4 \times R_2 - 2R_1$$

 $R_2 \leftrightarrow R_2 - 2R_1$

STUCOR APP

ITERATIVE METHODS

D

- (a) Gallss Jacobi method
- (b) Gramss-seidel method.

O solve the following system of equations by Granss - Jacobi method and Grounds - seidal method.

> 2706 +64-2 -85 2+4+542 = 110 6x+15y+22=72

Selm: As the coefficient natrix is not diagonally domiant we rewrite the equations. diagonally dominant

272 + by - z = 85 x+ y +542 = 116 6x + 15y +2z = 72

Since the diagonal elements are dominant in the coefficient matria we write 21, 4, 2 of bollows:

$$\chi = \frac{1}{27} \begin{bmatrix} 85 - 6y + z \end{bmatrix}$$

$$Y = \frac{1}{15} \begin{bmatrix} 72 - 6x - 8z \end{bmatrix}$$

DOWNLOADED FROM STOROAPP-Y]

· an 7 a12 + a13 1 C33

1 byol

7 1012 -1 029

DOVENLOADED FROM SPECOR APP

Let the initial values be 220, 420, 200

pust iteration:

1. 1. 2.

$$\chi^{(1)} = \frac{1}{27} [85] = 3.148$$

$$\chi^{(1)} = \frac{1}{15} [72] = 4.8$$

$$z^{(1)} = \frac{1}{54} [10] = 2.037$$

second iteration:

$$x^{(2)} = \frac{1}{27} \begin{bmatrix} 85 - 6y^{(1)} + z^{(1)} \end{bmatrix} = \frac{1}{27} \begin{bmatrix} 85 - 6 \cdot (4 \cdot 8) + (2 \cdot 037) \end{bmatrix} = 2 \cdot 157$$

$$y^{(2)} = \frac{1}{15} \begin{bmatrix} 72 - 6x^{(1)} + 2z^{(1)} \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 72 - 6(3 \cdot 148) - 2(2 \cdot 037) \end{bmatrix} = 3 \cdot 269$$

$$z^{(2)} = \frac{1}{54} \begin{bmatrix} 110 - x^{(1)} - y^{(1)} \end{bmatrix} = \frac{1}{54} \begin{bmatrix} 110 - 3 \cdot 148 - 4 \cdot 8 \end{bmatrix} = 1 \cdot 890$$

(25)

12

Third iteration :-

$$\chi^{(3)} = \frac{1}{27} \left[85 - 6y^{(2)} + z^{(2)} \right] = \frac{1}{27} \left[85 - 6(3 \cdot 269) + 1 \cdot 890 \right] = 2 \cdot 492$$

$$y^{(3)} = \frac{1}{15} \left[72 - 6 \cdot 2^{(2)} + 2 \cdot 2^{(2)} \right] = \frac{1}{15} \left[72 - 6 \cdot (2 \cdot 157) - 2 \cdot (1 \cdot 890) \right] = 3 \cdot 685$$

$$z^{(3)} = \frac{1}{54} \left[110 - \chi^{(2)} - y^{(2)} \right] = \frac{1}{54} \left[100 - 2 \cdot 157 - 3 \cdot 269 \right] = 1 \cdot 937$$
Fourth itoration:

$$\begin{aligned} x^{(4)} &= \frac{1}{27} \left[\frac{85 - 6y^{(3)}}{72} + \frac{3}{2}^{(3)} \right] = \frac{1}{27} \left[\frac{85 - 6(3 \cdot 686) + 1 \cdot 937}{72} \right] = 2 \cdot 401 \\ y^{(4)} &= \frac{1}{15} \left[\frac{72 - 6x^{(3)}}{72} - 2z^{(3)} \right] = \frac{1}{15} \left[\frac{72 - 6(2 \cdot 492) - 2(1 \cdot 937)}{72} \right] = 3 \cdot 545 \\ z^{(4)} &= \frac{1}{54} \left[\frac{110 - x^{(3)}}{9} - y^{(3)} \right] = \frac{1}{54} \left[\frac{110 - 2 \cdot 492}{74} - \frac{3 \cdot 685}{75} \right] = 1 \cdot 923 \end{aligned}$$

 $\begin{aligned} \underbrace{\text{Seventh}}_{z} \underbrace{\text{toration}}_{54} \underbrace{\text{E}}_{10} = 2.432 - 3.583 = 1.926 \\ \underbrace{\text{Seventh}}_{54} \underbrace{\text{toration}}_{54} \underbrace{\text{E}}_{10} = 2.432 - 3.583 = 1.926 \\ \underbrace{\text{Seventh}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{strates}}_{z} \underbrace{\text{toration}}_{z} = \frac{1}{27} \underbrace{\text{E}}_{85} - 6 \underbrace{\text{strates}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{strates}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{strates}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \underbrace{\text{toration}}_{z} \\ \underbrace{\text{torates}}_{z} \underbrace{\text{toration}}_{z} \underbrace{\text{torates}}_{z} \underbrace{\text{torate$

Eighth Itoration :-

 $\begin{aligned} z^{(8)} &= \frac{1}{27} \left[85 - 6 y^{(7)} + z^{(7)} \right] = \frac{1}{27} \left[85 - 6 (3 \cdot 574) + 1 \cdot 926 \right] = 2 \cdot 425 \\ y^{(8)} &= \frac{1}{15} \left[72 - 6 x^{(7)} - 9 z^{(7)} \right] = \frac{1}{15} \left[72 - 6 (2 \cdot 426) - 2(1 \cdot 926) \right] = 3 \cdot 573 \\ z^{(8)} &= \frac{1}{54} \left[110 - 2^{(7)} - y^{(7)} \right] = \frac{1}{54} \left[2 \cdot 110 - 2 \cdot 426 - 3 \cdot 574 \right] = 1 \cdot 926 \\ \end{aligned}$ Nimeth Iteration:

$$y_{1}^{(9)} = \frac{1}{27} \left[85 - 6 y_{1}^{(8)} + z_{1}^{(8)} \right] = \frac{1}{27} \left[85 - 6 \left[3 \cdot 573 \right] + 1 \cdot 926 \right] = 2 \cdot 426$$

$$y_{1}^{(9)} = \frac{1}{15} \left[72 - 6 x_{1}^{(8)} - 2 z_{1}^{(8)} \right] = \frac{1}{15} \left[72 - 6 \left(2 \cdot 425 \right) - 2 \left(1 \cdot 926 \right) \right] = 3 \cdot 573$$

$$z_{1}^{(9)} = \frac{1}{54} \left[110 - x_{1}^{(8)} - y_{1}^{(8)} \right] = \frac{1}{54} \left[110 - 2 \cdot 425 - 3 \cdot 573 \right] = 1 \cdot 926$$

$$p_{1}^{(10)} = \frac{1}{27} [85 - 6y^{(9)} + z^{(9)}] = \frac{1}{27} [85 - 6(3.573) + 1.926] = 2.426$$

$$y_{10}^{(10)} = \frac{1}{15} [72 - 6y^{(9)} - az^{(9)}] = \frac{1}{15} [72 - 6(2.426) - 2(1.926)] = 3.573$$

$$z_{10}^{(10)} = \frac{1}{54} [10 - 2^{(9)} - y^{(9)}] = \frac{1}{54} [10 - 2.426 - 3.573] = 1.926$$
Hence $\chi = 2.426$, $Y = 3.573$, $Z = 1.926$

$$[tense \ \chi = 2.426$$
, $Y = 3.573$, $Z = 1.926$

@ Granss - seidel method. Let the initial values be y20 Z=0.

DOWNLOADED FROM STUCOR APP

$$\begin{aligned} \alpha^{(1)} &= \frac{1}{27} \left[285 - 6y^{(0)} + 2^{(0)} \right] = \frac{1}{27} \left[285 - 6(0) + 0 \right] = 3.148 \\ y^{(1)} &= \frac{1}{15} \left[72 - 6x^{(1)} + 2^{(0)} \right] = \frac{1}{15} \left[72 - 6(3.148) - 0 \right] = 3.541 \\ z^{(1)} &= \frac{1}{54} \left[110 - x^{(1)} - y^{(1)} \right] = \frac{1}{54} \left[110 - 3.148 - 3.541 \right] = 1.913 \end{aligned}$$

second iteration;-

 $g^{(2)} = \frac{1}{27} \left[85 - 6y^{(1)} + z^{(1)} \right] = \frac{1}{27} \left[85 - 6(3.541) + 1.913 \right] = 2.432$ $y^{(2)} = \frac{1}{15} \left[72 - 6y^{(2)} - 2z^{(1)} \right] = \frac{1}{15} \left[72 - 6(2.432) - 2(1.913) \right] = 3.572$ $y^{(2)} = \frac{1}{15} \left[10 - y^{(2)} - y^{(2)} \right] = \frac{1}{54} \left[10 - 2.432 - 3.572 \right] = 1.926$

Third iteration:

$$x^{(8)} = \frac{1}{27} \begin{bmatrix} 85 - 6y^{(2)} + z^{(2)} \end{bmatrix} = \frac{1}{27} \begin{bmatrix} 85 - 6(3.572) + 1.926 \end{bmatrix} = 2.426$$

$$y^{(3)} = \frac{1}{15} \begin{bmatrix} 72 - 6x^{(3)} - 2z^{(2)} \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 72 - 6(2.426) - 2(1.926) \end{bmatrix} = 3.573$$

$$z^{(3)} = \frac{1}{54} \begin{bmatrix} 110 - x^{(3)} - y^{(3)} \end{bmatrix} = \frac{1}{54} \begin{bmatrix} 110 - 2.426 - 3.573 \end{bmatrix} = 1.926$$

Fourth iteration:

 $\begin{aligned} x^{(4)} &= \frac{1}{27} \left[285 - 6y^{(3)} + z^{(3)} \right] = \frac{1}{27} \left[285 - 6(3.573) + 1.926 \right] = 2.426 \\ y^{(4)} &= \frac{1}{15} \left[72 - 6x^{(4)} - 2z^{(3)} \right] = \frac{1}{15} \left[72 - 6(2.426) - 2(1.926) \right] = 3.573 \\ z^{(4)} &= \frac{1}{54} \left[110 - 2^{(4)} - y^{(4)} \right] = \frac{1}{54} \left[110 - 2.426 - 3.573 \right] = 1.926 \end{aligned}$

Hence x= 2.426, y= 3.673, z= 1.926

This shows that the convergence is Irapid in Grangs-seided method when compared to Grangs-Jacobi method.

3 Solve the following equations by Gauss-Seidel Method. 4n + 2y + z = 14 x + 5y - z = 10x + y + 8z = 20

DOWNLOADED FROM STUCOR APP

as the coefficient matrix is diagonally dominant solving

ing the on

$$x = \frac{1}{4} [14 - 2y - 2]$$

$$y = \frac{1}{5} [10 - x + 2]$$

$$z = \frac{1}{5} [20 - x - y]$$

let the initial values be y=0, z=0 First literation !-

$$g^{(1)} = \frac{1}{4} \begin{bmatrix} 14 - 2(0) - (0) \end{bmatrix} = \frac{14}{4} = 3.5$$

$$y^{(1)} = \frac{1}{5} \begin{bmatrix} 10 - x^{(1)} + z^{(0)} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 - 3.5 + 0 \end{bmatrix} = 1.3$$

$$z^{(1)} = \frac{1}{8} \begin{bmatrix} 20 - x^{(1)} - y^{(1)} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 20 - 3.5 - 1.3 \end{bmatrix} = 1.9$$
Second iteration:

 $x^{(2)} = \frac{1}{4} \begin{bmatrix} 14 - 2y^{(1)} - z^{(1)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(1 \cdot 3) - (1 \cdot 9) \end{bmatrix} = 2 \cdot 375$ $y^{(2)} = \frac{1}{5} \begin{bmatrix} 10 - x^{(2)} + z^{(1)} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 - 2 \cdot 375 + 1 \cdot 9 \end{bmatrix} = 1 \cdot 905$ $z^{(2)} = \frac{1}{8} \begin{bmatrix} 20 - x^{(2)} - y^{(2)} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 20 - 2 \cdot 375 - 1 \cdot 905 \end{bmatrix} = 1 \cdot 965$ Third Upration:

 $\chi^{(3)} = 4[14 - 2y^{(2)} - z^{(2)}] = 4[14 - 2(1.905) - 1.965] = 2.056$ $y^{(3)} = \frac{1}{5} [10 - x^{(3)} + z^{(2)}] = \frac{1}{5} [10 - 2.056 + 1.965] = 1.9818$ $z^{(3)} = \frac{1}{5} [20 - 2x^{(3)} - y^{(3)}] = \frac{1}{5} [20 - 2.056 + 1.9818] = 1.995$ Fourth iteration:

 $\begin{aligned} x^{(4)} &= \frac{1}{4} \begin{bmatrix} 14 - 2y^{(3)} - z^{(3)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(1.9818) - 1.965 \end{bmatrix} = 2.510 \\ y^{(4)} &= \frac{1}{5} \begin{bmatrix} 10 - x^{(4)} + z^{(3)} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 - 2.510 + 1.995 \end{bmatrix} = 1.897 \\ z^{(4)} &= \frac{1}{8} \begin{bmatrix} 20 - x^{(4)} - y^{(4)} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 20 - 2.510 - 1.897 \end{bmatrix} = 1.949 \end{aligned}$

STUCOR APP

PRUNLOADED FROM STUCOR APP	29
$2^{(5)} = \frac{1}{4} \begin{bmatrix} 14 - 2y^{(0)} - z^{(0)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(1 \cdot 897) - 1 \cdot 949 \end{bmatrix} = 2 \cdot 064$	
$y^{(5)} = \frac{1}{5} \left[10 - 2^{(5)} + 2^{(4)} \right] = \frac{1}{5} \left[10 - 2.064 + 1.949 \right] = 1.977$	
$z^{(5)} = \frac{1}{8} [20 - 2^{(5)} - y^{(5)}] = \frac{1}{8} [20 - 2.064 - 1.977] = 1.995$	
Sixth iteration:	
$x^{(6)} = \frac{14}{4} \begin{bmatrix} 14 - 2y^{(5)} - z^{(5)} \end{bmatrix} = \frac{14}{4} \begin{bmatrix} 14 - 2(1.977) - 1.995 \end{bmatrix} = 2.013$	
$y^{(6)} = \frac{1}{5} \sum_{10-2}^{(6)} + \frac{1}{5} \sum_{10-2}^{(5)} - \frac{1}{5} \sum_{10-2}^{(6)} - \frac{1}{5} \sum$	
$z^{(6)} = \frac{1}{8} \left[20 - x^{(6)} - y^{(6)} \right] = \frac{1}{8} \left[20 - 2.013 - 1.996 \right] = 1.999$	
seventh iteration:	
$a^{(7)} = \frac{1}{4} \begin{bmatrix} 14 - 2y^{(6)} - z^{(6)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(1.996) - 1.999 \end{bmatrix} = 2.00$	02
$y^{(7)} = \frac{1}{5} \left[\frac{10}{-2} - \frac{17}{2} + \frac{2}{5} - \frac{10}{2} \right] = \frac{1}{5} \left[\frac{10}{-2.002} + \frac{10997}{-2} - \frac{10997}{-2} \right] = \frac{10997}{-2}$	
$z^{(7)} = \frac{1}{6} \left[20 - x^{(7)} - y^{(7)} \right] = \frac{1}{8} \left[20 - 2.002 - 1.999 \right] = 2.000$	e.
Eighth iteration!	
$z^{(3)} = \frac{1}{4} \begin{bmatrix} 14 - 2y^{(7)} - z^{(7)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(1.999) - 2 \end{bmatrix} = 2.001$	
$y^{(8)} = \frac{1}{5} \begin{bmatrix} 10 - 2^{(8)} + 2^{(7)} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 - 2 \cdot 001 + 2 \end{bmatrix} = 2 \cdot 000$	<i>1</i>
$z^{(8)} = \frac{1}{8} \left[20 - x^{(8)} - y^{(8)} \right] = \frac{1}{8} \left[20 - 2 \cdot 001 - 2 \right] = 2.000$	
Ninth iteration:	-
$a^{(9)} = \frac{1}{4} \left[\frac{14}{2} - 2y^{(8)} - z^{(8)} \right] = \frac{1}{4} \left[\frac{14}{2} - 2(2) - 2 \right] = 2$	
$y^{(9)} = \frac{1}{5} \left[\frac{10}{x^{(9)}} + \frac{x^{(8)}}{x^{(8)}} \right] = \frac{1}{5} \left[\frac{10}{x^{-2} + 2} \right] = 2$	¥.,
$z^{(1)} = \frac{1}{8} \sum_{n=1}^{20} - x^{(n)} - y^{(n)} - \frac{1}{2} \sum_{n=1}^{20} \frac{1}{2} \sum_{n=1}^{$	1.8
Tenth iteration ! /8 - J - Z	
$\alpha^{(10)} = \frac{1}{4} \begin{bmatrix} 14 - 2y^{(9)} - z^{(9)} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 14 - 2(2) - 2 \end{bmatrix} = 2$	
$y^{(10)} = \frac{1}{5} \begin{bmatrix} 10 - x^{(10)} + x^{(10)} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 - 2 + 2 \end{bmatrix} = 2$	
$\frac{2^{(10)}}{8} = \frac{1}{8} \left[\frac{20 - 2^{(10)} - y^{(10)}}{2} + \frac{1}{8} \left[\frac{20 - 2 - 2}{2} - 2 - 2 \right] = 2 $ STUCO	
DOMNLOADED, FOOM STUCOR APP	

DOWANERSED FOF FRAMMATTREOR BYP GAUSS JORDON METHOD

Grauss + Jordan elimination method.

Grays-Jordan method, find the inverse of the matrix $\begin{bmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix}$ $bhi' [A, 2] = \begin{bmatrix} 2 & 2 & 3 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 5 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & -1 & -2 & -1 & 1 & 0 \\ 0 & 2 & \frac{7}{2} & -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & \leftrightarrow & R_2 - 2R_1 \\ R_3 & \leftrightarrow & R_3 - R_1 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & -\frac{1}{2} & 1 & 0 \end{bmatrix} R_1 + R_1 - R_2 \\ 0 & 1 & 2 & 1 & -1 & 0 \end{bmatrix} R_3 + R_3 - 2R_1 \\ 0 & 0 & -\frac{1}{2} & -\frac{5}{2} & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 1 & 2 & 1 & -1 & 0 \\ 0 & 0 & 1 & -4 & -2 \end{bmatrix} R_3 \leftrightarrow R_3(-2)$ $\begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -1 \\ 0 & 1 & 0 & -9 & 7 & 4 \\ 0 & 0 & 1 & 5 & -4 & -2 \end{bmatrix} R_1 \leftrightarrow R_1 + \frac{1}{2}R_3$ Hence $\vec{A} = \begin{bmatrix} 2 & -1 & -1 \\ -9 & 7 & 4 \\ 5 & -4 & -2 \end{bmatrix}$

DOWNLOADED FROM STUCOR APP

$$\begin{array}{c} AA^{-1} = I \\ \begin{bmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 \\ -9 & 7 & 4 \\ 5 & -4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The using Grauss-Jordon method, tind the inverse of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$

(J)

DOWNLOADED FROM STUCOR APP

~]

S

DOWNBOADED FROM STUCOR APP

$$A\overline{A}^{T} = I$$

$$= \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix} \begin{bmatrix} -3 & 1 & \frac{3}{2} \\ -5/4 & -7/4 & -\frac{3}{4} \\ -7/4 & -1/4 & -\frac{1}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{\text{Rms.}}$$

EIGEN VALUE OF A MATRIX BY POWER METHOD The power method

O Find the numerically largest eigenvalue of A= [1 -3 2] power method.

$$A \times 1 = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 \\ -4 & 3 & 5 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 \\ -4 & 5 \end{bmatrix} \begin{bmatrix} 0 & 167 \\ 0 & 667 \\ -5 & 667 \end{bmatrix} = \begin{bmatrix} 0 & 166 \\ 2 & 356 \\ 8 & 7003 \end{bmatrix} = \begin{bmatrix} 0 & 002 \\ 0 & 292 \\ -1 \end{bmatrix} = 3 \cdot 003 \times 3$$

$$0 \cdot 167 - 3(0 \cdot 067) + 2(1) = 0 \cdot 166$$

$$A(0 \cdot 167) + 4(0 \cdot 667) - 1 = 2 \cdot 336$$

$$6[0 \cdot 167] + 3(0 \cdot 667) + 5 = 8 \cdot 003$$

$$A \times 3 = \begin{bmatrix} 1 & -3 & 2 \\ -4 & 4 & -1 \\ -5 & 3 & 5 \end{bmatrix} \begin{bmatrix} 0 \cdot 021 \\ 0 \cdot 292 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 145 \\ 0 \cdot 252 \\ 6 \cdot 002 \end{bmatrix} = 6 \cdot 002 \begin{bmatrix} 0 \cdot 171 \\ 0 \cdot 042 \\ -1 \end{bmatrix} = 6 \cdot 002 \times 3$$

$$1[(0 \cdot 021) - 3(0 \cdot 292) + 2(1) = 1 \cdot 145$$

$$A[0 \cdot 021) + 4[(0 \cdot 292) - ((1) = 0 \cdot 252 \\ -6 \cdot 002 \end{bmatrix}$$

DOWNLOADED FROM_STUCOR APT

$$A \times_{4} = \begin{pmatrix} 3 & -1 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{bmatrix} 0 \cdot 042 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 065 \\ -0 \cdot 068 \\ 6 \cdot 272 \end{bmatrix} = \begin{bmatrix} 0 \cdot 329 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 011 \\ -0 \cdot 011 \\ 0 \cdot 039 \end{bmatrix} = \begin{bmatrix} 6 \cdot 272 \times 5 \\ -0 \cdot 018 \\ -0 \cdot 019 \end{bmatrix} + 3 (0 \cdot 042) + 5(1) = 5 \cdot 018 \\ 6 (0 \cdot 191) + 3 (0 \cdot 042) + 5(1) = 5 \cdot 018 \\ 6 (0 \cdot 191) + 3 (0 \cdot 042) + 5(1) = 5 \cdot 018 \\ -0 \cdot 011 \\ -0 \cdot$$

€ Find the dominant verter of A = (1 2 0) Find also hence the third value also. he reast

soln;

Let
$$X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 be an approximate eigen value.
 $A \times_1 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \times_2$
 $A \times_2 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = 7 \begin{bmatrix} 0.4286 \\ 0 & 4286 \end{bmatrix} = 7 \times_3$
 $A \times_3 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.4286 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.5714 \\ 1.8572 \\ 0 \end{bmatrix} = 3.5714 \begin{bmatrix} 0.52 \\ 0 \end{bmatrix} = 3.5714 \times_4$

DOWNLOADED WROTH Steer Offen values are, 4, 3, - STUCOR APP

DOWNLOADED FROM STUCOR APP INTERPOLATION AND APPROXIMATION.

LAGIRANGIAN POLYNOMIALS

$$\begin{split} Y &= f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(y_0 - x_2)(x_0 - x_3)} \quad y_0 \\ &+ \frac{(x - x_0)(y_0 - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} \quad y_1 \\ &+ \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} \quad y_2 \\ &+ \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_1 - x_1)(x_3 - x_2)} \quad y_3 + \dots + \frac{(x - x_0)(x - x_1)(x_0 - x_1)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_1)} \quad y_n \end{split}$$

0

O. Find the polynomial for by using Lagrange's formula and hence find

1 1 20	24	72	23
20	L	12	147

1.2

15-18

J

Som: By Lagrange's interpolation formula, we have

$$\begin{aligned} y_{-z} = f(x) &= \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 \\ &+ \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 \\ &+ \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3 \\ &= \frac{(x - 1)(x - 2)(x - 5)}{(x - 2)(x - 5)} (x) + \frac{(x - 0)(x - 2)(x - 5)}{(1 - 0)(x - 2)(x - 5)} (x) + \frac{(x - 0)(x - 1)(x - 5)}{(2 - 0)(2 - 1)(x - 5)} (12) \\ &+ \frac{(x - x_0)(x - 1)(x - 2)}{(5 - 0)(x - 1)(x - 5)} (147) \\ &= \frac{(x - 1)(x - 2)(x - 5)}{(x - 1)(x - 2)(x - 5)} (2) + \frac{2((x - 2)(x - 5))}{4} (3) + \frac{(x - 0)(x - 5)(x - 5)}{(x - 1)(x - 5)} (12) \\ &+ \frac{x(x - 1)(x - 2)(x - 5)}{(x - 1)(x - 2)(x - 5)} (2) + \frac{3(x - 2)(x - 5)}{4} (3) + \frac{3(x - 1)(x - 5)}{(x - 5)(x - 5)} (12) \\ &= \frac{4(3)}{6} = \frac{(3 - 1)(x - 2)(x - 5)}{(x - 1)(x - 2)(x - 5)} (2) + \frac{3(x - 2)(x - 5)}{4} (3) + \frac{3(x - 1)(x - 5)}{(x - 5)(x - 5)} (12) \end{aligned}$$

DOWNLOADED PROMISEUCOR APP 7)
$$D_{y} = \underbrace{(1)}_{(-1)} \underbrace{(1)}_{(2)} + \underbrace{(3)}_{(2)} + \underbrace{(2)}_{(-1)} \underbrace{(2)}_{(-1)} + \underbrace{(3)}_{(2)} \underbrace{(2)}_{(-1)} + \underbrace{(3)}_{(-1)} \underbrace{(2)}_{(-1)} + \underbrace{(3)}_{(-1)} \underbrace{(2)}_{(-1)} + \underbrace{(1)}_{(-1)} \underbrace{(1)}_{(-1)} + \underbrace{(1)}_{(-1)} \underbrace{(1)}_{(-1)} + \underbrace{(1)$$

BOWNLOW REPERCINEST Cotion Plormala find 6(4) given that fu)= 2, f(1) = 3, f(2) = 12, f(15) = 3587.

Schi:

Give

	2	Ю	1	2	15
ŝ	7	2	3	12	3587

+ OI (N-W) CO-WIG-M - OIS = 0 By Lagrange's formula $J = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} y_1$ + $\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_3)}$ y_2 + $\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$ y_3 y = f(4) = (4-1)(4-2)(4-15) (2) + (4-0)(4-2)(4-15) (3) (0-1)(0-2)(0-15) (2) + (1-0)(1-2)(1-15) (3)+ (4-0)(4-1)(4-15) (12) + (4-0)(4-1)(4-2) 3587 (2-0) (2-1) (2-15) (15-0) (15-1)(15-2) $= \frac{(3)(2)(-11)}{(-1)(-2)(-15)}(2) + \frac{(4)(2)(-11)}{(1)(-1)(-14)}(3) + \frac{(4)(3)(-11)}{(2)(1)(-13)}(12)$ + (4)(3)(2) (3587) (15)(4)(13) $= \frac{132}{30} - \frac{264}{14} + \frac{1584}{26} + \frac{86088}{2730}$

115

= 78

@ Find the missing torm in the following table using Lagrange's C M (nor M Stand - Company + 1 (Standard interpolation.

2	0	11	2	13	4
ty	1	3	9	-	81

Seh !-

$$\begin{array}{l} \mathcal{Y}_{=} f(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{0}-x_{2})(x_{0}-x_{3})} & \mathcal{Y}_{0} + \frac{(x-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{3})(x_{1}-x_{3})} \\ + \frac{(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{0}-x_{1})(x-x_{3})} & \mathcal{Y}_{2} + \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{2})} \\ \end{array} \right) \\ \begin{array}{l} \mathcal{Y}_{0} = \mathcal{Y}_{0} \\ \mathcal{Y}_{0} = \mathcal{Y}_{0$$

DOWNLOADED SROM STUCOR APP

$$\begin{aligned} x_{1} = 1 \quad y_{1} = 3 \\ x_{2} = 2 \quad y_{2} = 9 \\ x_{3} = 4 \quad y_{3} = 81 \end{aligned}$$

$$\begin{aligned} y = f(x) &= \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} \quad (1) + \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} \quad (3) + \frac{(x-0)(x-2)(x-2)}{(1-0)(1-2)(1-4)} \quad (9) + \frac{(x-0)(x-2)(x-2)}{(4-0)(4-2)} \quad (9) \end{aligned}$$

$$\begin{aligned} f(3) &= \frac{(3-1)(x-2)(x-4)}{(-1)(-2)(-4)} \quad (1) + \frac{(3-0)(x-2)(x-2)}{(1)(-1)(-3)} \quad (3) + \frac{(3-0)(x-4)}{(2)(-2)(1)} \quad (9) \\ &+ \frac{(5-0)(x-1)(x-2)}{(4)(x-2)(2-4)} \quad (8) \end{aligned}$$

$$\begin{aligned} &= \frac{(2)(1)(x-2)(x-4)}{(4)(x-2)(2-4)} \quad (1) + \frac{(3)(1)(-1)}{(1)(-1)(-3)} \quad (1) + \frac{(3)(2)(1-1)}{(2)(2-2)} \quad (2) + \frac{(3)(2)(1)}{(2)(2-2)} \quad (2) \\ &= \frac{(2)(1)(x-2)(x-4)}{(2)(1-2)(x-4)} \quad (1) + \frac{(3)(1)(-1)}{(1)(1-1)(x-3)} \quad (1) + \frac{(3)(2)(1-1)}{(2)(1-1)(x-2)} \quad (1) + \frac{(3)(2)(2)}{(2)(2)(2)} \quad (2) \end{aligned}$$

$$\begin{aligned} &= -\frac{2}{-8} \quad (1) - 3 \quad + \frac{27}{2} \quad + \frac{91}{4} \\ &= -\frac{1}{4} - 3 \quad + \frac{27}{2} \quad + \frac{91}{4} \\ &= -\frac{1}{4} - 3 \quad + \frac{27}{2} \quad + \frac{91}{4} \end{aligned}$$

(5) Find the parabola of the form $y = ax^2 + bx + c.$ passing through the points (0,0) (1,1) and (2,20)

STUC

$$y = 9x^2 - 8x$$

DOWNLOADED FRAM OFFICOR APP

$$Toking Y as independent Variable
$$x = \frac{(y-y_1)(y-y_2)\cdots(y-y_m)}{(y_0-y_1)(y_0-y_2)\cdots(y_0-y_m)} x_0$$

$$+ \frac{(y_0-y_0)(y-y_2)\cdots(y_0-y_m)}{(y_0-y_0)(y_1-y_2)\cdots(y_1-y_m)} x_1$$

$$+\cdots+ \frac{(y-y_0)(y-y_1)\cdots(y_0-y_{n-1})}{(y_m-0)(y_m-y_1)\cdots(y_m-y_{n-1})} x_n$$$$

This is called formula of inclusion interpolation. Offind the age corresponding to the annuity volue 13.6 given the table.

Age (2):	30	35	40	45	50
Annuity Value (4)	15.9	14.9	14-1	13.3	12.5

$$\begin{aligned} \mathcal{X} &= \frac{\left(13 \cdot 6 - 14 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 1\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(13 \cdot 6 - 12 \cdot 5\right)}{\left(15 \cdot 9 - 14 \cdot 9\right)\left(15 \cdot 9 - 14 \cdot 1\right)\left(15 \cdot 9 - 13 \cdot 3\right)\left(15 \cdot 9 - 12 \cdot 5\right)} \times 36 \\ &+ \frac{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 1\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(13 \cdot 6 - 12 \cdot 5\right)}{\left(14 \cdot 9 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 1\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(14 \cdot 9 - 12 \cdot 5\right)} \\ &+ \frac{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 9\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(13 \cdot 6 - 12 \cdot 5\right)}{\left(14 \cdot 1 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 9\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(14 \cdot 9 - 12 \cdot 5\right)} \\ &+ \frac{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 9\right)\left(13 \cdot 6 - 13 \cdot 3\right)\left(14 \cdot 1 - 12 \cdot 5\right)}{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 9\right)\left(13 \cdot 6 - 14 \cdot 1\right)\left(13 \cdot 6 - 12 \cdot 5\right)} \times 455 \\ &+ \frac{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 1\right)\left(13 \cdot 5 - 12 \cdot 5\right)}{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 1\right)\left(13 \cdot 5 - 12 \cdot 5\right)} \times 455 \\ &+ \frac{\left(13 \cdot 6 - 15 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 1\right)\left(13 \cdot 5 - 13 \cdot 3\right)}{\left(13 \cdot 5 - 15 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 1\right)\left(13 \cdot 5 - 13 \cdot 3\right)} \times 50 \\ &+ \frac{\left(13 \cdot 5 - 15 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 9\right)\left(13 \cdot 5 - 14 \cdot 1\right)\left(12 \cdot 5 - 13 \cdot 3\right)}{\left(12 \cdot 5 - 15 \cdot 9\right)\left(12 \cdot 5 - 14 \cdot 9\right)\left(12 \cdot 5 - 14 \cdot 1\right)\left(12 \cdot 5 - 13 \cdot 3\right)} \times 50 \end{aligned}$$

I Find the value of a given
$$f(0) = 0.3887$$
 where $f(0) = \sqrt{1 - \frac{1}{2} \frac{1}{8m^2 0}}$ using

the table

n	1 21 1	23	2.5°
11.0	0.3706	0-4068	0.4433
510)			

Selvin take to) as independent and as dependent ST

$$D_{4} = \frac{(y - 0.4068)(y - 0.4433)}{(e \cdot 3766 - 0.4668)(b \cdot 3766 - 0.4433)} \times 21 + \frac{(y - 0.3766)(y - 0.4433)}{(e \cdot 3766 - 0.4668)(b \cdot 3766 - 0.4433)} \times 21 + \frac{(y - 0.3766)(y - 0.4433)}{(e \cdot 4668 - 0.3766)(e \cdot 4668 - 0.4433)} \times 21 + \frac{(y - 0.3766)(y - 0.4433)}{(e \cdot 4433 - 0.3766)(e \cdot 4668)} \times 25$$

$$D_{-} (y = 0.3287) = \frac{(e \cdot 3287 - 0.4668)(e \cdot 3287 - 0.4433)}{(e \cdot 3766 - 0.4668)(e \cdot 3287 - 0.4433)} \times 21$$

$$+ \frac{(0.3287 - 0.3766)(b \cdot 4.668)(e \cdot 3287 - 0.4433)}{(e \cdot 4.668 - 0.3766)(e \cdot 4.433)} \times 23$$

$$+ \frac{(0.3287 - 0.3766)(e \cdot 3287 - 0.4468)}{(e \cdot 4.668 - 0.3766)(e \cdot 3287 - 0.4668)} \times 25$$

$$= 7.826731 + 17.202739 - 3.086525$$

$$= 22.002-0$$

DINDED DIFFERENCES

Algument	Entry frow	Flast A flass divided A flass	difference A2 (-122)	third divided dibbelence. 43 601)
240 241 , 212 223 244	6(20) 6(24) 6(24) 6(24) 6(24)	$f(x_0, x_1)$ $f(x_1, x_2)$ $f(x_2, x_3)$ $f(x_3, x_4)$	f(x0, x1, x2) f(x1, x2 x3) f(x2, x3, x4)	f (26, 21, 212, 213) f (21, 22, 213, 24)

TABLE

O Form the divided difference table to the following data:-

aya Z

DC	1	2	.25	4	7	12
6(2)	22	30	22-	82-	106	206

The divided difference table is as follows:

3) Show bhat
$$A^{3}(\lambda_{a}) = -\frac{1}{abcd}$$

bed

goln:

$$\frac{d_{a}(a)}{d} = \frac{d_{a}}{d} = \frac{d_{a}}{d}$$

$$\frac{d_{a}}{d} = \frac{d_{a}}{d}$$

$$\frac{d_{a}}{d} = -\frac{d_{a}}{d}$$

$$\frac{d_{a}}{d} = -\frac{d_{a}}{d}$$

Newton's divided différence formula (or Newton's interpolation tor un aqual intervals

f(x) = f(x0) + (x-x0) f(x0, x1) + (x-x0) (x-x1) f(x0, x1, x2) ++ DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUCOR APP O vsing Netwon's livided difference tormerla, tind u(s) given u(1) = -26, u(2) = 12, u(4) = 256, u(6) = 844.

5-13-1

(r. + +)

som:

are thequal.

[x	(use)	4 u (x)	\$ a 101)	43 hix)
1	-2.6	$\frac{12+26}{2-1}=38$		
2	12	256-12 = 122	122-38 = 28	$\frac{43-28}{-6-1} = 3$
4	256		294-122 6-2=43	1.5
6	844	8+4-256 6-4=294		

By Neuton's divided difference interpolation formula $f(x_1) = f(x_0) + (x_1 - x_0) + (x_0, x_1) + (x_1 - x_0) (x_1 - x_1) + (x_0, x_1) + (x_1 - x_0) + (x$

Here

$$\chi_{0}(x) = \chi_{1}(x_{0}) + (x - x_{0}) \chi_{1}(x_{0}, x_{1}) + (x - x_{0}) (x - x_{1}) \chi_{1}(x_{0}) + (x - x_{0}) \chi_{1}(x_{0}) + ($$

 $u(x_0) = -26, u(x_0, x_1) = 38 \quad u(x_0, x_1, x_2) = 28, \quad u(x_0, x_1, x_2, x_3) = 3$ $v(x_0) = -26 + (x_1-1)38 + (x_1-1)(x_1-2)28 + (x_1-1)(x_2-2)(x_1-4)3$

(...(3) = -26 + (2)(38) + (2)(1)(28) + (2)(1)(-1)(3)

= - 26 + 76 + 56 - 6

U(3) = 100.

O Find f(x) as a polynomial in x tor the following data by Newton's divided difference tormula.

1	X	-4	-1	Ø	2	5
DOW	f (J)	012145D	FROM	STUCO	RAPP	1335

f(x0, x1, x2) = 94 \$(xo, x1, x2, x3) = -14 \$ (xo, 14, 22, x3, 24) = 3 f(x) = 1245 f (x+4) (-404) f (x+4) (n+1) (n+4) f (x+4) (x+1) (x) (-14)

+ (x+4) (n+1)(x) (x-2) (3)

 $= 1245 - 4049 - 1616 + 94 [n^{2} + 52 + 4] - 142 [n^{2} + 52 + 4] + 32 [n^{2} + 52 + 4] (n^{2} + 52 + 4] = 1432 [n^{2} + 52 + 4] + 32 [n^{2} + 52 + 4] = 1432 [n^{2} + 52 + 52 + 4] = 1432 [n^{2} + 52 + 52 + 52 + 5] = 1432 [n^{2} + 52 + 52 + 5] = 1432 [n^{2} + 52 + 5] =$ = 1245 - 4042 - 1616 + 942 + 4702 + 376 - 142 - 702 - 562 + 32 [22 + 522 -10 d + 4 2 - 8]

-14x³+24x²+10x+5+3x[x⁵+5x²-8x-8] =

DOVENE CABED FROMSIPUEORS PP 324 + 15 x3 - 242 - 24 2 - 24 2. - 132 + 2 - 142 + 5

DOWNBONDEPROMETLEDRALFBRENCE formula find the missing Value from the table.

XII	2	4	5	6
	15	5	-	9

Soh:

6

1	2	for	4+(2)	4 + + (21)	pt HOU)	
	1	14				
	2	15	$\frac{15-14}{2(-1)} = 1$	$\frac{-5-1}{1+1} = -2$	7.12 -1	
			5-15 =-5	4-1	$\frac{\frac{4}{6}}{6-1} = \frac{16/4}{5} = \frac{3}{4}$	
50	4	5	and and an	2+5 =7	A 2 94 +	
		Call -	$\frac{9-5}{6-4}=2$	1000 X	1 +) (je	
	6	9				1

 $f(x) = f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (n - x_1) f(x_0, n_1, x_2) + (x - x_0) (x - n_1) (n - n_2)$ \$ (x0, x1, x2, 23) + - - -= 14 + (2-1)(1) + (2-1)(2-2)(-2) + (2-1)(2-2)(2-4)(3/4) $= 14 + \alpha - 1 - 2(\alpha - 1)(\alpha - 2) + \frac{3}{4}(\alpha - 1)(\alpha - 2)(\alpha - 4)$ $6(5) = 13 + 5 - 2(4)(3) + \frac{3}{4}(4)(3)(1)$ = 18 - 24 + 9 = 3

INTERPOLATION WITH A CUBIC SPLINE

Formula:

$$f(x) = \frac{\int_{0}^{1} (x_{i-1})}{\int_{0}(x_{i} - x_{i-1})} (y_{i} - x_{j}^{3} + \frac{\int_{0}^{1} (x_{i})}{\int_{0}(x_{i} - x_{i-1})} (x - x_{i-1})^{3}$$

$$+ \int_{0}^{1} \frac{\int_{0}^{1} (x_{i-1})}{x_{i} - x_{i-1}} - \frac{\int_{0}^{11} (x_{i-1}) (x_{i} - x_{i-1})}{\int_{0}^{1}} (x_{i} - x_{i-1}) (x_{i} - x_{i-1})$$

$$+ \int_{0}^{1} \frac{\int_{0}^{1} (x_{i})}{x_{i} - x_{i-1}} - \frac{\int_{0}^{11} (x_{i}) (x_{i} - x_{i-1})}{\int_{0}^{1}} (x - x_{i-1}) STUCOR APP$$
DOWNLOADHDARROAL STUCOR APP

3 3 Stars

This equation contains on typ two unknowns - the second derivatives at the end of each interpool.

These unknowns can be evaluated using the following equation.

$$(\alpha_{i} - \alpha_{i-1}) t''(\alpha_{i-1}) + 2(\alpha_{i+1} - \alpha_{i-1}) t''(\alpha_{i}) + (\alpha_{i+1} - \alpha_{i}) t''(\alpha_{i+1})$$

$$= \frac{\cdot 6}{\alpha_{i+1} - \alpha_{i}} \left[t(\alpha_{i+1}) - t(\alpha_{i}) \right] + \frac{6}{\alpha_{i-1} - 1} \left[t(\alpha_{i-1}) - t(\alpha_{i}) \right] \cdot \cdot \cdot \odot$$

using cubic Spline $(a_{i} - x_{i-1}) f''(x_{i-1}) + 2 (x_{i+1} - x_{i-1}) f''(x_{i}) + (x_{i+1} - x_{i}) f''(x_{i+1})$ Soln! $= \frac{6}{2i+1} \left[\frac{6}{2i+1} - \frac{6}{2i-2i} \right] + \frac{6}{2i-2i-1} \left[\frac{6}{2i-2i-1} - \frac{6}{2i-2i} \right] - \frac{6}{2i-2i-1} \left[\frac{6}{2i-2i-1} - \frac{6}{2i-2i-1} \right]$ $(2-1) 6''(1) + 2(3-1) 6''(2) + (3-2) 6''(3) = \frac{6}{(3-2)} (18+1) + \frac{6}{2-1} (-8+1)$ 6''(1) + 4 6''(2) + 6''(3) = 6(19) + 6(-7)6"(1)=0 6"(3)=0 at the end points, f'(3)=0, $f(x) = 0 + \frac{1}{6} \frac{f''(2)}{(2-1)} (x-1)^{2} + \left[\frac{-8}{2-1} - 0\right] (2-x) + \left[\frac{-1}{2-1} - \frac{18}{6} (2-1)\right] (x-1)^{2}$ f''(2) = 18F.Rom (1) we get $= \frac{1}{6} 18 (2 - 1)^{3} + (-8) (2 - 2) + [-1 - 3] [2 - 1]$ $= 3(x-1)^3 - 8(2-21) - 4(21-1)$ = 3(01-1)3 -16+82-42+4 = 3x - 9x + 13-15 25 2 + 32 - 3 +1] -16 +42+4 = 323-922-8

$$\begin{aligned} DOWNLOADED FROM STUCERAPPA + 4 (1.5) - 12 &= -\frac{4.5}{8} \\ y'_{(1.5)} &= 6^{1} (\alpha c) = 9 (\alpha - 1)^{2} + 4 \\ y'_{(1)} &= 6^{1} (1) = 4 My. \end{aligned}$$

$$\begin{aligned} \underline{Another} & \underline{Nethod} \\ \overline{S(x)} &= \frac{1}{6h} \left[(\alpha c - x)^{3} M_{i-1} + (\alpha - x_{i-1})^{3} M_{i} \right] + \frac{1}{h} (x_{i} - x) \left[y_{i-1} - \frac{h^{2}}{6} M_{i-1} \right] \\ &+ \frac{1}{h} (\alpha - x_{i-1}) \left[y_{i} - \frac{h^{2}}{6} M_{i} \right] \cdot \cdots \\ M_{c-1} &+ 4 M_{i} + M_{i+1} = \frac{6}{h^{2}} \left[y_{i-1} - 2y_{i} + y_{i+1} \right] \quad \text{for } i = y^{2} (s \cdots (n-1) \end{aligned}$$

@ F Rom the following table:

2	1	- 2 -	3
y	-8	-1	18

Compute Y(1.5) and y'LI) using abic Sprine Solm!: Here h=1, and n=2. also aggine Mo= =0 = 0

we have

$$M_{i-1} + 4M_i + M_{i+1} = \frac{1}{h^2} \left[\chi_{i-1} - 2\chi_i + \chi_{i+1} \right] \text{ for } i = 1/2 \dots (n-1)$$

From this

$$m_0 + 4m_1 + m_2 = 6[\gamma_0 - 2\gamma_1 + \gamma_2]$$

$$4m_1 = 6[-8 - 2(-1) + 18] = 72$$

$$S(\alpha) = \frac{1}{6h} \left[(\alpha i - \alpha)^{3} m i - 1 + (\alpha - \alpha i - 1)^{3} m i \right] + \frac{1}{h} (\alpha i - \alpha i) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i - 1 \right] + \frac{1}{h} (\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[(\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[(\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \right] + \frac{1}{h} \left[(\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[(\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \right] + \frac{1}{h} \left[(\alpha i - \alpha i - 1) \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{h^{2}}{L} m i \right] + \frac{1}{h} \left[\frac{1}{2} m i - \frac{$$

DOWNLOADEDSTROM STUCORS PP+4(1.5) -12 = -45

$$\gamma' = S'(\alpha) = q(\alpha - 1)^2 + 4$$

 $\gamma'(1) = 4.$

O Griven the points (0, 0) (𝒯2, 1) and (𝒯, 0) batistyping the
 function Y = sind (0 ≤ X ≤ 𝔅) detarmine the value of Y(𝒯/6) vising
 the cubic spline approximation.

1266 100

0	1/2	X
0	1	0
	0	0 <u>T/2</u> D 1

John !:

we have

$$M_{i-1} + 4M_{i}^{*} + M_{i+1}^{*} = \frac{6}{h^2} \left[Y_{i-1} - 2Y_{i}^{*} + Y_{i+1} \right] for i = 1, 2, \dots (m-1)$$

1

From bhis

mo

$$+4M_{1} + M_{2} = \frac{6}{(T_{2})^{2}} \left[0 - 2 + 0 \right] = -\frac{48}{\pi^{2}}$$

$$4M_{1} = -\frac{48}{\pi^{2}}$$

$$M_{1} = -\frac{48}{14\pi^{2}} = -\frac{12}{\pi^{2}}$$

In the interval [o, 7/2], the national cubic spline is given by

$$S_{1}(x) = \frac{1}{6(\frac{\pi}{2})} \left[(2t-0)^{3} \left(-\frac{12}{\pi^{2}} \right) + \frac{1}{(\frac{\pi}{2})} \left[\frac{\pi}{2} - x \right] \left[0 - \frac{(\frac{\pi}{2})^{2}}{6} - \frac{1}{(\frac{\pi}{2})} \right] + \frac{1}{(\frac{\pi}{2})} (2x-0) \\ \left[\left(1 - \frac{(\frac{\pi}{2})^{2}}{6} - \frac{12}{\pi^{2}} \right) \right] \\ = \frac{1}{3\pi} \left[x^{3} \left(-\frac{12}{\pi^{2}} \right) + \frac{2}{\pi} (x) \left[1 + \frac{1}{2} \right] \right] \\ = \frac{1}{3\pi} \left[-\frac{12}{\pi^{2}} x^{3} \right] + \frac{3}{\pi} x \\ = \frac{1}{2\pi} \left[-\frac{12}{\pi^{2}} x^{3} \right] + \frac{3}{2\pi} x = \frac{2}{\pi} \left[-\frac{2}{2} x^{3} + \frac{3}{2} x \right]$$

DOWNLOADED FROM STUCOR APP

$$\begin{aligned}
\begin{aligned}
& \gamma(\frac{\pi}{6}) = \frac{\pi}{6\pi} \left(\frac{\pi}{16\pi} + \frac{\pi}{4} \right) = 0.4815 \\
\underbrace{\text{NE WTON} \quad FORWARD \quad AND \quad BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Annon & BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Anno & BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Anno & BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Anno & BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Anno & BACKWARD \quad DIFFERENCE \quad FORMULA}{FORWARD \quad IntelApolation & Anno & BACKWARD \quad DIFFERENCE \quad FORMULA}{FIN) = 1 + \frac{\pi}{12} & a_{2} & a_{2} & a_{3} & a_{3}$$

(

DOWNLOADED FROM-STailGOR APP]
$$-\frac{1}{8} \left[x^{5} - 109x^{6} + 24x - 8x^{2} + 30x - 192 \right]^{15}$$

 $= \frac{1}{8} \left[8x - 24 + x^{2} - 10x + 24 - x^{5} + 10x^{2} - 24x + 8x^{2} - 80x + 192 \right]$
 $= \frac{1}{8} \left[- 2x^{5} + 19x^{2} - 106x + 192 \right]$
 $\frac{1}{5} = \frac{1}{8} \left[-125^{8} + 19(5)^{2} - 106(5) + 192 \right]$
 $= \frac{1}{8} \left[-125 + 475 - 530 + 192 \right]$
 $= \frac{1}{8} \left[-125 + 475 - 530 + 192 \right]$
 $\frac{1}{8} = \frac{1}{8} \left[12 \right]$
 $\frac{1}{8} = 1.65$.

 A third degree polynomial passes through the points (0, -1) (1, 1) (2,1) and (3,-2) using Newton's forward interpolation formula find the polynomial. Hence that the value at 1.5

" Se Wed of

1 both and shared

Som we form the difference table

PL	У	Ay	Ary	A ³ y
(20) 0	(40) -1	$1+1=2(\Delta y_0)$	i ay an	al wet be
			0-2=-2(3%)	
(2,) 1	1 (12)	1-1=0(24)		-3+2=-1 (a32)
(22) 2	(42) 1		-3-0=-3(A ³ 4)	أف
(23) 3	(Y3)-2	$-2 -1 = -3(\Delta Y_2)$	24.	· / ex

There are only 4 data given. Hence the polynomial of degree 3. $Y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-2)(u-2)}{3!} \Delta^3 y_0$ al may where $h = \frac{2 - 20}{h}$ That the string

$$20=0$$
, $h \ge 1-0=1$ (difference)
 $\therefore u = 2$

 $Y(x) = -1 + \frac{x}{1!}(2) + \frac{x(x-1)}{2!}(-2) + \frac{y(x-1)(x-2)}{3!}(-1)$

DOWNLOADED FROM STINCOR ARR 2-1) (2-2)

$$= -1 + 2x - x^{2} + x - \frac{1}{6}x [x^{2} - 3x + 2]$$

$$= -x^{2} + 3x - 1 - \frac{1}{6} [x^{3} - 3x^{2} + 2x]$$

$$= \frac{1}{6} [-6x^{2} + 18x - 6 - x^{3} + 3x^{2} - 2x]$$

$$= \frac{1}{6} [x^{3} - 3x^{2} + 16x - 6]$$

$$= -\frac{1}{6} [x^{3} + 3x^{2} - 16x + 6]$$

$$9(1 \cdot 5) = -\frac{1}{6} [(1 \cdot 5)^{3} + 3(1 \cdot 5)^{4} - 16(1 \cdot 5) + 6]$$

$$= -\frac{1}{6} [2 \cdot 375 + 6 \cdot 75 - 24 + 6]$$

$$= -\frac{1}{6} [-7 \cdot 875]$$

$$= (1 \cdot 5) = 1 \cdot 3125$$

3 From the data given below, sind the number of students whose weight is between 60 to 70.

Weight in 165:	0-40	40-60	60-80	80-100	100-120
No. of Students:	250	120	100	70	50

Som:

weight	(No. do Students)	Ay	Ary	A ^s y	A4y
Below 40	250	ar regard	af .	-sel 2 44	e si i
Below 60	370	120	-20	и <u>у</u> к	0.10
Below BO	470	100	-30	-10	20
Below 100	540	70	-20	10	Sec. 1
Below 120	590	50	1.00	1-11	rir-

ε.

STUCOR APP

111

Ray & R

(N. 8.) 14 1. 1

t fait

DOWNLOADEDLate ON STUGOR OPP of students whose weight is

than To.
We will use borward dibbonice formula.

$$u = \frac{1-x_0}{h} = \frac{70\cdot 40}{20} = 1.5$$

$$y(70) = y_0 + u \, \Delta y_0 + \frac{u(u-1)}{2} \, \Delta^2 y_0 + \cdots$$

$$= 250 + (1\cdot5)(120) + (1\cdot5)(0\cdot5)(-20) + \frac{(1\cdot5)(0\cdot5)(-0\cdot5)}{6}(-10)$$

$$+ \frac{(1\cdot5)(0\cdot5)(-0\cdot5)(-1\cdot5)}{24}(20)$$

$$= 250 + 0.5825 + 0.46875$$

Number of students whose weight is between to and 70 nda - Elt

$$= Y(70) - Y(60) = 424 - 370 = 54.$$

New tou's backword interpolation bornula.

$$y = y_{n} + \frac{v}{1!} = \frac{v(v+1)}{2!} + \frac{v(v+1)(v+2)}{3!} + \frac{v(v+1)(v+2)(v+3)}{4!}$$

$$y = y_{n} + \frac{v(v+1)(v+2)(v+3)}{4!}$$
where $v = \frac{x-2n}{h}$

Ouse Newton's backward difference formula to construct an interpolating polynomial of degree 3 for the data.

$$f(-0.75) = -0.071/81250$$
, $f(-0.5) = -0.024750$
 $f(-0.25) = 0.33493750$, $f(0) = 1.10100$. Hence find $f(-1/3)$

Sehn :-

Newton's backward ditterence formula is

 $Y(x) = Y_3 + \frac{V}{1!} \nabla Y_3 + \frac{V(V+1)}{2!} \nabla^2 Y_3 + \frac{V(V+1)(V+2)}{3!} \nabla^3 Y_3$ Where V= x-xg

STUCOR APP

Hore we for the table.

x	y	Xy	wy	1 14-9
$(x_0) (-0.75)$ $(x_1) -0.5$ $(x_2) -0.25$ $(x_3) 0$	-0.07181250	0.0470625 0.3596875 (~43)0.7660625	0.312625 (243)0.400375	(2343) 0.09375

Here
$$x_3 = 0$$
 $h = 0.25$ $V = \frac{x}{0.25} = \frac{x}{(1/4)} = 4.21$

 $Y(x) = 1.10100 + 4x (0.7660625) + \frac{4x(4x+1)}{2} (0.406375)$ + $\frac{4x(4x+1)(4x+2)}{6} (0.09375)$

 $= 1 \cdot 10 100 + 3 \cdot 06425 + 0 \cdot 81275 \chi (3)(+1) + 0 \cdot 0625 \chi (4\chi + 1)(4\chi + 2)$ = 1 \cdot 101 + 3 \cdot 06425 \cdot 2 + 0 \cdot 81275 \cdot 4 + 0 \cdot 0625 \cdot 2 [6\alpha^2 + 12\leftx + 2] = 1 \cdot 101 + 3 \cdot 06425 \leftx + 3 \cdot 251 \leftx^2 + 0 \cdot 81275 \leftx + \cdot 3^3 + 0 \cdot 75 \cdot 2^2 + 0 \cdot 125 \leftx \cdot 4 \cdot 3^3 + 0 \cdot 75 \cdot 2^2 + 0 \cdot 125 \cdot \cdot 4 \cdot 1 \cdot 10)

I + WA MARK STAR

To time to (->3)

$$y(-\frac{1}{3}) = (-\frac{1}{3})^{3} + (4.001)(-\frac{1}{3})^{2} + 4.002(-\frac{1}{3}) + 1.101$$
$$= -\frac{1}{27} + 4.001(\frac{1}{3}) - 4.002(\frac{1}{3}) + 1.001$$
$$= 0.174518518_{Mm}$$

@ FROM the following table tind the value of tan (0.28)

x	0.10	0.15	0.20	0.25	0 - 30
Y= bana	0.1003	0.1511	0-2027	0+2533	0.3093

Som: Let-us form the difference table

×	y y	Ay	A2y	A ³ y	A4y
0.10	0.1003				
0.15	0.1511	0.8508	0.0008	0.0002	0-0002
0-20	0-2027		0.0010		
0.25	1.2553	0.0526		0.0004	
0 \$ 30	0.3093	0.0540	0.0014		1.

Since 0-28 lies in the end of the table, let us use Newton's Backward interpolation bormula.

(1)

STUCOR APP

$$f(u) = y_{n} + \frac{V}{1!} \forall y_{n} + \frac{V(V+1)}{2!} \forall^{2}y_{n} + \frac{V(V+1)(V+2)}{3!} \forall^{3}y_{n} + \frac{V(V+1)(V+2)(V+3)}{4!} \psi_{1}^{4}$$

where $V = \frac{\chi - \chi_{n}}{h} = \frac{0.28 - 0.30}{0.05} = -0.04 [...] \ln c0.30]$

 $y = 0.3093 + \frac{(0.4)}{1!} (0.0540) + \frac{(-0.4)(-0.4+1)}{2!} (0.0014)$

 $+ \frac{(-0.4)(-0.4+1)(-0.4+2)}{3!} (0.0004)$

$$\frac{1}{4!} \left(\frac{-0.4}{10.4} \right) \left(\frac{-0.4}{10.4$$

Y = 0.309 - 0.0216 - 0.000168 - 0.0000256 - 0.0000832Y = 0.28720.

DOWNLOADED FROM STUCOR AND IT -III

Numerical Differentiation and Integration

perivatives from difference tables - divided differences and Finite differences

Newton's torword ditbelence tormula

Newton's torward difference interpolation bornula is $y(y_0 + uh) = y(x) = y_0 + u \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_{0+}$. where $y_{(2)}$ is a polynomial of degree n in x and $u = \frac{x_0 - y_0}{1}$

$$\begin{pmatrix} \frac{dy}{dx} \end{pmatrix}_{\chi = 20} = \left(\frac{dy}{dx} \right)_{u=0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \cdots \right]$$

$$\begin{pmatrix} \frac{d^2 y}{dx^2} \end{pmatrix}_{\chi = 20} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \cdots \right]$$

$$\begin{pmatrix} \frac{d^3 y}{dx^3} \end{pmatrix}_{\chi = 20} = \frac{1}{h^3} \left[\Delta^3 y_0 - \frac{3}{2} \Delta^4 y_0 + \cdots \right]$$

Newtern's back ward difference formula

Newton's buckword difference tormula is $Y(x) = Y \left(\chi_{m} + Vh \right) = Y_{n} + V \overline{Y}_{n} + \frac{V(V+1)}{2!} \nabla^{2} y_{n} + \frac{V(V+1)(U+2)}{3!} \overline{y}_{4}^{3}$

where
$$V = \frac{\sqrt{n}}{h}$$

 $\left(\frac{dy}{dx}\right)_{x=x_{n}} = \frac{1}{h} \left[\nabla y_{n} + \frac{1}{2} \nabla^{2} y_{n} + \frac{1}{2} \nabla^{3} y_{n} + \cdots\right]$
 $\left(\frac{d^{2} y}{dx^{2}}\right)_{x=x_{n}} = \frac{1}{h^{2}} \left[\nabla^{2} y_{n} + \nabla^{3} y_{n} + \frac{11}{12} \nabla^{4} y_{n} + \cdots\right]$
 $\left(\frac{d^{3} y}{dx^{3}}\right)_{x=x_{n}} = \frac{1}{h^{3}} \left[\nabla^{3} y_{n} + \frac{3}{2} \nabla^{4} y_{n} + \cdots\right]$
Derivative using stirling formula

The sticking's formula is $y(x) = Y_0 + \frac{4}{2} \begin{bmatrix} \Delta Y_0 + \Delta Y_{n-1} \end{bmatrix} + \frac{4^2}{2} \Delta^2 y_{-1} + \frac{4^3 - 4}{12} \begin{bmatrix} \Delta^3 y_{-1} + \Delta^3 y_{-2} \end{bmatrix}.$ STUCOR AF DOWNLOADED FROM STUCOR AP DOWNLOADED FROM STUCOR APP

$$\begin{pmatrix} \frac{d^{4}y}{d^{4}x} \end{pmatrix}_{\chi=\chi_{0}} = \frac{1}{h} \left[\frac{1}{2} \left(\frac{dy_{0} + \Delta y_{-1}}{2} \right) - \frac{1}{12} \left(\frac{\Delta^{5}y_{-1} + \Delta^{5}y_{-2}}{2} \right) + \frac{1}{60} \left(\frac{\Delta^{5}y}{dy_{-2}} + \frac{\Delta^{5}y_{-3}}{2} \right) + \frac{1}{60} \left(\frac{\Delta^{5}y}{dx^{2}} \right)_{\chi=\chi_{0}} = \frac{1}{h^{2}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{2} + \cdots \right) \right] \\ \begin{pmatrix} \frac{d^{5}y}{dx^{3}} \end{pmatrix}_{\chi=\chi_{0}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{2} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{Derivative}{(d^{3}x^{3})_{\chi=\chi_{0}}} = \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-2}}{4} \right) + \cdots \right] \\ \frac{1}{h^{3}} \left[\frac{\lambda^{2}}{2} \left(\frac{\Delta^{3}y_{-1}}{4} + \frac{\lambda^{2}y_{-1}}{4} + \frac{\lambda^{2}y_{-2}}{4} \right) + \frac{\lambda^{2}}{2} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{2}y_{-1}}{4} \right) + \frac{\lambda^{3}y_{-1}}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) + \frac{\lambda^{3}y_{-1}}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) + \frac{\lambda^{3}y_{-1}}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) + \frac{\lambda^{3}y_{-1}}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) + \frac{\lambda^{3}y_{-1}}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} + \frac{\lambda^{3}y_{-1}}{4} \right) \\ \frac{1}{h^{3}} \left(\frac{\lambda^{3}y_{-1}}{4} +$$

table, we solve this quadratic born. Then the carresponding Values of rare given by x = Notth at which y is maximum (01) minimum.

D Find f'(3) and f"(3) to one tollowing data:

x:	3.0	3.2	3.4	3.6	3.8	4.0
f 191) :	-14	-10.032	-5.296	-0.256	6.672	14

Since we require f'(3) and f''(3) we use Newton's forward

formula.

Difference Tuble

X	ч	Δy	22 y	A ³ y	24 y	4 ⁵ y
3.0	-14	3.968			à	
3.2	-10.032		0-768	p.htu		
3.4	-5.296	4.736	0-304	-0.464	2.048	-6-12
3-6	-0.256	5.04	1-888	1-1584	-3.072	- 9
		6.928		-1.488		
3-8	6.672	7-328	0-4			
4.0	14					

By Newton's tornard tormula

 $\begin{pmatrix} dy \\ dx \end{pmatrix}_{2=20} = \begin{pmatrix} dy \\ dx \end{pmatrix}_{u=0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{3} \Delta^5 y_0 - \frac{1}{3} \Delta^5 y_0 + \frac{1$

Itere h=0.2

d

$$= \frac{1}{0.2} \left[3.968 - \frac{1}{2} (0.768) + \frac{1}{3} (-0.464) - \frac{1}{4} (2.048) + \frac{1}{3} (-5.12) \right]$$

$$= \frac{1}{0.2} \left[3.968 - 0.384 - 0.1547 - 0.5121 - 0.24 \right]$$

$$= \frac{1}{0.2} \left[1.8933 \right]$$

$$= 9.4665$$

$$= \frac{1}{h^2} \left[4^2 \% - 4^3 \% + \frac{11}{12} 4^4 \% - \frac{5}{6} 4^5 \% + \cdots \right]$$

$$= \frac{1}{(0.2)^2} \left[0.768 - (-0.464) + \frac{11}{12} (2.048) - \frac{5}{6} (-5.12) \right]$$

$$= \frac{1}{0.04} \left[0.768 + 0.464 + 1.8773 + 4.267 \right]$$

$$= \frac{1}{0.04} \left[7.3763 \right]$$

$$= 184.4075$$

DOOMPRISADED FROM STUCORAPProm the data.

z	0	1	2	3	4
y	1	2-718	7.381	20.086	54.598

Solution:-

since we require f'(0.5) and t"(3.5) we use Newton's bolward formula and Newton's backward formula.

Difference bable.

20	y	Ay	A ² y	4 ³ y	1 14 4
0 1 2 3 4	1 2 - 718 7 · 381 20 · 0826 5 4 · 598	1.718 4.663 12.705 34.512	2.945 8.042 21.807	5.097	8.998

By Newton's forward formula

$$\begin{pmatrix} dy \\ dx \end{pmatrix}_{\chi=\chi_0} = \begin{pmatrix} dy \\ dx \end{pmatrix}_{\mu=0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 x_0 - \frac{1}{4} \Delta^4 y_0 + \cdots \right]$$

$$= \frac{1}{h} \left[1.718 - \frac{1}{2} (2.945) + \frac{1}{3} (5.097) - \frac{1}{4} (8.668) \right]$$

$$= \left[1.718 - 1.4725 + 1.699 - 2.167 \right]$$

$$= -0.2225$$

By Newton's backward difference formula

$$\begin{pmatrix} Ay \\ dx \end{pmatrix}_{y=x_{n}} = \begin{pmatrix} dy \\ dx \end{pmatrix}_{y=0} = \frac{1}{n} \left[\nabla y_{n} + \frac{1}{2} \nabla y_{n} + \frac{1}{3} \nabla^{2} y_{n} + \cdots \right]$$

$$= \frac{1}{n} \left[(34.512) + \frac{1}{2} (21.807) + \frac{1}{3} (13.765) + \frac{1}{4} (8.668) \right]$$

$$= 34.512 + 10.9035 + 4.588 + 2.167$$

52.1705 $\left(\frac{d^{2}y}{dn^{2}}\right)_{x=2l_{m}} = \frac{1}{h^{2}} \left[\nabla^{2}y_{h} + \nabla^{3}y_{h} + \frac{11}{12} \nabla^{4}y_{h} + \frac{5}{12} \nabla^{5}y_{h} + \cdots \right]$ DOWNLOADED FROM STUCOR APP

DOWNLOADED FROM STUGOR AP# 7.9457

= 43.5177 m

3 Find the maximum and minimum Value of y bebulated below.

x	-2	-1	0	1	2	3	4
У	2	-0.25	0	-0-25	2	15.75	56

solution!. Newton's forward difference formula is

$$y(a) = h \left[y_0 + u \Delta y_0 + \frac{n(u-1)}{2!} \Delta^2 y_0 + \frac{n(u-1)(u-2)}{3!} \Delta^3 y_0 + \cdots \right]$$

$$\frac{\partial y}{\partial x} = h \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{3u^2 - 6u + 2}{3!} \Delta^3 y_0 + \cdots \right]$$

12	y	AY	A ² y	A ³ y	A4 y	1 154
-2	2	-2.25				
-1	-6.25		2.5	-3		
0	0	0.25	-0.5	3	6	Ø
1	-0.25	Foies	2.5	9	6	0
2	2	12.75	11.5		6	2
3	15.15	13.19	26.5	15	200	ner -
4	56	40.25				

choosing 20=0, $u = \frac{2-0}{1} = 2$ $\frac{dy}{d\pi} = \frac{1}{1} \left[-0.26 + \frac{(2\pi - 1)}{2} (2.5) + \frac{3x^2 - 6x + 2}{6} (9) + \frac{4\pi^3 - 18x^2 + 22\pi - 6}{24} (6) \right]$ $= -0.25 + \frac{(201-1)}{2} (2.5) + \frac{301^2 - 601 + 2}{6} (9) + \frac{401^3 - 1801^2 + 22x - 6}{6} (6)$ $= -0.25 + 2.5 \times -1.25 + 4.5 \times^2 - 921 + 3 + 2^3 - 4.6 \times^2 + 5.5 \times -1.5$ x3-x 24 DOWRLOADED

Forward difference table

a	0:2	0.4	0.6	0.8	1.0
f(n)	0.9798652	0.9177710	0.8080348	0.6386093	0.3843735

Find f'(0.25) wing Newton's bolward difference approximation \$ '(0.6) using Stirling's approximation and f'(0.95) Using, Newton's back word difference approximation. Solw:

Newton's ABED FROM STUCOR APP

DOWNLOADED FRO	$ \underbrace{STUOOR}_{2!} \mathcal{APP}_{2!} \xrightarrow{3u^2 - 6u}_{3!} $	+2 13% + 4h3.	-1842 + 224-6 A4 y +
where h = 2-26	1=0.25, 10=0-2, her	0.2 US 0.26-0.2	= 0.25
The difference	bable		

x	У	Ay	A ² y	139	Aty
0.2	0.9798652	-0.0620942			
0.4	0.9177710	△y-2 -0.1097362	-0.047642 22y-2	-0.0120473	
0-6	0.8080348	49-1	-0.0596893	Δ ³ y-2	-0.01310985
0.8	0. 638 6093 (Y1)	-0.1694255 · Ay_0	0.08484645	-0.02515715 A ³ Y-1	=]= C
·		-0.25427195	A240		
1.0	0.38433735 (Y2)	<i>∆y</i> ,	1		1 16

$$y'[0:25) = \frac{1}{0:2} \left[(-0.0620942) + \frac{(2(0.95) - 1)}{2} (-0.047642) + \frac{3(0.25)^2 - 6(0.25) + 2}{2} (-0.0120473) + \frac{4(0.26)^3 - 18(0.25)^2 + 22(0.25) - 6}{(0.01310985)} \right]$$

$$= \frac{1}{0.2} \left[-0.0620942 + 0.0119105 - 0.001380419 + 0.000853605 \right]$$

= $\frac{1}{0.2} \left[-0.050710613 \right]$

= -0.253553065

= -0.2536 [correct to bowr decimal places]

Stirling's formula for derivative is

$$u = \frac{\chi - \chi_0}{h}$$
, $\chi = 0.6$, $\chi_0 = 0.2$, $h = 0.2$

$$U = \frac{0.6 - 0.2}{0.2} = \frac{0.4}{0.2} = 0.2$$

STUCOR APP

OF MI CARE BE BOM STIGGOR APRoad at the middle point of the @ elevation above a datum line of seven points of road which are given below!

X	0	300	600	900	1200	1500	1800
y	135	149	157	183	201	205	193

Solution!. we require $\left(\frac{dy}{dx}\right)_{a} = 900$

Difference table

x	ч	Δ'Y	Δ ² y	4 ³ 9	sty	15y	Aby
0	135						
300	149	14 8	-6	24			
600	157		-18	i ne	-56		
900	183 (40)	18	- 8	-26	20	70	-86
1200	201		-14		4		
1500	205	4	-16	-2			-
1800	193	-12			1		

Ance $\alpha = 900$ is in the middle of the table we use stirling's tormula.

 $\begin{pmatrix} \frac{dy}{d\pi} \\ \frac{dy}{d\pi} \end{pmatrix}_{x=x_{0}} = \frac{1}{m} \left[\frac{1}{2} \left(\Delta y_{0} + \Delta y_{-1} \right) - \frac{1}{12} \left(\Delta^{3} y_{-1} + \Delta^{3} y_{-2} \right) + \frac{1}{60} \left(\Delta^{5} y_{-2} + \Delta^{5} y_{-3} \right) + \frac{1}{60} \right]$ $= \frac{1}{300} \left[\frac{1}{2} \left(18 + 26 \right) - \frac{1}{12} \left(-6 - 26 \right) + \frac{1}{60} \left[-70 - 16 \right] \right]$ $= \frac{1}{300} \left[22 + 2.6666 + 0.9 \right] = 0.085222$ Hence the gradient of the grad at the middle point b = 0.084776.

STUCOR APP

(DOGNADEDEFROM STUGORAPPPO.04) using Bessel's tormula given in the table solow ...

20	0.01	0+02	0+03	0.04	0.05	0.06
6(a)	0.1023	0.1047	11010	0.1096	0.1122	0.1148

Sohn!: Since x=0.04 is in the middle of the table we use cantral difference formula and in palticular Beggel's formula.

ગ	1 4	У	Ay	Dry	A3 y	A4	154
0.01	-3	0.1023					
0.02	-2	0.1047	0.0024	0.0			
0.03	-1	0-1071	0.0024	oromi	0.0001	-0.0001	
0.04	Ö	0.1096	0.0025	0.0001	0.0	-0.001	0.0
0.05	1	(%) 0.1122	0.0026	0.0	-0.000)		
0.06	2	0.1148	0.0026	(A ² y ₀)		- 11-	

The central difference table is

Since $u = \frac{2l-2l_0}{h} = \frac{2l-2l_0}{0-0l}$

Taking to = 0.04 as the origin

Yo = 0.1096 AYo = 0.0026 Ay-1 = 0.0025, Ay-2 = 0.0024 By Bessel's formula $Y(x_0+u_h) = \frac{1}{2}(y_0+y_1)(u-y_2) \Delta y_0 + \frac{u(u-1)}{4}(\Delta^2 y_{-1} + \Delta^2 y_0)$ + $u(u-\frac{1}{2}(u-1))_{A}^{B}y_{-1} + \frac{(u+1)u(u-1)(u-2)}{48}(A^{4}y_{-2}+A^{4}y_{-1})$ $y'(x) = \frac{1}{h} \left[\Delta y_0 + \frac{2u-1}{4} \left(\frac{a^2y_1 + a^2y_0}{4} \right) + \frac{(3u^2 - 3u + \frac{1}{2})}{4} a^3 y_{-1} + \cdots \right]$ $y'(x_0) = \frac{1}{0.01} \left[0.0026 - \frac{1}{4} \left(0 + 0.0001 \right) + \frac{1}{12} \left(-0.0001 \right) + \frac{1}{24} \left(-0.0001 \right) \right]$ $= \frac{1}{0.24} \left[24 \times 0.0026 - 0.0006 - 0.0003 \right]$ STUCOR APP

DOWNLOADED FROM'STECOF APP

DOWNLOADED FROM STUCOR APP by trapezoidal and simpson's 1/3 and 3/3 sules, Romberg's method $\frac{Trapezoidal gule}{N_0 + nh}$ $\int_{Z_0} f(\alpha) d\alpha = \frac{h}{2} \left[(Y_0 + Y_n) + 2 (Y_1 + Y_2 + \dots + Y_{n-1}) \right]$ This is known as the trapezoidal gule. $<math display="block">\frac{Simpson's \text{ one third gule.}}{\int_{X_0 + nh}}$ $\int_{X_0 + nh} \frac{h}{3} \left[(Y_0 + Y_n) + 4 (Y_1 + Y_3 + \dots + Y_{n-1}) + 2 (Y_2 + Y_4 + \dots + Y_{n-2}) \right]$ This is known as the simpson's one - build gule (v) simply

Simpson's rule and is most commonly used.

$$\frac{\sin p \sin s}{x_0} = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_m + 2(y_3 + y_6 + \dots + y_m - 3) \right]$$

which is known as simpson's three-eight rule. Note: while applying (4) the number of sub-hiterals should be taken multiple of 3.

COR APP

DOWNLOADED FROM STUCOR APP

	AT A GIL	ANCE	
Dogsee	No. of intervals	Erron	order
one	any	$ E \leq \frac{(b-a)h^2}{12} M$	he
TWO	even	IE < (b-a) h4 180 M	4
Three	multiple of 3	15/ = 3/65	
	Dogsee of y(x) one Two Two	AT A GIL Dogree No. of of y(x) intervals one any TWO even TWO even Three multiple of 3	AT A GILANCE Degree No. of of $y(x)$ intervals Error one any $ E < (b-a)h^2$ 12 M Two even $ E < (b-a)h^4$ 12 M 12 M 12 M 12 M 12 M

nging properoidal rule evaluate 1' doc paking 8 intervals. problems:-

Som !!

Here
$$y(x) = \frac{1}{1+x^2}$$

Length of the interval = 2
So we divide 8 equal intervals with $h = \frac{2}{8} = 0.25$
We form a table

Y :	-1	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
y :	e'5	0.64	0.8	0.9412	1.	0.9412	0.8	0-64	0.5

T sape ioidal rule, $\int \frac{1}{1+3i^2} dx = \frac{h}{2} \left[\text{Sum of the birst and last ordinates } + 2(\text{sum of the hermalning}) \right]$

$$\frac{0.25}{2} \left[(0.5+0.5) + 2(0.64+0.8+0.9412+0.9412+0.9412+0.8+0.64) \right]$$

STUCOR

$$= \frac{0.25}{2} \left[1 + 2(5.7624) \right]$$
$$= \frac{0.25}{2} \left[12.5248 \right]$$

1. 5656

DADED FROM STUCOR APP

BOWNLOADED FROM STUCOR APP 1 by braperoidal rule

3

Soln:-

Here
$$y(x) = \frac{1}{1+2c^2}$$
, $h = \frac{1}{6}$
 $x = 0$, $\frac{1}{6}$, $\frac{3}{6}$, $\frac{3}{6}$, $\frac{4}{6}$, $\frac{5}{6}$, $\frac{1}{6}$
 $y = 1$, $\frac{36}{37}$, $\frac{9}{10}$, $\frac{4}{5}$, $\frac{9}{13}$, $\frac{36}{61}$, $\frac{1}{2}$

By Trapezoidal Rule

$$\int \frac{dx}{1+x^2} = \frac{1}{2} \left[(1+\frac{1}{2}) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{1}{13} + \frac{36}{61} \right) \right]$$

$$= \frac{(1)}{2} \left[(1+\frac{1}{2}) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{1}{13} + \frac{36}{61} \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 2 \left[3 \cdot \frac{9554}{37} \right] \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 7 \cdot \frac{9108}{37} \right]$$

(3) EValuate the integral 1² dx using Trapezoidal rule with two sub intervals.

Sohn!-

21		1.5	2
У	0.5	0-3077	0.2

By Theperoidal rule

$$\int_{1}^{2} \frac{dx}{1+x^{3}} = \frac{h}{2} \left[hm of the birst and last oridinates + 2 (hm of the remaining ordinates) \right]$$

$$= \frac{0.5}{2} \left[0.5 + 0.2 + 2 \left(0.3077 \right) \right]$$

$$= 0.5 \left[0.7 + 0.6154 \right]$$
STUCOR AF

DADED FROM STLEOR A

DOWNING DEDIFROM STUDOR PPromal parts, find the value of

Soln'

2	υ	<u>T</u> 20	27	37	<u>47</u> 20	<u>57</u> 20	<u>67</u> 20	<u>7</u> 7 20	87	<u>971</u> 20	10 <u>7</u> 20
y= tine	0	0.1564	0.3090	04540	0.5878	0,7071	0.8090	0 8910	0.9511	0.9877	1

(i) By Thepezoidal rule

$$\int^{\frac{\pi}{2}} y_{2} y_{1} y_{3} dx = \frac{h}{2} \left[\frac{y_{0} + y_{11} + 2(y_{1} + y_{2} + \dots + y_{10})}{h = \frac{\pi}{20}} \right]$$

$$h = \frac{\pi}{20} \int^{\frac{\pi}{20}} y_{2} y_{3} dx = \frac{\pi}{40} (12 \cdot 7062) = 0.9980$$
(i) By Simpson's kg Rule

$$\int^{\frac{\pi}{2}} y_{2} y_{3} dx = (\frac{h}{2}) \left[Q_{0} + y_{11} + 4(y_{1} + y_{2} + y_{5} + y_{7} + y_{9}) + 2(y_{2} + y_{4} + y_{$$

© using simpson's one third rule evaluate of de taking 4 intervals. Compare your result with occutual value. Sohn!:

COR APP

	2 0		0.25 0.5		0.75	T
	y=xex	0	0.321	0.824	1.588	2+718
DC	WNLOADI	ED FR	OM STU	COR AP	P	

DOMANLOADED FROM STUCOR APP

$$f(0) da = \frac{h}{3} \left[\text{from of the first and last even ordinates} + 2(\text{from of remaining overn ordenates}) + 4(\text{from of odd ordenates})\right]$$

$$= \frac{0.25}{3} \left[(0+2.718) + 2(0.321 + 1.588) + 4(0.824)\right]$$

$$= \frac{0.25}{3} \left[2.718 + 3.818 + 3.296\right]$$

$$= \frac{2.458}{3} = 0.819 = 1$$

$$\int_{0}^{1} 21e^{2} dx = \int_{0}^{1} 21 d(e^{2}) = \left[2e^{2}\right]_{0}^{1} - \int_{0}^{1} e^{2} dx$$

$$= \left(e^{1}-0\right) - \left(e^{2}\right)_{0}^{1}$$

$$= 0 - \left[e^{-1}\right] = 1$$

15,

© Evaluate j^b dx by (i) - Rape Toidal rule (ii) Simpson's rule also check up the regults by actual integration. Solvi:-

Here
$$b-a = 6-0 = 6$$
. Divide into 6 second ports
 $h = b_1 = 1$. Hence, the table is

2	0		2	3	4	5	6
$\frac{1}{1+2^2} = t(n)$	1.00	0.500	0.200	0.100	0.058224	0.038462	0.27027

There are 7 ordinates (n=6), we am use all the tormula. (1) By Trapezoidal Sule,

$$I = \int_{-\frac{1}{1+x^2}}^{\frac{6}{1+x^2}} = \frac{1}{2} \left[(1+0.027027) + 2(0.5+0.2+0.1+0.058824+0.038462) \right]$$

= 1.41079950

(ii) By simpson's one - third sule, DOWNLOADED FROM STUCOR APP DOWNLOADED FROM STUCOR APP $= \frac{1}{3} (100 270 27 \pm 0.517648 \pm 2.553848)$ = 1.36617433(h1) By SimpSon's $\frac{3}{8}$ Sule. $I = \frac{3\times 1}{8} [(1+0.027027) \pm 3(0.5 \pm 0.058824 \pm 0.038462) \pm 2(0.1)]$ = 1.35708188

(iv) By actual integration $I = \int_{-1}^{6} \frac{dx}{1+2t^{2}} = (ten s_{t})_{0}^{6} = ten (6 = 1.40564765)$

Conclusion! Here the value by traperoidal rule is closen to the Octual value than the value by simpson's rule.

Romberg's method

$$O$$
 Evaluate $\int_{0}^{2} \frac{da}{a^{2}+4}$ using Romberg's method. Hence obtain an
approximate value $to^{2} \overline{T}$.

solution:
Let
$$y = \frac{1}{\pi^2 + 4}$$
 and let $I = \int_{\pi^2 + 4}^{\pi^2} \frac{dx}{\pi^2 + 4}$

Take h=1

The tabulated value of y are

Ta	0	1	2
y	0.25	0+20	0:125

using traperoidal rule,

$$I_{1} = \int_{-\infty}^{2} \frac{dx}{x^{2}+4} = \frac{h}{2} \left[(Y_{0}+Y_{2}) + 2(Y_{1}) \right]$$
$$= (0.5) \left[(0.25 + 0.125) + 2(0.20) \right]$$

STUCOR APP

DOWNLOADED FROMOTIVE OR ADDRes of y are

21	0	0.5	1.0	1.5	2.0
y	0.25	0.2353	0+20	0.160	0.125

Using Those Todal Rule

$$\begin{aligned} I_2 &= \frac{h}{2} \left[\left(\frac{y_0 + y_4}{1} \right) + 2 \left[\frac{y_1 + y_2 + y_3}{1} \right] \\ &= (0.25) \left[\left(0.25 + 0.125 \right) + 2 \left(0.2363 + 0.2 + 0.16 \right) \right] \\ &= 0.3914 \end{aligned}$$

Take h= 0.25 The tabulated values of y are

[×	10	0.50	0-75	1.0	1.25	1.50	1.75	2,00
У	0.25	0.2353	0.2192	0-20	0.1798	0.160	0.1416	0-125

By Maperoidal Rule

$$I_{3} = \frac{h}{2} \left[(y_{0} + y_{g}) + 2 (y_{1} + y_{2} + \dots + y_{7}) \right]$$

 $= \left(\frac{0.25}{2}\right) \left[\left(0.25 + 0.125\right) + 2\left[0.2462 + 0.2353 + 0.2192 + 0.20 + 0.1416\right] + 0.1798 + 0.16 + 0.1416\right]$

= (0.125) [3.1392]

 $T_3 = 0-3924$

using Romborg's formula 609 I, and I2 we have

$$I = \frac{P_2 + \left(\frac{I_2 - I_1}{3}\right)}{20.3914 + \left(\frac{0.3914 - 0.3875}{3}\right)}$$

I = 0.3953 - 0

using Romborg's formula tor Iz and Iz we have

$$P = I_3 + \left(\frac{I_3 - I_2}{3}\right)$$

= 0.3924 + $\left(\frac{0.3924 - 0.3914}{3}\right)$

DOWNLOADED FRINK &TUCO PAPP

STUCOR APP

OF TRapervided rule taking h=0.125.

Take h=0.125 The tabulated values are

2	0	0,125	0.250	0.375	0.500	0.625	0.750	0.875
y	0.25	0.249	0.2462	0.2415	0.2353	0.2278	0.2192	0.2098

	1.2.50	15/5	1.500	1.629	1+750	61819	2.000
0.20 0.1899	0.1798	0.1698	0.160	0.1506	0.1416	0-133)	0.125

By Thape Toidal Pule

$$I_{4} = \frac{h}{2} \left[(y_{0} + y_{16}) + 2 (y_{1} + y_{2} + \dots + y_{15}) \right]$$
$$= \left(\frac{0.125}{2} \right) \left[(0.26 + 0.125) + 2 (0.249 + 0.2462 + \dots + 0.1331) \right]$$

$$F_{4} = 0.3926$$
Using Romberg's tormula tor E_{3} and I_{4} we have
$$I = I_{4} + \left(\frac{P_{4} - P_{3}}{3}\right)$$

$$= 0.3926 + \left(\frac{0.3926 - 0.3924}{3}\right)$$

$$I = 0.3926 + \left(\frac{0.3926 - 0.3924}{3}\right)$$

$$I = 0.3927 - 3$$
Since (2) and (3) are almost equal we can brake
$$I = \int_{1}^{2} \frac{d\alpha}{n^{2} + 4} = 0.3927 - 9$$
By actual integration
$$\int_{0}^{2} \frac{d\alpha}{n^{2} + 4} = \int_{1}^{2} \frac{d\alpha}{n^{2} + 2^{2}} = \frac{1}{2} \tan^{-1} \left(\frac{3}{2}\right) \int_{0}^{2}$$

$$= \pm [\frac{7}{4}] = \frac{7}{8} - 6$$

DR APF

~ From (4) and (5) we get 1/8 = 0.3927

 $\therefore \pi \approx 3.1416.$ DOWNLOADED FROM STUCOR APP
DOENALOADED FROM STYCGROPRomberg's nothed correct to 4 decimal places. Hence deduce an approximate value of T.

solution!

et
$$y = \frac{1}{1+x^2}$$
 and let $I = \int \frac{dx}{1+x^2}$

Take h=0.5 The babulated values of y ale

x	0	0.5	1
$y = \frac{1}{1+a^2}$	1	018	0.5

using properoidal rule

$$I_{1} = \int_{-1}^{1} \frac{dot}{1+3t^{2}} = \frac{h}{2} \left[\left[\frac{1}{3} + \frac{1}{2} \right] + 2\frac{1}{3} \right]$$
$$= \frac{0.5}{2} \left[\left(\frac{1}{1+0.5} \right) + \frac{1}{5} \right]$$
$$= 0.775$$

Take h 20.25 The tabulated values of y are

x	0	0.25	0.50	0.75	1.00
$y = \frac{1}{1+x^2}$	l	0.9412	0870	0-64	0-5

$$I_{2} = \int \frac{d\alpha}{1+\alpha^{2}} = \frac{h}{2} \left[(y_{0} + y_{4}) + 2 (y_{1} + y_{2} + y_{3}) \right]$$
$$= \frac{0.25}{2} \left[(1 + 0.5) + 2 (0.9412 + 0.80 + 0.64) \right]$$

= 10.7828

Take h=0.125 The tabulated values of y are

x	0	0.125	0.25	0.375	0.50	0-625	0.750	0.875	10
$y = \frac{1}{1+\chi^2}$	1	0.9846	0.9412	0. 8767	0,80	0.7191	0.64	0.5664	0.5

Using Traperoidal Rule $T_3 = \int \frac{d\alpha}{1+\alpha^2} = \frac{h}{2} \left[(y_0 + y_8) + 2 (y_1 + y_2 + \dots + y_7) \right]$ DOWNLOADED FROM ST (20125) $\int \left[(1 + 0.5) + 2 (0.9846 + 0.9432 + 0.8767 + 0.8777 + 0.877$ DOWNLOADEDFBC2155TUCORADE 5-528)

= 0.78475 using Romborg's formula for I, and Iz we have

$$\begin{aligned} \mathcal{I} &= T_2 + \left(\frac{7_2 - \Gamma_1}{3}\right) \\ &= 0.7828 + \left(\frac{0.7828 - 0.775}{3}\right) \\ &= 0.7828 + 0.0026 \\ &= 0.7854 \end{aligned}$$

using Romberg's sormilla for Iz and Iz we have (0.78475-0.7828)

$$I = I_3 + \left(\frac{I_3 - I_2}{3}\right) = 0.78475 + \left(\frac{0.76475}{3}\right)$$
$$= 0.78475 + 0.00065$$

$$\therefore I = \int \frac{d\alpha}{1+\eta^2} = 0.7854 \quad - 0$$

By actual eValuation of the definite integral we have
$$I = \int \frac{d\alpha}{1+\eta^2} = [tanilot]^{1} = T_{4} \quad - 0$$

FROM (1) and (2) we have $T_{4} = 0.7854$.

AND THREE POINT GLAUSSIAN QUADRATURE FORMULAS Two Two points Granssian guadratu Se - Problems Formula: $\int_{-1}^{1} f(x) dx = b(-\frac{1}{\sqrt{3}}) + b(\frac{1}{\sqrt{3}}).$

This formula is exact for polynomials up to degree 3.

Ŧ

(DOAPPHyoGiaElesFRoor Brindorforthula to evaluate 1' -1 -1+22 dec

Ð

Soluring Given interval is -1 to I so we apply

$$\int_{-1}^{1} f(x) da = f\left(\frac{-1}{3}\right) + f\left(\frac{1}{3}\right) tormula.$$

Here
$$f(x) = \frac{1}{1+\chi^2}$$

 $f\left(\frac{-1}{\sqrt{3}}\right) = \frac{1}{1+\frac{1}{3}} = \frac{1}{(\frac{4}{3})} = \frac{3}{4}$
 $f\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{1+\frac{1}{3}} = \frac{1}{(\frac{4}{3})} = \frac{3}{4}$
 $\therefore \int f(x) dx = \int \frac{1}{1+\chi^2} dx = \frac{3}{4} + \frac{3}{4} = \frac{3}{2} = 1.5$

But actual integration

$$\int \frac{1}{1+\alpha^{2}} d\alpha = [ten \sqrt{\alpha}]' = ten (1) - ten (-1)$$

$$= ten (1) + ten (1)$$

$$= 2 ten (1)$$

$$= 2 T_{4}$$

$$= T_{2} = 1.5708$$

Here the error due to two-point tormula is 0.0708

D. Apply Gauss two-point formula to evaluate $\int \frac{dx}{1+x^2}$ solui: Griven interval is to to 1, to make them as -1 to 1

$$\int \frac{dx}{1+x^2} = \frac{1}{2} \int \frac{dx}{1+x^2} \left[-\frac{1}{1+x^2} + \frac{1}{1+x^2} \right]$$

$$= \frac{1}{2} \left[1 + \frac{5}{2} \right] \left[\frac{1}{2} + \frac{1}{2}$$

OADED FROM STUCOR APP

DOWSHID ODE DE BANK STOLE PERAPPhornula avaluate

(i)
$$\int (3x^2 + 5x^4) dx$$
 (ii) $\int (3x^2 + 5x^4) dx$

Solution :-

Hence we can apply the formula

$$\int_{-1}^{1} f(x) dx = f(\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$Ibere f(x) = 3x^{2} + 5x^{4}$$

$$f(\frac{1}{\sqrt{3}}) = 3(\frac{1}{\sqrt{3}}) + 5(\frac{1}{4}) = 1 + \frac{5}{\sqrt{4}} = \frac{14}{4} = 1.556$$

$$f(\frac{1}{\sqrt{3}}) = 3(\frac{1}{\sqrt{3}}) + 5(\frac{1}{4}) = 1 + \frac{5}{\sqrt{4}} = \frac{14}{9} = 1.556$$

$$f(\frac{1}{\sqrt{3}}) = 3(\frac{1}{\sqrt{3}}) + 5(\frac{1}{4}) = 1 + \frac{5}{\sqrt{4}} = \frac{14}{9} = 1.556$$

$$\int_{-1}^{1} (3x^{2} + 5x^{4}) dx = (1.556 + 1.556) = 3.112$$

(ii) orbien interval is o tol, so to make them as -1 to 1

Som:
$$\int (3x^2 + 5x^4) dx = \int_2 \int (3x^2 + 5x^4) dx$$

= $\frac{1}{2} [3 \cdot 112] = 1.556$
E: $3x^2 + 5x^4$ is on even
tweethout

€ Evalueite J² e⁻²/₂ dx by Grangs two point bornula.

John: briven The range is not (-1, 1) so by using the formula to make them as (-1, 1)

$$x = \frac{b-a}{2}z + \frac{b+a}{2}$$
 Here $a = -2$; $b = 2$

$$x = \frac{2+2}{2}z + \frac{2-2}{2}$$

$$x = 2z = 2z = 2z = 2z = 2z$$

$$dx = 2dz$$

STUCOR APF

DOWNLOADED FROM STUCOR APP

$$\int_{-2}^{e^{-\gamma}2} d\alpha = \int_{-1}^{e^{-\gamma}2} (2 dz)$$

$$= 2 \int_{1}^{1} e^{-\gamma} dz$$

$$= 2 \left[f(-\gamma_3) + f(\gamma_3) \right]$$
Here $f(z) = e^{-\gamma}$

$$f(-\gamma_3) = e^{-\gamma_3} = 1.7813$$

$$f(-\gamma_3) = e^{-\gamma_3} = 0.5614$$

$$= 2 \left[0.5614 + 1.78/3 \right]$$

4-6854

Three points Graussian quadrature
Formula
$$\int_{-1}^{1} b(x) dx = \frac{5}{9} \left[t \left(-\sqrt{3} t \right) + t \left(\sqrt{3} t \right) \right] + \frac{8}{9} t(x)$$

This formula is exact for polynomials up to degree 5.
D using Graussian pure - point bornula evaluate
(i) $\int_{-1}^{1} t x^{2} - \frac{1}{2} t dx$

23

(1)
$$\int (3x^2 + 5x^4) dx$$

(ii)
$$\int_{0}^{1} (3x^{2} + 5x^{4}) dx$$

also compare with exact values

Som:-Let f(x) = 3x²⁺⁵x⁴. [Range given is exact sorm] \$ (0) = 0 $t(-\sqrt{3}_{5}) = 3(3_{5}) + 5(3_{5})^{2} = 9_{5} + 9_{5} = 18_{5}$ $t(\sqrt{3}_{5}) = 3(\frac{3}{5}) + 5(\frac{3}{5})^{2} = 9_{5} + 9_{5} = \frac{13}{5}$ STL

DOWNLOADED FROM STUCOR APP

$$\begin{array}{rcl}
\cdot, & & \\ & & \\ & -1 \end{array} & \begin{array}{rcl}
 & & \\ & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & \\ & & \\ & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & & \\ & & \\ & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & & \\ & & \\ & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & & \\ & & & \\ & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & -1 \end{array} & \begin{array}{rcl}
 & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Exact value

$$\int (32x^{2} + 5x^{4}) dx = 2 \int (3x^{2} + 5x^{4}) dx \left[\frac{32x^{2} + 5x^{4}}{3} + \frac{5x^{5}}{5} \right]^{1}$$

= $2 \left[\frac{3x^{3}}{3} + \frac{5x^{5}}{5} \right]^{1}$
= $2 \left[x^{3} + x^{5} \right]^{1}$
= $2 \left[(1+i) - (0+0) \right]$

we get exact value by using cranssian phree-point formula (ii)] (3x2+5x4) dx [The range is not exact borm] = ½ [4] = 2 [by (1)]

using phree - point Granssian anadrature tormula, evalute (1) $\int \frac{1}{1+p_1^2} dp_1$ (ii) $\int \frac{1}{1+t^2} dt$

COR

$$\frac{bohni}{Let t(x)} = \frac{1}{1+a^2} \sum_{i=1}^{n} Range given is exact tormining t(0) = \frac{1}{1+a^2} = 1$$

DOWNLOADED FROM STUCOR APP

$$\oint (-\sqrt{3}) = \frac{1}{1+3} = \frac{3}{5} = \frac{5}{8}$$

 $\oint (-\sqrt{3}) = \frac{1}{1+3} = \frac{1}{35} = \frac{5}{8}$
Three -point Graubsian quadratule bormula is
 $\int \frac{1}{-1} \frac{1}{1+x^2} dx = \frac{5}{9} \left[f + (-\sqrt{3}) + f (\sqrt{3}) + f (\sqrt{3}) \right] + \frac{3}{9} f(0)$
 $= \frac{5}{9} \left[\frac{5}{8} + \frac{5}{8} \right] + \frac{3}{9} (1)$
 $= \frac{5}{9} \left[\frac{2}{72} + \frac{5}{8} \right] + \frac{3}{9} (1)$
 $= \frac{50}{72} + \frac{8}{9} = \frac{12}{12} = 1.5833 - 0$

25

Actual value

$$\int \frac{1}{1+x^2} dx = 2 \int \frac{1}{1+x^2} dx \left[\frac{1}{1+x^2} dx \right]$$

= 2 $\left[\tan^2 x \right]_0^1$
= 2 $\left[\tan^2 x \right]_0^1$
= 2 $\left[\tan^2 x - \tan^2 0 \right]$
= 2 $\left[\tan^2 x - \tan^2 0 \right]$
= 2 $\left[\tan^2 x - \tan^2 0 \right]$
= $2 \left[74 \right]$
= $T_{2} = 1.5708$

(ii) Range given is not exact form

$$\int_{0}^{1} \frac{1}{1+t^{2}} dt = \frac{1}{2} \int_{-1}^{1} \frac{1}{1+t^{2}} dt \begin{bmatrix} -\frac{1}{1+t^{2}} & \text{is an even} \\ \frac{1}{1+t^{2}} & \frac{1}{1+t^{2}} & \frac{1}{1+t^{2}} & \frac{1}{1+t^{2}} & \frac{1}{1+t^{2}} \end{bmatrix}$$

toh:

Let $f(x) = \frac{x^2 + 2x + 1}{L}$ [Range given is not in exact born] DOWNLOADED FROM STUDOUR APP $\begin{aligned} D_{QW} N_{Q} A = \underbrace{B_{2}}_{2} \underbrace{R_{2} Q_{2} S_{1}}_{2} \underbrace{S_{2} B_{2}}_{2} \qquad \left[a = 0, b = 2 \right] \\ &= \frac{a - 0}{2} z + \frac{2 + 0}{2} \\ \chi = z + 1 \qquad \left[y = 0 \Rightarrow z = -1 \\ dx = dz \qquad \left| x = z = \right] \quad z = 1 \end{aligned} \\ \int_{0}^{2} \frac{x^{2} + 2x + 1}{1 + (x + 1)^{4}} dx = \int_{-1}^{1} \frac{(z + 1)^{2} + 2(z + 1) + 1}{1 + [(z + 1) + 1]^{4}} dz \\ &= \int_{-1}^{1} \frac{z^{2} + 2z + 1 + 4z + 2 + 1}{1 + (z + 2)^{2}} dz \\ &= \int_{-1}^{1} \frac{z^{2} + 4z + 4}{(z + 2)^{4}} dz = 0 \\ &= \int_{-1}^{1} \frac{z^{2} + 4z + 4}{(z + 2)^{4}} dz = 0 \\ &= \int_{-1}^{1} \frac{z^{2} + 4z + 4}{(z + 2)^{4}} dz = 0 \end{aligned}$

$$f(z) = \frac{z^2 + 4z + 4}{(z+2)^2 + 1}$$

$$f(z) = \frac{(z+2)^2}{(z+2)^4 + 1}$$

610)=	$\frac{2^2}{2^4+1} = \frac{4}{17}$			
6[-√3]=	$\frac{\left[-\sqrt{3}_{5}+2\right]^{2}}{\left[-\sqrt{3}_{5}+2\right]^{4}+1} =$	1.50161 3.2548	11	0,4614

$$\left\{ \left\{ +\sqrt{3}\right\} = \frac{\left[\sqrt{3}\right] + 2\right]^2}{\left[\sqrt{3}\right] + 2\right]^4} = \frac{7 \cdot 69839}{60.2652} = 0.12774$$

 $(1) = \int_{1}^{1} \frac{1}{6(2)} d2 = \frac{3}{4} \left[\frac{1}{6} \left[-\sqrt{3} \right] + \frac{1}{6} \left[\frac{1}{7} \right] + \frac{3}{4} \left[\frac{1}{7} \right] \right]$ $= \frac{3}{4} \left[\frac{0.4614}{17} + 0.12774 \right] + \frac{3}{4} \left[\frac{1}{17} \right]$ = 0.3273 + 0.2072 = 0.5365

 $(1) \Rightarrow \int^2 \frac{x^2 + 2x + 1}{4} dx = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{4x + 2x + 4}{4} \frac{dx}{2} = 0.5365$ DOWNLOADEDFROM, SET ON APP SIMPSON'S RULES

Trapezoidal rule

I = $\frac{hk}{4}$ [sum of the values of f(X, y) at the Bour corner points]

simpson's rule for double integration

problems: O Evaluate]¹⁻⁴ J²⁻⁴] 2 ¹y dx dy using Trapezoidal and Simpson's Rule verity your result by actual integration.

Solution:

Divide the range of x and y into 4 equal parts.

$$h = \frac{2 \cdot 4 - 2}{24} = 0.1$$
 and $k = \frac{1 \cdot 4 - 1}{4} = 0.1$

Get the values of $f(x, y) = \frac{1}{2(y)}$ at modal points.

De	y/2	OADED F	ROM STU	CQR2AP	2-3	2.4
T	1	0.5	0.4762	0.4545	0.4348	0.4167
	1-1	0,4545	0.4329	0.4132	0.3953	0.3788
	1.2	0.4167	0.3968	0.3788	0.3623	0.3472
	1-3	0.3846	0.3663	0.3497	0.3344	0.3205
	1-4	0.3571	0.3401	0.3247	0.3106	0.2976

Cose(i): By TRapezoidal Rule, we get

I = $\frac{hk}{4}$ [(sum of values of f at the bour corners + 2 (sum of values of f at the remaining nodes on the boundary) + 4 (sum of the values of f at the interior nodes)]

$$= \underbrace{(0,1)(0,1)}_{4} \left[(0,5) + 0.4167 + 0.3571 + 0.2976 \right]$$

$$+ 2 \left[0.3846 + 0.4167 + 0.4545 + 0.4762 + 0.4545 + 0.4348 + 0.3788 + 0.3472 + 0.3205 + 0.3106 + 0.3247 + 0.3401 \right]$$

$$+ 4 \left[0.4329 + 0.4132 + 0.3953 + 0.3968 + 0.3788 + 0.3623 + 0.3663 + 0.3497 + 0.3344 \right]$$

$$= \frac{0.0}{4} \left[1.5714 + 9.2864 + 13.7188 \right]$$

= 0.0614

case (ii): By simpson's rule

- I = hk [(sim of the values of f at the four corners)
 - + 2 (sunt the values of to at the odd positions on the boundary except the corners)
 - +4 (sum of the values of f at the even poisitions on the sounderry)
- + 14 (sum of the values of f at odd positions)
- + 8 (sum of the values of 6 at even positions) on the odd now of the matrix except boundary nows?

$$DOWNS QADAD & ROMANN GOR & PREt one even positions) on the over
rows of the natrial
= $(0.1) (0.1) = [(0.5 + 0.4167 + 0.3571 + 0.2976)]$
+ 2 $(0.4167 + 0.4545 + 0.3472 + 0.3247)$
+ 4 $(0.3846 + 0.4545 + 0.4762 + 0.4348 + 0.3788 + 0.3205 + 0.3106 + 0.3401)$
+ 4 (0.3788)
+ 8 $(0.3968 + 0.3623)$
+ 8 $(0.3968 + 0.3623)$
+ 16 $(0.3663 + 0.3344 + 0.4329 + 0.3953)]$$$

$$= 0.01 [55.2116] = 0.0657$$

Case (3): By actual integration

$$\int_{1}^{1-4} \frac{1}{y(y)} dy dy = \left(\int_{1}^{1-4} \frac{1}{y} dy\right) \left(\int_{2}^{2-4} \frac{1}{x} dy\right)$$
$$= \left(\log y\right)^{1-4} \left(\log x\right)_{2}^{2-4}$$
$$= \left(\log y\right)^{1-4} \left(\log x\right)_{2}^{2-4}$$
$$= \left(\log y\right)^{1-4} \left(\log x\right)_{2}$$
$$= \left(\log y\right)^{1-4} \left(\log x\right)^{2}$$
$$= \log (1-4) \left[\log x\right]$$
$$= \log (1-4) \log (1-2)$$
$$= 0.0613.$$

we get the actual value and the value by simpson's rule are equal while the value by propezoidal rule difers only by 0.0001.

@ Evaluate 12 f(x, y) dx dy by Trapezoidal rule for the following data.

YLOL	0	0.5	1	+-5	2
0	2	3	4	5	5
1	3	4	6	9	11
2	4	6	8	-Directo	14

D

BOUNDED FROM STUCOR APP
Here
$$h = e^{5}$$

 $K = 1$
 $J = \int_{0}^{2} \int_{0}^{2} f(x, y) dx dy$
 $I = \frac{hK}{4} \left[(from of values of t at the four colorers) + 2 (from of the values of t at the remaining nodes
on the boundary) + 4 (from of the values of t at the interior nodes]
 $= (\underbrace{e^{5}(1)}_{4} \left[(2+5+14+4) + 2 (3+3+4+5+11+11+8+6) + 4 (4+6+6) \right]$
 $= (\underbrace{e^{5}(1)}_{4} \left[25+2(5) + 4(19) \right]$
 $= (\underbrace{e^{5}(1)}_{4} \left[25 + 2(5) + 4(19) \right]$
 $= (\underbrace{e^{5}(1)}_{4} \left[25 + 2(5) + 4(19) \right]$
 $= (\underbrace{25,315}_{5}$
 $= 25.315$$

3 whing simpson's 1/3 1+21+44 00 h= K= 0.5

Joh

~;*			
y/x	D	0.5	0.5
0	1	0.6667	0.4
0.5	0.6667	0.2	0.3333
1 1	0.5	0.4	2 Da. 14

Simpson's rule !-

I = hk [(sum of the values of fat the tour corners) + 2 (sum of the values of t at the odd positions on the boundary except the corners)

+4 (sum of the values of f at the even positions on the boundary)

+ (4 (sum at the values of 6 at odd positions)

EB ARON of the values of that even positions) on the DOWNLO

DOWYLSARED ER DU STUDIER OFP f at the odd positions)

+16 (sum of the values of f at the even positions) on theeven rows of the matrix?]

31

$$\begin{split} \mathbf{f} &= \underbrace{(0.5)(0.5)}_{9} \left[(1+0.5+0.3333+0.5) + 2(0) + 4(0.6667+0.6667+0.6667+0.4) + \frac{1}{2} + \frac{1}{$$

 Φ Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{d\alpha dy}{x^{2} + y^{2}}$ numerically with h=0.2 along α -direction and K=0.25 along y-direction.

Solution :-

4/	26	1	1.2	1.4	1-6	1.8	2
1		0.5	0.4098	0,3378	0.2809	0.2359	0.2
1-2-	5	0-3902	0-3331	0.2839	0.2426	0,2082	0.1798
1-5	5	0:3077	0,2710	0,2375	0.2079	0.1821	0.16
1-7	5	0.2462	0.2221	0.1991	0.1779	0.1587	0.1416
2		0:2	0,1838	0.1679	0.1524	0,1381	0.125

By Fraperoidal rule

$$\int_{1}^{2} \int_{2^{2}+y^{2}}^{2} dy dy = \frac{hk}{4} \left[sum of values of f at the tour corners+ 2 (sum of the values of f at the semainingnodes on the boundary)+4 (sum of the values of f at the interiornodes)$$

DOWNLOADED FROM STUCOR APP $= \underbrace{(0.5 + 0.2 + 0.125 + 0.2) + 2(0.2 + 462 + 0.3077)}_{4} + 0.3902 + 0.4098 + 0.3378 + 0.2809 + 0.2354 + 0.1798 + 0.16$ + 0.3902 + 0.4098 + 0.3378 + 0.2809 + 0.2354 + 0.1798 + 0.16+ 0.1416 + 0.1381 + 0.1524 + 0.1679 + 0.1838)+ 4 (0.3331 + 0.2839 + 0.2426 + 0.2082 + 0.2710 + 0.2375)+ 0.2079 + 0.1821 + 0.2221 + 0.1991 + 0.1779 + 0.1587+ 0.1838 + 0.1679 + 0.1524 + 0.1381)]

= (0.0125) [1.025+6.6566+13.4652]

= 0.2643

Unit – IV Designs of Experiments

Introduction:

The sequence of steps taken to ensure a scientific analysis leading to valid inferences about the hypothesis is called Design of Experiment. For eg., to verify the claim that a particular manure causes increase in the yield of paddy, we may conduct an agricultural experiment. In this experiment the quantity of manure used and the quantity of yield are two variables involved directly. These variables are called **Experimental variables.** There may be other variables such as the fertility of soil, the amount of rainfall, the inherent quality of seed etc. which also effect the yield . These are called **extraneous variables** as far as the hypothesis is concerned.

The Prime objective of design of experiment is to control the extraneous variables so that the results could be attributed only to the experimental variables.

Basic Principles of Design of Experiment

There are three basic principles in designing of experiments.

1.Randomization

2.Replication

3.Local control

Randomization

Random assignment of treatment to the experimental units. Most effective way of eliminating any unknown bias in the experiment.

Replication

Replication is the process of repeating the same treatment on more than one of the experimental units. Two identically treated plots will not give identical results. The differences are attributed to uncontrollable random causes, Such differences are called experimental errors. As the number of replication increases this error is reduced. So,replication is necessary to increase the accuracy of estimates of the treatment effects.

Local Control

Another way of controlling the effects of extraneous variables is by employing the principle of **local control.** It consists of techniques of grouping blocking and balancing of the experimental units.

Grouping means combining sets of homogenous experimental units into groups so that different groups may be subjected to different treatments. Each group can have different number of experimental units.

Blocking :Blocking means assigning the same number of plots or experimental units to different groups, called blocks. The plots in the same block are relatively similar or homogeneous. We may use at random

different manures to different plots in the block,

Balancing: Balancing means act of equalizing total effect of the extraneous variables on all the elements in the controlled group and in the experimental group.

Basic Designs of Experiments;

Depending on the number of extraneous variables whose effects are to be controlled ,various designs procedures are developed in the study of experimental design. We shall consider here three important designs.

1. Completely Randomized Designs(CRD)

2 Randomized Block design (RBD)

3.Latin Square Design. (LSD)

Completely Randomized Design

In a completely randomized design the treatments are given to the experimental units by a procedure of random allocation. It is used when the units are homogeneous. Suppose there are five manures and twenty plots we shall give a random allocation of treatments as below.

Write the numbers of the plots 1,2,3,4....20 in identical cards and shuffle well Name the manures or treatments as A,B,C,D,E.

Choose four cards at random. The plots bearing these numbers may be given manure A. Shuffle the remaining cards well and choose another four cards at random. The plots having these number may be given manure B and so on. This is called completely Randomized Design. In this design there is only one factor namely treatment.

Randomized Block Design

Suppose we want to test the effect of r fertilizers and the yield of paddy. We divide the plots into h blocks. Each block is relatively homogeneous and each block contains r plots. Within each block the plots are selected at random and the r treatments(fertilizers) are given. Thus in each block only one plot receives one fertilizers. This is repeated for all the H blocks. This design is called randomized block design. The basic idea in this design is to compare all treatments effects within a block of experimental unit, reducing the errors due to extraneous factors by the process of randomization. The data collected from experiments with randomized block design from a two way classification, classified according to two factors, blocks and treatments.

Latin square Design

In this design, the experimental units are divided accordingly to two factors and are arranged in rows and columns as a n X n square, known as latin square. Let there be n treatments each repeated n times so that each row and each column receives only one treatment. The treatment to a plot is decided randomly. Latin square design is used in a wide variety of fields. Latin square model is effective only if one of the factors has substantial

influence on the other. If it is not so, it is not an improvement of the randomized block design. Data from Latin square experiment formed a three way classification according to the factors rows, columns and treatment.

Analysis of Variance.(ANOVA)

Analysis of variance is a technique which enables us to test the significance of the differences among more than two samples means. In order to use analysis of variance we make the following assumptions.

- 1. The samples are drawn from normal populations.
- 2. The samples are independently drawn from these populations.
- 3. All the populations have the same variance.

We consider the following types of ANOVA

1.One way classification for CRD.

2 Two way classification for RBD.

3. Three factor ANOVA for LSD.

One way classification –ANOVA Table.

Source of	Sum of	Degress of	Mean	Variance
variation	Squares(SS)	Freesom(DF)	Square(MS)	ratio
Between	SSB	r-1	$MSB = \frac{SSB}{m}$	$F = \frac{MSB}{m}$
samples			r-1	MSW
Within	SSW	N-r	$MSW = \frac{SSW}{MSW}$	(OI) $\square MSW$
samples			N-r	$F = \frac{1}{MSB}$
Total	SST	N-1		

Since value of F should be greater than1, we take the larger of MSB or MSW to the numerator.

If the calculated value of F < the table value of F then H_0 is accepted at 5 % level of significance.

STEPS;

To construct the ANOVA table we adopt the following short cur procedure.

1.Find the total number of observations N. 2.Find the total value of all the observations T. 3.Find the Correction factor $\frac{T^2}{N}$ 4.Calculate SST = $\sum_j \sum x_{ij}^2 - \frac{T^2}{N}$ 5.Calculate SSB = $\frac{\sum x_1^2}{n_1} + \frac{\sum x_2^2}{n_2} + \dots + \frac{\sum x_r^2}{n_r} - \frac{T^2}{N}$ where $\sum x_1 = total \ of \ all \ values \ in \ sample \ 1$ $\sum x_2 = total \ of \ all \ values \ in \ sample \ 2 \ and \ so \ on.$ 6. SSW = SST- SSB

STUCOR APP

	7.Find F= $F = \frac{MSB}{MSW}$ if MSB>MSW (or) $F = \frac{MSW}{MSB}$ if msw>msb 8.Find the table value of F for (r-1,N-r) df or for (N-r,r-1)df at 5 % level of significance. Conclusion: If the computed value of F< the table value of F we accept H_0 other wise reject H_0 .
	PROBLEMS
1.	Define Mean sum of squares. Ans : The sum of square divided by its degrees of freedom gives the corresponding variance or the mean sum of squares (M.S.S). Thus $\frac{S_t^2}{(k-1)} = \frac{S.S.T}{(k-1)} = s_t^2 (\text{say}) \text{ is the M.S.S. due to treatments.}$ And $\frac{S_E^2}{(N-k)} = \frac{S.S.E}{(N-k)} = s_E^2 (\text{say}) \text{ is the M.S.S. due to error.}$
2.	 What are the advantages of a CRD ? Ans : The following are the main advantages of this type of designs : It is easy to lay out the design. It allows for complete flexibility. Any number of factor classes and replications may be used. The statistical analysis is relatively simple, even if we do not have the same number errors are not the same from class to class of this factor. The method of analysis remains simple when data are missing or rejected and the loss of information due to missing data is smaller than with any other design.
3.	State the assumptions involved in ANOVA.Solution: NormalityHomogeneitySquare Independence of error.
4.	 What are the advantages of a Latin square design? Solution: With a two way stratification or grouping, the Latin Square controls more of the variations than the completely randomized design or the randomized completely block design. The two way elimination of variations often results in small error mean square. The analysis is simple, it is only slightly more complicated than that for the randomized complete block design.

5.	State the basic principles of design of experiments.Ans :There are three basic principles of Design of experiment. They are(i)Randomisation(ii)Replication(iii)Local control(error control)					
6.	Define :RBI Ans : Random experimenta) ized block l units and	design is a s l gives the tre	simple design that eatments equivale	controls the variance to show their	ability in the effects.
7.	What do you	understa	nd by "Desig	n of an experiment	nts"?	
	Ans : The desig experiment i be well defin	gn of expe in which th ned.	riment may b ne degree of	be defined as " the uncertainly with w	e logical construct which the inference	tion of the ce is drawn may
8.	Write down	the ANO	VA table for	one way classifica	ation.	/
	Ans: Analaysis	of varianc	e (ANOVA)	table · one-way c	lassification mod	ല
	Sour	ces of	Sum of	v	Mean square	Variance ratio
	varia	tion	squares	d.f		
	Betw	veen	SSC	$v_1 = c - 1$	$MSC = \frac{SSC}{c-1}$	– MSC
	With	in	SSE	$v_2 = n - c$	$\frac{c-1}{MSE - SSE}$	$F_{C} = \frac{MSC}{MSE}$
	samp	oles		2	$MSE = \frac{1}{n-c}$	
	Tota	l laum of a	TSS	n-1		
	1SS = 10ta SSC = Sur	n of squar	es between s	amples (columns))	
	SSE = Sum	n of square	es within sam	ples (rows)		
	MSC = Mea	an sum of	squares betw	veen samples		
	MSE = Me	an sum of	squares with	iin samples		
9.	What is the a	aim of des	ign of experi	ments?		
	Solution:	6	•	h - d - C d (l)	1	f (1
	experiment i	n which the	re degree of	uncertainty with y	which the inference	on of the ce is drawn may
	be well defin	ned.				
10	Define 2^2 for	atorial day	icn			
10.	Solution:	cional des	ign.			
	When the	ere are tw	o factors A,E	and two levels 'l	high' & 'low' for	each factor we
	have a 2^2 factorial design. In spite of its simplicity, the 2^2 design is a powerful tool to					
	improve pro	ducts and	process.			
11.	Explain the	situations	in which ran	domized block de	sign is considered	an improvement
	over a comp	letely rand	lomized desi	gn.		
	AIIS : 1. RB	D is more	efficient (or)	accurate than CR	RD for most types	of experiment.
	2. In F	RBD, no re	estrictions are	e placed on numb	er of treatments o	on the number of

	replicates.
12.	 State the advantage of a factorial experiment over a simple experiment. Ans : Factorial experiment is the procedure of varying all factors simultaneously. A major conceptual advancement in experimental design is exemplified by factorial design. In factorial designs, an assessment of each individual factor effect is based on the whole set of measurements so that a more efficient utilization of experimental resources is achieved in these designs.
13.	Is a 2 x 2 Latin square design possible ? Why ? Ans : Consider, a n x n Latin square design, then the degrees of freedom for SSE is $= (n^2 - 1) - (n - 1) - (n - 1) - (n - 1)$ $= n^2 - 1 - 3n + 3 = n^2 - 3n + 2$ = (n - 1)(n - 2) For n=2, d.f. of SSE = 0 and hence, MSE is not defined. \therefore Comparisons are not possible. Hence, 2 x 2 Latin square design is not possible.
14.	State the principles of Design of Experiments. Solution: Three important designs are the following: (i)Completely Randomized Design(CRD) (ii) Randomized Block Design(RBD) (iii) Latin Square Design(LSD)

15.	Usi	ing the 2^2	factorial d	esign, d	raw the grag	phical pres	entation of	f the following table						
	and	the differ	ence in me	ean with	out replicat	ion term a	nd calculat	e						
	$(Y_1 - Y_0)$, $(Y_{0.1} - Y_{0.0})$. Discuss when PH = 2 and 3.													
	Temp.PHRep 1Rep 2Total													
		1	300	2	10	14	24							
		а	350	3	21	19	40							
		b	300	3	17	15	32							
		ab	350	3	20	24	44							
	An	s: Here	r = 2 , $r = 2$	n = 4										
	A	$=\frac{1}{2n}[a+$	-ab-b-(1)]										
		$=\frac{1}{2(4)}[$	40+44-3	32-(24)] = 3.5	contrast A	= 28 ((1)						

$$B = \frac{1}{2n} [b + ab - a - (1)]$$

$$= \frac{1}{2(4)} [32 + 44 - 40 - 24] = 1.5 \quad \text{contrast} \quad B = `12 - \cdots -(2)$$

$$AB = \frac{1}{2n} [ab + (1) - a - b]$$

$$= \frac{1}{2(4)} [44 + 24 - 40 - 32] = -0.5 \quad \text{contrast} \quad AB = -4 - \cdots -(3)$$

$$SS_{A} = \frac{1}{4n} [a + ab - b - (1)]^{2} = \frac{(28)^{2}}{16} = 49$$

$$SS_{B} = \frac{1}{4n} [a + ab - b - (1)]^{2} = \frac{(12)^{2}}{16} = 9$$

$$SS_{AB} = \frac{1}{4n} [ab + (1) - a - b]^{2} = \frac{(-4)^{2}}{16} = 1$$

$$SS_{F} = 10^{2} + 21^{2} + 17^{2} + 20^{2} + 14^{2} + 19^{2} + 15^{2} + 24^{2} = 2588$$

$$SS_{E} = SS_{F} - SS_{A} - SS_{B} - SS_{AB} = 2588 - 49 - 9 - 1 = 2529$$
Analysing of variance

$$\frac{S \sqrt{S + S + DF}}{A + 49 + 1 + 49 + 5 + 5^{2} + 24^{2}} = 2588$$

$$SS_{E} = SS_{F} - SS_{A} - SS_{B} - SS_{AB} = 2588 - 49 - 9 - 1 = 2529$$
Analysing of variance

$$\frac{S \sqrt{S + S + DF}}{A + 49 + 1 + 49 + 5 + 5 + 24^{2}} = 2588$$

$$SS_{E} = 2529 - 210.75 + 210.75 + 7_{A}(12,1) = 243.9$$

$$\frac{1}{B + 9 + 1 + 9} = 9 + 7_{B} = 23.42 + 7_{B}(12,1) = 243.9$$

$$\frac{1}{B + 7_{A}} < Table F_{A}$$

$$Cal F_{A} < Table F_{A}$$

$$Cal F_{B} < 210.75 + 216$$

$$\frac{1}{2}(\overline{y_{01}} + \overline{y_{00}})$$
For the second factor, pH we estimate the difference in mean response between the low and high level by
$$\frac{1}{2}(\overline{y_{00}} + \overline{y_{10}})$$

$$\frac{1}{2}(\overline{y_{00}} + \overline{y_{10}})$$

$$\frac{1}{2}(\overline{y_{00}} + \overline{y_{10}})$$

$$\frac{1}{2}(\overline{y_{10}} + \overline{y_{10}}) = \frac{1}{2}(16 + 22) - \frac{1}{2}(12 + 20) = 3 - \dots + (4)$$
To estimate the interaction, we mote that $\overline{y_{10}} - \overline{y_{00}}$ gives the increase in yield at pH = 2, whereas $\overline{y_{1}} - \overline{y_{01}}$ gives the increase in yield at pH = 3. The average of these two differences estimates the interaction.
$$\frac{1}{2}(\overline{y_{11}} - \overline{y_{01}}) - \frac{1}{2}(\overline{y_{10}} - \overline{y_{00}}) = \frac{1}{2}(\overline{y_{11}} - \overline{y_{10}} - \overline{y_{01}} + \overline{y_{00}})$$

$$= \frac{1}{2}(22 - 20 - 16 + 12) = -1 - - - - (5)$$
From (2) & (4) we get $\overline{y_{1}} + \overline{y_{0}} = \frac{B}{2r}$
From (3) & (5) we get $\frac{1}{2}(\overline{y_{11}} + \overline{y_{01}}) - \frac{1}{2}(\overline{y_{10}} - \overline{y_{00}}) = \frac{AB}{2r}$
The following table shows the live in hours of four brands of electric lamps brand.
A 1610 1610 1650 1680 1700 1720 1800
B 1580 1640 1640 1700 1750
C 1460 1550 1600 1620 1640 1660 1740 1820
D 1510 1520 1530 1570 1600 1680
Perform an analysis of variance and test the homogeneity of the mean lives of the four brands of lamps.
Ans :
H_0: There is no significant difference between the four brands.
H_1: There is significant difference between the four brands.
Subtract 1600 and then divided by 10 we get

STUCOR APP

X	X_1	\mathbf{X}_2	X	X_4					
A	A	B	А ₃ С	D	Total	X_1^2	X_2^2	X_3^2	X_4^2
1	1	-2	-14	-9	-24	1	4	196	81
1	1	4	-5	-8	-8	1	16	25	64
4	5	4	0	-7	2	25	16	0	49
8	8	10	2	-3	17	34	100	4	9
1	0	15	4	0	29	100	225	16	0
1	2	-	6	8	26	144	_	36	64
2	0	-	14	-	34	400	-	196	-
-	-	-	22	-	22	-	_	484	-
5	7	31	29	-19	98	735	361	957	267
Step 3. (Step 4. ' Step 5.	C.F. =	$= \frac{T^2}{N}$ $= \sum X_1$ $= 73$ $C = \frac{C}{2}$ $TSS - $	$= \frac{960}{26}$ $\frac{2}{26} + \sum$ $5 + 36$ $\sum X_1 + \sum$ N_1 $[$ $= \frac{(5)}{26}$ $SSC = 10$	$\frac{4}{2} = 369.3$ $X_{2}^{2} + \sum 2$ $51 + 957 - 2$ $\frac{2}{2} + \frac{(\sum X)}{N_{1}} = nun$ $\frac{7}{7} + \frac{(31)}{5} = 1950.6$	$X_{3}^{2} + \sum X_{3}^{2} + \sum X_{3}^{2} + \sum X_{3}^{2} + 267 - 30$ $\frac{2}{2}^{2} + \frac{(\sum x_{3}^{2})^{2}}{1} + \frac{(\sum x_{3}^{2})^{2}}{1} + \frac{(\sum x_{3}^{2})^{2}}{8} + \frac{(29)^{2}}{8}$ $1 - 452.2$	$\frac{2}{4} - \frac{T^2}{N}$ 59.39 = $\frac{X_3}{N_1}^2 + \frac{(-19)}{6}$ ements i $\frac{2}{5} = 149$	$= 1950.$ $= \frac{(\Sigma X_4)}{N_1}$ n each co $= \frac{(2 - 1)^2}{N_1} - 369$ $= -369$ $= -369$	$\frac{2}{N} - \frac{T^2}{N}$ blumn] .39 = 45	52.25
Step 6.	ANC)VA ta	ble						
Source varia	es of nce	Sun	n of ares	d.f.	Mean	square	Varia	nce	Table val 5% leve
Betwee Colum	en	SSC 452.2	= 225	C - 1 = 4 - 1 = 3	$MSC = \frac{SSC}{C-1}$ $\frac{452.25}{3}$ $= 150.75$	= =	$F_{C} = \frac{M}{M}$ $= \frac{150}{68}$ $= 2.21$ Since $\frac{MSE}{MCC}$	SC SE 0.75 .11 > 1 < 1	$F_{\rm C}(3, 22)$ = 3.05
Error		SSE 1498	= 5.36	N - C = 26 - 4	$\frac{MSE}{N-C} = \frac{SSE}{N-C}$	=			

22

STUCOR APP

	Step 7 : Conclusion : Cal F_C < Table F_C . So we accept H_0 .
17.	Three varieties A, B and C of a crop are tested in a randomized block design with four
	replications. The plot yield in pounds are as follows :
	A = 6 + C = 5 + A + B + B + Q
	C 8 A 4 B 6 C 9
	B 7 B 6 C 10 A 6
	Analyse the experimental yield and state your conclusions.
	Ans:
	Variety Block
	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 $
	A 6 4 8 6 24 36 16 64 36
	B 7 6 6 9 28 49 36 36 81
	C 8 5 10 9 32 64 25 100 81
	Total 21 15 24 24 84 149 77 200 198
	H_0 : The varieties are similar
	π_1 : The varieties are not similar
	Step 1 : $N = 12$
	Step 2 $T = 84$
	Step 2. 1 – 64
	$T^2 (84)^2$
	Step 3. C.F. = $\frac{1}{12} = \frac{1}{12} = 588$
	N 12
	2 2 2 T^2
	Step 4. TSS = $\sum X_1^2 + \sum X_2^2 + \sum X_2^2 + \sum X_4^2 - \frac{1}{2}$
	1 - 1 - 2 - 3 - 4 N
	= 149 + 77 + 200 + 198 - 588 $=$ 36
	Stop 5 SEC = $(\sum X_1)^2 + (\sum X_2)^2 + (\sum X_3)^2 + (\sum X_4)^2 = T^2$
	Step 5. SSC = $\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_2} + \frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N_1}$
	$[N_1 = \text{number of elements in each column}]$
	$(21)^2$ $(15)^2$ $(24)^2$ $(24)^2$
	$=\frac{\sqrt{7}}{3}+\frac{\sqrt{7}}{3}+\frac{\sqrt{7}}{3}+\frac{\sqrt{7}}{3}-588 = 18$
	$(\Sigma Y_1)^2 (\Sigma Y_2)^2 (\Sigma Y_2)^2 T^2$
	Step 6. SSR = $\frac{1}{N} + \frac{2}{N} + \frac{3}{N} - \frac{1}{N}$
	$N_2 N_2 N_2 N_2$
	[N] = number of elements in each row]
	$\frac{1}{2}$
	$(24)^2$ $(28)^2$ $(32)^2$
	$=\frac{(24)}{2}+\frac{(20)}{2}+\frac{(32)}{2}-588 = 8$
	3 3 3
	SSE = TSS - SSC - SSR = 36 - 18 - 8 = 10
	Step 7 ANOVA table
L	

STUCOR APP

	Sources of variance	Sum of squares	d.f.	Me squ	an are	Variar	nce	Table v 5% le	vel	
	Between Varieties	SSR = 8	r -1 $= 3 - 1$ $= 2$	$MSR = \frac{SSR}{r-1}$ $\frac{8}{2} = 4$	=	$F_{R} = \frac{M}{M}$ $= \frac{4}{1.667}$ $= 2.4$	SR SE	$F_{R}(2, 6) = 5.14$) 4	
	Between Blocks	tween SSC =18 ocks		$\frac{MSC}{\frac{SSC}{C-1}} = 6$	= =	$F_{\rm C} = \frac{M}{M}$ $= \frac{6}{1.6}$ $= 3.59$	<u>SC</u> SE 5 67	$F_{\rm C}(3, 6) = 4.7$	6	
	residual	SSE = 10	N - c - r + 1 = 6	$MSE = \frac{SSE}{N-c-r}$ $\frac{10}{6} = 1.$	$\frac{1}{1} = \frac{1}{1000}$					
	Total	36								
18.	Four varieties plot yields in pour A12 D18 B12 C16 Analyse the e Solution: Let us take	A, B, C, D A, B, C, D A, B, C, D D20 A A14 C C15 A B11 xperimental 12 as origin	of a fertil ollows: C16 B11 D19 A15 I yield.	s acceptorizer are <u>B10</u> <u>C14</u> <u>A13</u> D20 ifying the	tested i	lations	with 4	rieties a	re sımil	ar. ne
	Row	X ₁	X ₂	X ₃	X_4	Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
	$(y_1)(1)$	A 0	D 8	C 4	B -2	10	0	64	16	4
	$(y_2)(2)$	D 6	A 2	B -1	C 2	9	36	4	1	4
	$(y_3)(3)$	B 0	C 3 D 1	$\frac{D}{\sqrt{2}}$			<u> </u>	<u> </u>	49	
	$\frac{(y_4)(4)}{Total}$	10	<u>Б</u> І 12	A 3		14 44	10 52	1 79	9 75	04 72
	$H_{0} \cdot There$	is no signif	12 Ficant diff	13 erence b	9 etween	rows col	JL umps (/ð and treat	1J mente	15
	H_1 : There	H_0 : There is no significant H_1 : There is significant dif		nce betw	veen rov	vs, colum	ins and	treatme	nts.	
	H_1 : There is significant of Step 1 : N = 16					,				
	Step 1 : $N = 16$ Step 2 : $T = 44$									

Step 3 : C.F = $\frac{T^2}{N}$ = $\frac{(44)^2}{10}$ = 121 Step 4 : TSS = $\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ = 52 + 78 + 75 + 73 - 121 = 157Step 5: SSC = $\frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} - \frac{T^2}{N_1}$ $[N_1 =$ number of elements in each column] $=\frac{(10)^2}{4} + \frac{(12)^2}{4} + \frac{(13)^2}{4} + \frac{(9)^2}{4} - 121 = 2.5$ Step 6. SSR $=\frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N_2}$ $[N_2 =$ number of elements in each row] $=\frac{(10)^2}{4} + \frac{(9)^2}{4} + \frac{(11)^2}{4} + \frac{(14)^2}{4} - 121 = 3.5$ To Find SSK Total Treatment 1 2 3 4 0 2 3 1 6 А -1 - 4 0 -1 -2 В С 4 3 4 2 13 D 8 7 8 29 6 44 SSK = $\frac{(6)^2}{4} + \frac{(-4)^2}{4} + \frac{(13)^2}{4} + \frac{(29)^2}{4} - 121 = 144.5$ SSE = TSS - SSC - SSR = 157 - 2.5 - 3.5 - 144.5 = 6.5Step 7 : ANOVA Table Sum of squares d.f. Variance F test 1% Sources of Mean ratio variance square SSR = 3.53 9.78 Between 1.17 1.08 Rows SSC = 2.53 0.83 0.77 27.91 Between columns SSK = 144.53 48.17 44.60 9.78 Variety

STUCOR APP

	Error	SSE = 6.5	6	1.08				
	Total	TSS = 157	11					
	Step 8 . Conclus	ion :	lumna ara	not significar	ot ot 1 0/	lovol wh	ila that f	or
	varieties is very	highly significant	The fact	that there are	no signif	icant diff	ferences	
	between rows an	d columns. Show	that the L	atin square a	rangeme	nt has no	t been	
	advantageous.							
19.	A variable trial v	vas conducted on	wheat wit	h 4 varieties i	n a Latin	Square of	design. 7	Гhe
	plan of the exper	riment and per plo	$\frac{1}{D^20}$	e given below	:			
	A19	D19 C21	B18					
	B19	A14 D17	C20					
	D17	C20 B21	A15					
	Analyse th	ne data.						
	Solution:	20 from all the ite	ms					
	$Y_n X_1$	X_2 X_3	X ₄ To	tal X^2	X^2	X_{2}^{2}	X^{2}	
	V1 5	3 0	0	8 25	9	0	0	
	y ₂ -1	-1 1	-2 -2	-3 1	1	1	4	
	y ₃ -1	-6 -3	0 -	10 1	36	9	0	
	<u>y</u> ₄ -3	0 1	-5 -	7 9	0	1	25	
	I Total 0	-4 -1	-7 -	12 <u>36</u>	46	11 nd treatr	29	I
	H_0 : There is	no significant dif	ierence be	tween rows, c	columns a	ind treatr	nents.	
	H_1 : There is	significant differe	ence betwe	en rows, colu	imns and	treatmen	its.	
	Step 1: N = 16							
	Step 2 : T = -12	2						
	Step $3: C.F =$	$\frac{T^2}{2} = \frac{144}{2} = \frac{144}{2}$	9					
		N 16		2				
	Step 4 : TSS =	$\sum X_1^2 + \sum X_2^2 + \sum$	$\sum X_3^2 + \sum X_3$	$\frac{2}{4} - \frac{T^2}{N}$				
		= 36 + 46 + 11 + 2	29 - 9 =	113				
	Step 5 : SSC =	$\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1}$	$\frac{N^2}{N_1} + \frac{(\sum X_3)}{N_1}$	$\frac{(\Sigma X_4)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1}$	$-\frac{T^2}{N}$			
		[<i>N</i> ₁ =	number of	elements in o	each colu	mn]		
		$=\frac{(0)^2}{4}+\frac{(4)^2}{4}$	$\frac{(1)^2}{4} + \frac{(1)^2}{4} + $	$\frac{(7)^2}{4} - 9 = 7$.5			

STUCOR APP

STUCOR APP

	$Col E_{\pi} < Toble E_{\pi}$													
	Cal F	$F_{\rm C}$ < T	Table F _C											
	Cal F	$F_T > T$	able F _T											
	There is	significa	ant diffe	rence be	etween 1	reatments	and row	s. But th	ere is no	signific	ant			
	differen	ce hetwe	en colui	nns						0				
	uniteren		en cora											
20.	A farme	er wishes	to test t	he effec	t of 4 fe	rtilizers A,	B,C,D o	on the yie	eld of wh	eat, The	•			
	fertilizer	rs are use	ed in a L	SD and	the resu	ults are tab	ulated he	ere perfo	rm an an	alysis o	f			
	variance	e.												
		A18	C21	D25	B11									
		D22	B12	A15	C19									
		B15	A20	C23	D24									
		C22	D21	B10	A17									
	Solution: Subtract 20 we get													
	Si	Subtract 20 we get $A -2$ $C -1$ $D -5$ $B -9$												
	A -2 C 1 D 5 B -9 D 2 B -8 A -5 C -1													
	D 2 B -8 A -5 C -1 B 5 A 0 C 2 D 4													
		B -5	A 0	C 3	D 4									
		C 2	D 1	B -10	A -3									
	 			T			2	2	2	2	-			
		<u>X₁</u>	<i>X</i> ₂	<i>X</i> ₃	<u>X</u> ₄	Total	X_1^2	X ₂ ²	X ₃ ²	X_4^2	-			
	Y_1	-2	1	5	-9	-5	4	25	25	81	_			
	<i>Y</i> ₂	2	-8	-5	-1	-12	4	25	25	1	_			
	Y_3	-5	0	3	4	2	25	9	9	16	_			
	Y_4	2	l	-10	-3	-10	4	100	100	9	_			
	TOTA	L -3	-6	-7	-9	-25	37	66	159	107				
			·	1:00.			1	1 4		_				
	H_0 : The	re is no s	agnifica	nt diffei	rence be	tween row	s, colum	ins and u	reatment	s.				
	H_1 : The	re is sign	ificant o	lifferend	ce betwo	een rows, c	olumns	and treat	tments.					
	Step 1 ·	N = 16	j j											
			,											
	Step 2 :	T = -2	5											
	Stop 2	T ²	$(-25)^2$	625	- 20.04									
	step 5.	\overline{N} –	16	16	- 39.00									
	Step 4 :	TSS =	$\sum X_{1}^{2} +$	$X_2^2 + X_3^2$	$x_{3}^{2} + X_{4}^{2}$	$\frac{T^2}{N}$								
		= 3	87 + 66 -	+ 159 +	107 - 39	$\frac{1}{906} = 329$	94							
			$(\nabla \mathbf{v}_{i})^{2}$	$(\nabla \mathbf{v}_{-})^{2}$	$(\Sigma \mathbf{v}_{-})^2$	$(\Sigma \mathbf{V}_{i})^{2}$.у 1 т ²							
	Step 5	SSC =	$\frac{(2^{N_1})}{N_1}$ +	$\frac{(2X_2)}{N_2}$	$+\frac{(2N_3)}{N_3}$	$+\frac{(2X_4)}{N_4}$ -	$\frac{1}{N}$							
		= ($\frac{-3)^2}{4} + \frac{(}{}$	$\frac{(-6)^2}{4} + \frac{(-6)^2}{4}$	$\frac{(-7)^2}{4} + \frac{(-7)^2}{4}$	$\frac{-9)^2}{4}$ - 39.0	6							
			(<i>N</i> ₁ ,	N ₂ .N ₃ ,	N ₄ are	element i	n each d	column))					
		$=\frac{9}{4}$	$+\frac{36}{4}+$	$\frac{49}{4} + \frac{81}{4}$	- 39.06	6								
		=	$\frac{175}{4} - 39$	9.06 = 4	43.75 —	39.06 =	4.69							

STUCOR APP

STUCOR APP

	sales of four	salesmen	in 3 seas	sons are t	abulated h	nere.				
			Salesm	en						
	Sea	sons	A E	3 C	D					
	Sur	nmer	36 3	6 21	35					
	Wi	nter	28 2	9 31	32					
	Moi	nsoon	26 2	8 29	29					
Ca	rry out an ar	alysis of	variance.							
Sol	ution:									
T	The abo	ve data ar	e classifi	ed accor	ding to cri	teria (i) sa	lesme	en and	l (ii) s	easc
	order to simp	olify calcu	llations, v	we code t	he data by	/ subtracti	ng 30	from	each	figu
Ine	e data in the	coded for	$\frac{\text{m are giv}}{\text{Solo}}$	en below	/:	Saacon			-	
	SEASONS	$\Lambda(\mathbf{V})$	$\mathbf{D}(\mathbf{V})$	$C(\mathbf{X})$	$D(\mathbf{V})$	Total	v^2	\mathbf{v}^2	\mathbf{v}^2	\mathbf{v}^2
V	Summer	$A(X_1)$	$B(X_2)$	$C(X_3)$	$D(X_4)$		26	Λ ₂	A3 01	Λ_4
$\frac{I_1}{V}$	Winter	+0	+0	- 7 +1	+3	+0	<u> </u>	1	01	23 1
$\frac{I_2}{V}$	Monsoon	- <u>∠</u> _A	-1	<u>+1</u> _1	+ <u>∠</u> _1	-8	4	<u> </u>	1 1	4
13			-2	-1	-1	Grand	10		1	1
	Total	0	3	_9	6	total	56	41	83	30
	Iotui	Ŭ	5		Ű	T=0	20	• •	00	
H_1 : Ster	<i>There is si</i> p 1 : N = 12	gnifican	t differ	nce betv	veen coli	umn mea	mean ns or	s as v the r	ow m	is ro iear
H ₁ : Step	<i>There is si</i> p 1 : N = 12	gnifican	t differ	nce bet	ween coli	ı column a ımn mea	mean ns or	s as v the r	ow m	is ro iean
H ₁ : Stej Stej	There is si p 1 : N = 12 p 2 : T = 0	gnifican	t differ	rnce betv	veen coli	umn mea:	mean ns or	s as v the r	ow m	is ro iean
H ₁ : Step Step	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{2}$	gnifican	et differ	nce bett	veen coli	. column i umn mea: . N is 12)	mean ns or	s as v	ow m	is ro
H ₁ : Stej Stej Stej	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$	$gnifican$ $= \frac{(0)^2}{N} =$	et differ = 0 (Nu	mber of	veen coli items or	: column a umn mea: · N is 12)	mean ns or	s as v	ow m	is ro
H ₁ : Step Step Step Step	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{N}$ p 4 : TSS	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2$	t differ = 0 (Nu + $X_2^2 + Z_2^2$	mber of $X_3^2 + X_4^2$	ween colu- items or $-\frac{T^2}{2T} =$: column a umn mea: : N is 12) 56 + 41	mean ns or + 83 -	s as v the r + 30 -	-0 =	is ro lean 210
H ₁ : Step Step Step	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{N}$ p 4 : TSS	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2$	$t differ$ $= 0 (Nu)$ $+ X_2^2 + Z_2^2$	mber of $X_3^2 + X_4^2$	ween colu- items or $-\frac{T^2}{N} =$	N is 12)	ns or + 83 -	s as v the r + 30 -	- 0 =	210
H ₁ : Step Step Step Step Step	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{N}$ p 4 : TSS p 5 : SSG	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \sum X$	$t \ differ$ $= 0 \ (Nu)$ $+ X_2^2 + L$ $\frac{2}{N_2} + \frac{(\Sigma X_2)}{N_2}$	mber of $X_3^2 + X_4^2$ $\frac{2}{N_2} + \frac{(\Sigma X_3)^2}{N_2}$	ween colu T items or $-\frac{T^2}{N} = \frac{(\Sigma X_4)^2}{N_4}$	$\frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N}$	mean ns or + 83 -	s as v the r + 30 -	- 0 =	210
H ₁ : Step Step Step Step	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{N}$ p 4 : TSS p 5 : SSC	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 +$ $C = \frac{(\sum X_1)}{N_1}$ $(0)^2 = (2)$	$t \ differ \\ = 0 \ (Nu) \\ + \ X_2^2 + L^2 \\ \frac{2}{N_2}^2 + \frac{(\sum X_2)}{N_2} \\ (x_1)^2 \\ (x_2)^2 \\ (x_3)^2 \\ (x_4)^2 \\ (x_5)^2 $	mber of $X_3^2 + X_4^2$ $\frac{2}{N_3} + \frac{(\sum X_3)^2}{N_3}$	ween colu items or $-\frac{T^2}{N} = \frac{2^2}{N_4} + \frac{(\Sigma X_4)^2}{N_4}$	$\frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N} \cos \frac{1}{N}$	mean ns or + 83 -	s as v the r + 30 -	- 0 =	210
H ₁ : Stej Stej Stej Stej	There is si p 1 : N = 12 p 2 : T = 0 $p 3 : \frac{T^2}{N}$ p 4 : TSS p 5 : SSO = 1	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \frac{(\sum X_1)}{N_1}$ $= \frac{(\sum X_1)}{N_1}$	$t \ differ \\ = 0 \ (Nu) \\ + \ X_2^2 + \frac{1}{N_2} \\ + \frac{(\Sigma X_2)}{N_2} \\ + \frac{(-9)^2}{3} + \frac{(-9)^2}{3}$	mber of $X_3^2 + X_4^2$ $+ \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3}$	ween colu T items or $-\frac{T^2}{N} = \frac{2^2}{N_4} + \frac{(\Sigma X_4)^2}{N_4}$ $\frac{T^2}{N} = \frac{2^2}{N_4}$	r column aumn meas $r N is 12)56 + 41-\frac{T^2}{N}0 + 3 + 27$	mean ns or + 83 -	s as v the r + 30 -	- 0 = = 42	21
H ₁ : Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSO =	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \frac{(\Sigma X_1)}{N_1}$ $= \frac{(\Sigma X_1)}{N_1}$ $= \frac{(\Sigma X_1)}{N_1}$	$t \ differ \\ = 0 \ (Nu) \\ + \ X_2^2 + 2 \\ \frac{x^2}{2} + \frac{(\Sigma X_2)}{N_2} \\ \frac{x^2}{2} + \frac{(-9)^2}{3} \\ \frac{x^2}{2} - (\Sigma Y_2)^2 \\ (\Sigma Y_2)^2 \\ + (\Sigma Y_2)^2 \\ (\Sigma Y_2)^2 + (\Sigma Y_2)^2 \\$	mber of $X_3^2 + X_4^2$ $\frac{2}{r} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_2)^2}{N_3}$	ween colu items or $-\frac{T^2}{N} =$ $\frac{T^2}{N_4} + \frac{(\Sigma X_4)^2}{N_4}$ $\frac{T^2}{N} =$ $(\Sigma Y_4)^2$	$T = N \text{ is } 12)$ $T = \frac{T^2}{N}$ $0 + 3 + 27$ T^2	mean ns or + 83 -	s as v the r + 30 -	- 0 = = 42	21
H ₁ : Step Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \frac{(\Sigma X_1)}{N_1}$ $= \frac{(\Sigma Y_1)}{N_1}$	$t \ differ= 0 \ (Nu) + X_2^2 + \frac{1}{N_2} + \frac{(\sum X_2)}{N_2} + \frac{(\sum Y_2)^2}{3} + \frac{(\sum Y_2)^2}{N_2}$	mber of $X_3^2 + X_4^2$ $+ \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$	$\frac{T^{2}}{N} = \frac{T^{2}}{N} = \frac{T^{2}}{N} = \frac{T^{2}}{N} = \frac{T^{2}}{N} = \frac{(\Sigma Y_{4})^{2}}{N_{4}}$	$r column aumn mea:N is 12)56 + 41-\frac{T^2}{N}0 + 3 + 27-\frac{T^2}{N}$	mean ns or + 83 -	s as v the r + 30 -	- 0 = = 42	21
H ₁ : Step Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSO = p 6 : SSR	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2 +$ $C = \frac{(\sum X_1)}{N_1}$ $\frac{(0)^2}{3} + \frac{(3)}{3}$ $= \frac{(\sum Y_1)}{N_1}$ $(8)^2 = (0)$	$t \ differ \\ = 0 \ (Nu) \\ + \ X_2^2 + 2 \\ \frac{x^2}{2} + \frac{(\Sigma X_2)}{N_2} \\ \frac{x^2}{2} + \frac{(-9)^2}{3} \\ \frac{x^2}{2} + \frac{(\Sigma Y_2)^2}{N_2} \\ \frac{x^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} \\ \frac{x^2}{N_2} + \frac{(-9)^2}{N_2} \\ \frac{x^2}{N_2} + (-9$	mber of $X_3^2 + X_4^2$ $\frac{2}{3} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$ $(6)^2$	ween colu $-\frac{T^2}{N} =$ $\frac{T^2}{N} + \frac{(\Sigma X_4)^2}{N_4}$ $+ \frac{(\Sigma Y_4)^2}{N_4}$ T^2	$r column aumn measr N is 12)56 + 41-\frac{T^2}{N}0 + 3 + 27-\frac{T^2}{N}$	mean ns or + 83 -	s as (the r + 30 -	- 0 = = 42	21
H ₁ : Stej Stej Stej Stej Stej	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR =	gnificant $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \frac{(0)^2}{N_1}$ $= \frac{(\sum Y_1)^2}{N_1}$ $\frac{(0)^2}{3} + \frac{(0)^2}{N_1}$ $= \frac{(\sum Y_1)^2}{N_1}$	$t \ differ= 0 \ (Nu) + X_2^2 + \frac{1}{N_2} + \frac{(\sum X_2)}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(-8)^2}{3}$	mber of $X_3^2 + X_4^2$ $+ \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3}$	ween colu ritems or $-\frac{T^2}{N} =$ $\frac{T^2}{N_4} + \frac{(\Sigma X_4)^2}{N_4}$ $+ \frac{(\Sigma Y_4)^2}{N_4} -$ $\frac{T^2}{N} =$	$r column aumn measr N is 12)56 + 41-\frac{T^2}{N}0 + 3 + 27-\frac{T^2}{N}16 + 0 + 1$	mean ns or + 83 - 1 + 12 16 - 0	s as v the r + 30 - - 0 = = 3	- 0 = = 42	21
H ₁ : Step Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR = SSE =	gnificant $= \frac{(0)^2}{N} =$ $= \sum X_1^2$ $C = \frac{(\sum X_1)}{N_1}$ $\frac{(0)^2}{3} + \frac{(3)}{3}$ $= \frac{(\sum Y_1)}{N_1}$ $\frac{(8)^2}{3} + \frac{(0)}{3}$ $TSS - S$	$t \ differ= 0 \ (Nu) + X_2^2 + L$ $\frac{2}{r} + \frac{(\Sigma X_2)}{N_2}$ $\frac{2}{r} + \frac{(-9)^2}{N_2}$ $\frac{2}{r} + \frac{(-9)^2}{N_2}$ $\frac{2}{r} + \frac{(-8)^2}{N_2}$ $\frac{2}{r} + \frac{(-8)^2}{3}$ $SSC - SS$	mber of $X_3^2 + X_4^2$ $\frac{2}{3} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{1}{N_3}$ $+ \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{1}{N_3}$ $+ \frac{(6)^2}{3} - \frac{1}{N_3}$ $+ \frac{(6)^2}{3} - \frac{1}{N_3}$ $+ \frac{(6)^2}{3} - \frac{1}{N_3}$	ween colu veen colu $-\frac{T^2}{N} =$ $\frac{T^2}{N} + \frac{(\Sigma X_4)^2}{N_4}$ $+\frac{(\Sigma Y_4)^2}{N_4}$ $-\frac{T^2}{N} =$ 0 - 42 - 3	$r N is 12)$ $r N is 12)$ $56 + 41$ $-\frac{T^2}{N}$ $0 + 3 + 27$ $-\frac{T^2}{N}$ $16 + 0 + 1$ $2 = 136$	mean ns or + 83 - 16 - 0	s as v the r + 30 - - 0 = = 3	- 0 = = 42	21(
H ₁ : Step Step Step Step Step	There is si p 1: N = 12 p 2: T = 0 p 3: $\frac{T^2}{N}$ p 4: TSS p 5: SSC = p 6: SSR = SSE = p 7: Tell	$gnifican$ $= \frac{(0)^2}{N} =$ $= \sum X_1^2$ $C = \frac{(\sum X_1)}{N_1}$ $\frac{(0)^2}{3} + \frac{(3)}{3}$ $= \frac{(\sum Y_1)}{N_1}$ $\frac{(8)^2}{3} + \frac{(0)}{3}$ $TSS - S$	$t \ differ= 0 \ (Nu) + X_2^2 + 2$ $\frac{2}{n} + \frac{(\Sigma X_2)}{N_2} + \frac{(-9)^2}{3} + \frac{(-9)^2}{N_2} + \frac{(-9)^2}{N_2} + \frac{(-8)^2}{N_2} + \frac{(-8)^2}{3}$ $SSC - SSI = N_2 = 0$	mber of $X_3^2 + X_4^2$ $\frac{2}{3} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3}$	$ritems or$ $-\frac{T^2}{N} =$ $\frac{T^2}{N} =$ $+\frac{(\Sigma Y_4)^2}{N_4} -$ $\frac{T^2}{N} =$ $0 - 42 - 3$	$r column a umn meas - N is 12) 56 + 41 - \frac{T^2}{N}0 + 3 + 27- \frac{T^2}{N}16 + 0 + 122 = 136$	mean ns or + 83 - 16 - 0	s as v the r + 30 - - 0 = = 3	- 0 = = 42	21
H ₁ : Step Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR = SSE = p 7: Table c	gnificant $= \frac{(0)^2}{N} =$ $= \sum X_1^2$ $C = \frac{(\sum X_1)}{N_1}$ $\frac{(0)^2}{3} + \frac{(3)}{3}$ $= \frac{(\sum Y_1)}{N_1}$ $\frac{(8)^2}{3} + \frac{(0)}{3}$ $TSS - S$ of Analysi	$t \ differ= 0 \ (Nu) + X_2^2 + L$ $\frac{2}{r} + \frac{(\Sigma X_2)}{N_2}$ $\frac{2}{r} + \frac{(-9)^2}{N_2}$ $\frac{2}{r} + \frac{(-9)^2}{N_2}$ $\frac{2}{r} + \frac{(-8)^2}{N_2}$ $\frac{2}{r} + \frac{(-8)^2}{3}$ SSC - SSE s Variance	mber of $X_3^2 + X_4^2$ $\frac{2}{3} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{N_3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{N_3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{N_3} - \frac{(5)^2}{N_3}$ $+ \frac{(6)^2}{N_3} - \frac{(5)^2}{N_3}$	ween colu $-\frac{T^2}{N} =$ $\frac{T^2}{N} =$ $+\frac{(\Sigma X_4)^2}{N_4} -$ $\frac{T^2}{N} =$ $+\frac{(\Sigma Y_4)^2}{N_4} -$ $\frac{T^2}{N} =$ 0 - 42 - 3	$r column a umn meas r N is 12) 56 + 41 -\frac{T^2}{N} 0 + 3 + 27 -\frac{T^2}{N} 16 + 0 + 1 2 = 136$	mean ns or + 83 - 16 - 0	s as v the r + 30 - - 0 = = 3	- 0 = = 42	210
H ₁ : Step Step Step Step Step Step	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR = SSE = p 7: Table of	gnifican $= \frac{(0)^2}{N} =$ $= \sum X_1^2 + \frac{(0)^2}{N_1} + \frac{(0)^2}{3} + \frac{(3)^2}{N_1} + \frac{(0)^2}{3} $	$t \ differ= 0 \ (Nu) + X_2^2 + 2$ $\frac{2}{n} + \frac{(\Sigma X_2)}{N_2} + \frac{(-9)^2}{3} + \frac{(-9)^2}{N_2} + \frac{(-9)^2}{N_2} + \frac{(-8)^2}{N_2} + \frac{(-8)^2}{3}$ $SSC - SSI + SVariando$	mber of $X_3^2 + X_4^2$ $\frac{2}{3} + \frac{(\Sigma X_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(\Sigma Y_3)^2}{N_3}$ $+ \frac{(6)^2}{3} - \frac{(6)^2}{N_3} - \frac{(6)^2}{3} - \frac{1}{N_3}$ $x + \frac{(6)^2}{3} - \frac{(6)^2}{3} - \frac{1}{N_3}$ $x + \frac{(6)^2}{3} -$	between ween colu $-\frac{T^2}{N} =$ $\frac{T^2}{N} =$ $+\frac{(\Sigma Y_4)^2}{N_4} -$ $\frac{T^2}{N} =$ 0 - 42 - 3 can Square	$r N \text{ is } 12)$ $r N \text{ is } 12)$ $56 + 41$ $-\frac{T^2}{N}$ $0 + 3 + 27$ $-\frac{T^2}{N}$ $16 + 0 + 12$ $2 = 136$ $r Varia$	$\frac{1}{2} + 83 - \frac{1}{2} + 12$ $16 - 0$ ance	s as v the r + 30 - = 3 = 3	-0 = 42 32 $able$	21(
$H_{1}:$ $Step$ $Step$ $Step$ $Step$ $Step$ $Step$ $Step$ $Step$	There is si p 1: N = 12 p 2 : T = 0 p 3 : $\frac{T^2}{N}$ p 4 : TSS p 5 : SSC = p 6 : SSR = SSE = p 7: Table of purces of purces of purces of	gnificant $= \frac{(0)^2}{N} =$ $= \sum X_1^2$ $C = \frac{(\sum X_1)}{N_1}$ $\frac{(0)^2}{3} + \frac{(3)}{3}$ $= \frac{(\sum Y_1)}{N_1}$ $\frac{(8)^2}{3} + \frac{(0)}{3}$ $TSS - S$ of Analysi Sum of squares	$t \ differ= 0 \ (Nut+ X_2^2 + 2)+ \frac{(\Sigma X_2)}{N_2}+ \frac{(\Sigma Y_2)^2}{N_2}+ \frac{(-9)^2}{3}+ \frac{(\Sigma Y_2)^2}{N_2}+ \frac{(-8)^2}{3}+ \frac{(-8)^2}{3}+ \frac{(-8)^2}{3}$ SSC - SSI s Variance	mber of $X_{3}^{2} + X_{4}^{2}$ $\frac{2}{3} + \frac{(\Sigma X_{3})^{2}}{N_{3}}$ $+ \frac{(6)^{2}}{3} - \frac{1}{N_{3}}$ $+ \frac{(6)^{2}}{N_{3}} - \frac{1}{N_{3}}$	ween colu $-\frac{T^2}{N} =$ $\frac{T^2}{N} + \frac{(\Sigma X_4)^2}{N_4}$ $+\frac{(\Sigma Y_4)^2}{N_4}$ $-\frac{T^2}{N} =$ 0 - 42 - 3 can Square	$\frac{1}{2} \cos(2\pi n m m m m m m m m m m m m m m m m m m $	$\frac{1}{16} + 12$	s as v $the r$ $+ 30 -$ $- 0 =$ $= 3$ $T va$	-0 = 42 $= 42$ $= 42$ $= 42$	210 t

STUCOR APP

Bety rows Resi	veen s(seasons) dual) 32		- 5	=	= 14	4 :	= :	=	
Bety rows Resi	veen s(seasons) dual) 32				C-1	-	14		
Resi	ween s(seasons) dual) SSI 32				660	1	.619	7	
Resi	s(seasons) dual) 32	R =	r-1	MS	$R = \frac{SSR}{n-1}$	F_{j}	$R = \frac{MSE}{MSE}$	$\frac{E}{D} = F_{H} $	_{ (6,2)
Resi	dual			=3 -1	$=2$ $=\frac{3}{2}$	$\frac{2}{5} = 16$	22	2.67	` =	19.33
		SSI	E =	N-c-r	+1 MS	$SF = \frac{SS}{S}$	E	10		
		136	5	= 12-4	4-	и зб	r+1			
				3+1 =	= 6 = -	$\frac{150}{6} = 22.6$	57			
		210)	11		0				
Step 8	8: Conc Hence therned.	lusion here is	: Ca no si	al F < gnifica	Table F nt differe	nce in the	e seasor	is as far	as the s	sales ar
	Thus the	test sh	iows ti	hat the	salesmen	and the s	seasons	are alik	te, so fa	r as the
sales	are conce	erned.								
The f	ollowing	data re	eprese	nt the r	number of	units of	produc	tion per	day tu	med ou
5 diff	erent wor	rkers u	sing 4	Machi	ent types	of machin	ne			
-					B B	С	Тг			
-	Workers	2 1		A 44	38	-47	34	5		
-	WOIKEIS	$\frac{5}{2}$		44	<u> </u>	52	13	2		
	Workers			3/	36)		
-				· · • •				<u> </u>		
-		3		/3	38	16	33	2		
-		3 4 5		43 38	38 42	46 49	33	3		
(1) Test wh 2) Test wh	3 4 5 hether hether	the m the 5	43 38 ean pro men di	38 42 oduction i ffer with	46 49 s the sam mean pro	33 39 e for th ductivi	3 9 e differ ty.	ent mac	chine ty
(1 (2 Ans :) Test wh 2) Test wh The code	345hetherhetherdata is	the m the 5	43 38 ean pro men di	38 42 oduction i ffer with	46 49 s the sam mean pro	33 39 e for th ductivi	3 9 e differ ty.	ent mac	chine ty
(1 (2 Ans :) Test wh 2) Test wh The code Row	$\begin{array}{c c} 3\\ 4\\ 5\\ 6\\ 6\\ 6\\ 6\\ 7\\ 6\\ 7\\ 6\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	the m the 5 x_2	43 38 ean pro men di X ₃		46 49 s the sam mean pro	X_1^2	$\frac{3}{9}$ e differ ty. X_2^2	ent mac X_3^2	where the third the transformation X_4^2
(1 (2 Ans :) Test wh 2) Test wh The code Row y ₁	$\begin{array}{c c} 3\\ 4\\ 5\\ 6\\ 5\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$	the m the 5 $\overline{x_2}$ $\overline{x_2}$ -2			46 49 s the sam mean pro Total 5	$\frac{33}{39}$ e for th ductivit	$\frac{3}{9}$ e differ ty. $\frac{X_2^2}{4}$	ent mac X_3^2 49	whine ty X_4^2 16
(1 (2 Ans :) Test wh 2) Test wh The code Row <u>y1</u> y2	$\begin{array}{c c} 3\\ 4\\ 5\\ 5\\ 6\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	the m the 5 x_2 -2 0	43 38 ean promen di X3 7 12		46 49 s the sam mean pro Total 5 21	$\frac{33}{39}$ e for the ductivity $\frac{X_1^2}{16}$	$\frac{3}{2}$ e differ ty. $\frac{X_2^2}{4}$ 0	ent mac X_3^2 49 144	where the thine the transformation X_4^2 and 16 9
(1 (2 Ans :) Test wh 2) Test wh The code Row y ₁ y ₂ y ₃	$\begin{array}{c c} 3\\ 4\\ 5\\ 6\\ 5\\ 6\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	the m the 5 X_2 -2 0 -4	43 38 ean promen di X3 7 12 4	$ \begin{array}{r} 38 \\ 42 \\ 9 \\ 42 \\ 9 \\ 42 \\ 9 \\ 42 \\ 42 \\ 7 $	46 49 s the sam mean pro Total 5 21 -14		$\begin{array}{c} \frac{3}{2} \\ e \text{ differty.} \\ X_2^2 \\ 4 \\ 0 \\ 16 \end{array}$	ent mac X_{3}^{2} 49 144 16	The hold the end of t
(1 (2 Ans :) Test wh 2) Test wh The code Row y ₁ y ₂ y ₃ y ₄	$\begin{array}{c c} 3\\ \hline 4\\ \hline 5\\ \hline \\ hether\\ hether\\ data is\\ \hline \\ X_1\\ \hline \\ 4\\ \hline \\ 6\\ \hline \\ -6\\ \hline \\ 3\\ \end{array}$	the m the 5 x_2 -2 0 -4 -2	43 38 ean promen di X3 7 12 4 6		46 49 s the sam mean pro Total 5 21 -14 0	X_{1}^{2} X_{1}^{2} 16 36 9	$\begin{array}{c} \frac{3}{2} \\ e \text{ differ} \\ \text{ty.} \\ \hline X_2^2 \\ 4 \\ 0 \\ 16 \\ 4 \end{array}$	ent mac X_{3}^{2} 49 144 16 36	where the ty X_{4}^{2} $\frac{16}{9}$ $\frac{64}{49}$
(1 (2 Ans :) Test wh 2) Test wh The code Row y_1 y_2 y_3 y_4 Y_5	$\begin{array}{c c} 3\\ \hline 4\\ \hline 5\\ \hline \\ bether\\ hether\\ data is\\ \hline X_1\\ \hline 4\\ \hline 6\\ \hline -6\\ \hline 3\\ \hline -2\\ \hline \end{array}$	the m the 5 X_2 -2 0 -4 -2 2	43 38 ean promen di X3 7 12 4 6 9		46 49 s the sam mean pro Total 5 21 -14 0 8		$\begin{array}{c} \frac{3}{2} \\ e \text{ differ} \\ \text{ty.} \\ \hline X_2^2 \\ 4 \\ 0 \\ 16 \\ 4 \\ 4 \end{array}$	ent mac X_{3}^{2} 49 144 16 36 81	chine ty X_{4}^{2} 16 9 64 49 1

	Step 4 : TS	$\mathbf{SS} = \Sigma X_1^2$	$+\sum X_2^2 + \sum X_2^2$	$\frac{2}{3} + \sum X_4^2 - \frac{T^2}{N}$			
		= 101 +	28 + 326 + 1	39 - 20 = 574	ł		
	Step 5 : SS	$SC = \frac{(\sum X_1)^2}{N_1}$	$\frac{2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_2)^2}{N_1}$	$\frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1}$	$\left(\frac{1}{N}\right)^2 - \frac{T^2}{N}$		
		1	$[N_1 = nur]$	nber of elements	in each colum	n]	
			2 2	2 2		-	
		=	$=\frac{(5)^2}{5} + \frac{(-6)^2}{5}$	$+\frac{(38)^2}{5}+\frac{(-17)^2}{5}$	-20 = 338.8		
	Step 6.	$SSR = \frac{(\sum Y_1)}{N}$	$\frac{(\Sigma Y_2)^2}{(1 - 1)^2} + \frac{(\Sigma Y_2)^2}{(1 $	$\frac{(\Sigma Y_3)^2}{N} + \frac{(\Sigma Y_4)}{N}$	$\frac{2}{1} + \frac{(\Sigma Y_5)^2}{N} - \frac{7}{2}$	r^2	
		12	¹ 2	$\frac{1}{2}$	¹ 2	14	
			$[N_2 = num]$	ber of elements in	n each row]		
		$(5)^2$	$(21)^2$ (-14)	$(0)^2 + (0)^2 + (8)^2$	20 - 1615		
	~~~	4	+ 4 4	-+	20 - 101.5		
	SSE =	TSS – SSC	-SSR = 57	74 –338.8 – 161.5	5 = 73.7		
	Step 7 : AN	JOVA Table	•				
	Sources	Sum of	d.f.	Mean square	Variance	Table	
	of	squares			ratio	value at	
	variance					5% level	
	Between	SSR =	r – 1	SSR	MSR	$F_{\rm P}(4, 6)$	
	Rows	161.5	= 5 - 1 = 4	$MSR = \frac{BSR}{k-1}$	$F_R = \frac{MSR}{MSE}$	= 3.26	
	10000	101.0		= 40.375	= 6.574	0.20	
	Between	SSC =	c –1	NGC SSC	E MSC	$F_{\rm C}(3, 12)$	
	columns	338.8	= 4 - 1 = 3	$MSC = \frac{k}{k-1}$	$F_{C} = \frac{1}{MSE}$	= 3.49	
				=	= 18.38		
				112.933			
	Residual	SSE =	N - c - r +	MSE =			
		73.7	1 = 12	SSE			
				N - c - r + 1			
				= 6.142			
	~ ~ ~						
	Step 8 . Cor	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	12 at 5.0/ lar	$v_{0} = 2.40$			
	(1)	$\frac{\Gamma a U e \Gamma_C(S)}{Cal F_C(S)}$	Table $F_{\alpha}$ R	ver = 5.49			
	(ii) 7	Call $\Gamma_C >$	12) at 5 % lev	$r_{0} = 3.26$			
	(11)	Cal $F_{\rm P}$ >	Table $F_{\rm P}$ R	eiect $H_0$			
	$\therefore$ The w	orker differ	with respect 1	to mean productiv	vity.		
			1	1	-		
23.	The followi	ng is a Latin	square of de	sign when 4varie	ties of seeds $\overline{ar}$	e being tested.	
	Set up the a	nalysis of va	ariance table a	and state your cor	clusion. You	an carry out	
	suitable cha	inge of origi	n and scale.				

# STUCOR APP

$\frac{ A }{C } \frac{115}{C } \frac{B}{D } \frac{95}{25} \frac{C}{A } \frac{125}{15} \frac{D}{A } \frac{115}{15} \frac{D}{A } \frac{115}{15} \frac{D}{A } \frac{125}{15} \frac{D}{A } \frac{115}{15} \frac{D}{A } \frac{11}{15} \frac{D}{A } \frac{11}{2} \frac{D}{2 } \frac{11}{2} \frac{11}{2} \frac{D}{2 } \frac{11}{2} \frac{11}{2} \frac{D}{2 } \frac{D}{2 } \frac{D}{A } \frac{D}{2 } \frac{D}{2 } \frac{D}{2 } \frac{D}{A } \frac{D}{2 $			A 10/	-	D 05	0	105	D	117	
$\frac{\left \begin{array}{c} c \\ 113 \\ c \\ 115 \\ c \\ 95 \\ c \\ 135 \\ c \\ 10 \\ c \\ 135 \\ c \\ 115 \\ c \\ 115$			A = 105	5	<u>в 95</u> D 125		125	D D	115	
$\frac{ D  15}{ B  95  A  135  D  95  C  115 }{ A  115  D  95  C  115 }$ ns : Subtract 100 and then divided by 5 we get $\frac{A \ 1}{C \ 3} \ D \ 5 \ A \ 1}{ D  5  C  15  C   15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C  15  C $			$\frac{U}{D}$ 11	5	$\frac{D}{C}$ 125		105	B	105	
		-	<u>רו ע</u>	5	$\frac{125}{125}$		105	A	115	
Subtract 100 and then divided by 5 we get $ \frac{A \ 1}{C \ 3} \ B \ -1 \ C \ 5 \ D \ 3}{D \ 5 \ A \ 1 \ B \ 1} \ B \ 1} \ B \ 1} \ B \ 1 \ B \ 1} \ B \ 1 \ C \ 5 \ D \ 3} \ B \ 1 \ A \ 1 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ C \ 5 \ 5$	Ang •		в 93	5	A 135		93		115	
$\begin{split} \hline \mathbf{A} & 1 & \mathbf{B} & -1 & \mathbf{C} & 5 & \mathbf{D} & 3 \\ \hline \mathbf{C} & 3 & \mathbf{D} & 5 & \mathbf{A} & 1 & \mathbf{B} & 1 \\ \hline \mathbf{D} & 3 & \mathbf{C} & -1 & \mathbf{B} & 1 & \mathbf{A} & 3 \\ \hline \mathbf{B} & -1 & \mathbf{A} & 7 & \mathbf{D} & -1 & \mathbf{C} & 3 \\ \hline \mathbf{Y}_{n} & \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} & \mathbf{X}_{4} & \text{Total} & \mathbf{X}_{1}^{2} & \mathbf{X}_{2}^{2} & \mathbf{X}_{3}^{2} & \mathbf{X}_{4}^{2} \\ \hline \mathbf{y}_{1} & 1 & -1 & 5 & 3 & 8 & 1 & 1 & 25 & 9 \\ \hline \mathbf{y}_{2} & 3 & 5 & 1 & 1 & 10 & 9 & 25 & 1 & 1 \\ \hline \mathbf{y}_{3} & 3 & -1 & 1 & 3 & 6 & 9 & 1 & 1 & 9 \\ \hline \mathbf{y}_{4} & -1 & 7 & -1 & 3 & 8 & 1 & 49 & 1 & 9 \\ \hline \mathbf{Total} & 6 & 10 & 6 & 10 & 32 & 20 & 76 & 28 & 28 \\                                   $	Subtrac	et 10	0 and t	hen div	vided by	5 we get	t			
$\frac{ C  ^{2}}{ B  ^{2}} \frac{ C  ^{2}}{ K  ^{2}} + \frac{ C  ^{2}}{ K  ^{2}} \frac{ C  ^{2}}{ K  ^{2}} + \frac{ C  ^{2}}{ K  ^{2}} \frac{ C  ^{2}}{ K  ^{2}} + \frac{ C  ^{2}}{ K  ^{2}} \frac{ C  ^{2}}{ K$		F	A I	1	B -1	C	5	D	3	
$\frac{D}{B} \cdot \frac{C}{1} + \frac{A}{A} \cdot \frac{7}{7} + \frac{D}{D} \cdot \frac{1}{1} + \frac{A}{C} \cdot \frac{3}{3}}{\frac{3}{3}}$ $\frac{Y_n}{X_1} + \frac{X_2}{X_2} + \frac{X_3}{X_3} + \frac{X_4}{Total} + \frac{X_1^2}{X_2^2} + \frac{X_2^2}{X_3^2} + \frac{X_4^2}{X_4^2}$ $\frac{y_1}{y_1} + \frac{1}{1} + \frac{-1}{1} + \frac{5}{3} + \frac{3}{8} + \frac{1}{1} + \frac{1}{25} + \frac{9}{9}$ $\frac{y_2}{y_2} + \frac{3}{3} + \frac{5}{1} + \frac{1}{1} + \frac{10}{10} + \frac{9}{25} + \frac{1}{1} + \frac{1}{9}$ $\frac{y_3}{y_4} + \frac{-1}{1} + \frac{7}{7} + \frac{-1}{1} + \frac{3}{3} + \frac{8}{8} + \frac{1}{49} + \frac{1}{9} + \frac{9}{9}$ $\frac{y_4}{Total} + \frac{1}{6} + \frac{7}{10} + \frac{-1}{3} + \frac{3}{8} + \frac{1}{49} + \frac{1}{9} + \frac{9}{9}$ $\frac{y_4}{Total} + \frac{1}{6} + \frac{10}{10} + \frac{6}{6} + \frac{10}{20} + \frac{20}{76} + \frac{28}{28}$ $H_0 : \text{There is no significant difference between rows, columns and treatment}$ $H_1 : \text{There is no significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_2 : TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ $= 20 + 76 + 28 + 28 - 64 = 88$ $\text{Step 5} : \text{SSC} = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N}$ $[N_1 = \text{number of elements in each column]$ $= \frac{(6)^2}{4} + \frac{(10)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} - \frac{T^2}{N}$ $[N_2 = \text{number of elements in each row]$ $= \frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64 = 2$ $D \text{ Find SSK}$		_		3	$\frac{D}{C}$ 1	A D	1	B	1	
		_	<u>р</u> . В	5 .1	$\frac{C}{\Delta}$ 7		<u> </u>	A C	3	
$\frac{Y_n}{Y_1} = \frac{X_1}{X_2} = \frac{X_3}{X_3} = \frac{X_4}{X_4} = \frac{Total}{Total} = \frac{X_1^2}{X_2^2} = \frac{X_2^2}{X_3^2} = \frac{X_4^2}{X_4^2}$ $\frac{Y_1}{Y_2} = \frac{1}{1} = \frac{-1}{1} = \frac{5}{3} = \frac{3}{8} = \frac{1}{1} = \frac{1}{1} = \frac{25}{9} = \frac{9}{9}$ $\frac{Y_2}{Y_2} = \frac{3}{3} = \frac{5}{1} = \frac{1}{1} = \frac{1}{10} = \frac{9}{9} = \frac{25}{1} = \frac{1}{1} = \frac{1}{1} = \frac{9}{9}$ $\frac{Y_4}{Y_4} = \frac{-1}{1} = \frac{7}{7} = \frac{-1}{3} = \frac{38}{8} = \frac{1}{1} = \frac{49}{9} = \frac{1}{9} = \frac{9}{10} = \frac{9}{10} = \frac{1}{6} = \frac{1}{10} = \frac{1}{1$			D -	1	11 /		/ -1	C	5	
$\frac{y_1}{y_2} \frac{1}{3} \frac{1}{5} \frac{1}{1} \frac{1}{1} \frac{1}{10} \frac{9}{9} \frac{25}{25} \frac{1}{1} \frac{1}{1} \frac{1}{10} \frac{9}{9} \frac{25}{25} \frac{1}{1} \frac{1}{1} \frac{1}{19} \frac{9}{9} \frac{1}{10} \frac{1}{10} \frac{9}{10} \frac{25}{10} \frac{1}{10} \frac{1}{10} \frac{9}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{9}{10} \frac{1}{10} \frac{1}{1$	Y _n	$\mathbf{X}_1$	$\mathbf{X}_2$	X ₃	X4	Total	$X_{1}^{2}$	$X_{2}^{2}$	$X_{3}^{2}$	
$\frac{1}{y_2} \frac{3}{3} \frac{5}{1} \frac{1}{1} \frac{1}{1} \frac{10}{9} \frac{9}{25} \frac{1}{1} \frac{1}{1} \frac{1}{9} \frac{9}{25} \frac{9}{1} \frac{1}{1} \frac{1}{9} \frac{9}{25} \frac{1}{1} \frac{1}{1} \frac{9}{9} \frac{1}{25} \frac{1}{1} \frac{1}{1} \frac{9}{9} \frac{1}{25} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{9}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{9}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{9}{1} \frac{9}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{1}{1}$	V1	1	-1	5	3	8	1	1	25	9
$\frac{\boxed{y_3}}{y_4} \frac{3}{-1} \frac{1}{1} \frac{1}{3} \frac{3}{6} \frac{6}{9} \frac{1}{1} \frac{1}{49} \frac{9}{1} \frac{9}{9}}{1}$ $\frac{1}{1} \frac{9}{y_4} \frac{1}{-1} \frac{7}{7} \frac{1}{-1} \frac{3}{3} \frac{8}{8} \frac{1}{1} \frac{49}{49} \frac{1}{1} \frac{9}{9}}{1}$ $\frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{9}{1} \frac{1}{1} \frac$	<u>y</u> 2	3	5	1	1	10	9	25	1	1
$\frac{y_4}{Total} - \frac{1}{6} - \frac{7}{10} - \frac{1}{6} - \frac{3}{10} - \frac{8}{10} - \frac{49}{10} - \frac{1}{28} - \frac{9}{28} - \frac{1}{28}$ $H_0 : \text{There is no significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatments}.$ $ep 1 : N = 16$ $ep 2 : T = 32$ $Step 3 : C.F = \frac{T^2}{N} = \frac{(32)^2}{16} = 64$ $Step 4 : \text{TSS} = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ $= 20 + 76 + 28 + 28 - 64 = 88$ $Step 5 : \text{SSC} = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N}$ $[N_1 = \text{number of elements in each column]}$ $= \frac{(6)^2}{4} + \frac{(10)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} - \frac{T^2}{N}$ $[N_2 = \text{number of elements in each row]}$ $= \frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64 = 2$ $D \text{ Find SSK}$	<u>y</u> ₃	3	-1	1	3	6	9	1	1	9
$\frac{ \text{Total}  6   10   6   10   32   20   76   28   28}{ H_0 } = 10   32   20   76   28   28$ $H_0 : \text{There is no significant difference between rows, columns and treatment}$ $H_1 : \text{There is significant difference between rows, columns and treatments.}$ $ep 1 : N = 16$ $ep 2 : T = 32$ $\text{Step 3 : C.F} = \frac{T^2}{N} = \frac{(32)^2}{16} = 64$ $\text{Step 4 : TSS} = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ $= 20 + 76 + 28 + 28 - 64 = 88$ $\text{Step 5 : SSC} = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N}$ $[N_1 = \text{number of elements in each column]}$ $= \frac{(6)^2}{4} + \frac{(10)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} - \frac{T^2}{N}$ $[N_2 = \text{number of elements in each row]}$ $= \frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64 = 2$ $\text{o Find SSK}$	<b>y</b> ₄	-1	7	-1	3	8	1	49	1	9
$H_{0} : \text{There is no significant difference between rows, columns and treatment} H_{1} : \text{There is significant difference between rows, columns and treatments.} ep 1: N = 16ep 2: T = 32Step 3: C.F = \frac{T^{2}}{N} = \frac{(32)^{2}}{16} = 64Step 4: TSS = \sum X_{1}^{2} + \sum X_{2}^{2} + \sum X_{3}^{2} + \sum X_{4}^{2} - \frac{T^{2}}{N}= 20 + 76 + 28 + 28 - 64 = 88Step 5: SSC = \frac{(\sum X_{1})^{2}}{N_{1}} + \frac{(\sum X_{2})^{2}}{N_{1}} + \frac{(\sum X_{3})^{2}}{N_{1}} + \frac{(\sum X_{4})^{2}}{N_{1}} - \frac{T^{2}}{N}[N_{1} = number of elements in each column]= \frac{(6)^{2}}{4} + \frac{(10)^{2}}{N_{2}} + \frac{(\sum Y_{3})^{2}}{N_{2}} + \frac{(\sum Y_{4})^{2}}{N_{2}} - \frac{T^{2}}{N}[N_{2} = number of elements in each row]= \frac{(8)^{2}}{4} + \frac{(10)^{2}}{4} + \frac{(6)^{2}}{4} + \frac{(8)^{2}}{4} - 64 = 2D Find SSK$	Total	6	10	6	10	32	20	76	28	28
$= \frac{(6)^{2}}{4} + \frac{(10)^{2}}{4} + \frac{(6)^{2}}{4} + \frac{(10)^{2}}{4} - 64 = 4$ ep 6. SSR $= \frac{(\Sigma Y_{1})^{2}}{N_{2}} + \frac{(\Sigma Y_{2})^{2}}{N_{2}} + \frac{(\Sigma Y_{3})^{2}}{N_{2}} + \frac{(\Sigma Y_{4})^{2}}{N_{2}} - \frac{T^{2}}{N}$ [ $N_{2}$ = number of elements in each row] $= \frac{(8)^{2}}{4} + \frac{(10)^{2}}{4} + \frac{(6)^{2}}{4} + \frac{(8)^{2}}{4} - 64 = 2$ o Find SSK	Step 1 : N = 1 Step 2 : T = 3	16 32					ows, co	lumns a	and treatm	ents.
tep 6. SSR $= \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N}$ [ $N_2$ = number of elements in each row] $= \frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64 = 2$ to Find SSK	Step 1 : N = 1 Step 2 : T = 3 Step 3 : C.F Step 4 : TSS Step 5 : SSC	$\begin{array}{c} 16\\ 32\\ \end{array} = \frac{7}{2}\\ = \frac{7}{2}\\ = \frac{7}{2}\\ \end{array}$	$\frac{T^2}{N} = \frac{2}{N} \sum_{n=1}^{\infty} \frac{X_1^2 + 2}{N_1}$	$\frac{(32)^2}{16}$ $\sum X_2^2 - \frac{1}{26}$ $+ \frac{(\sum X)}{N}$ $[N - \frac{1}{26}]$	= 64 + $\Sigma X_3^2 + 6$ + $28 - 6$ $\frac{2}{1}^2 + \frac{(\Sigma - 1)^2}{1}$	$\sum X_4^2 - \frac{1}{54}$ $54 = 3$ $54 = 3$ $\frac{2X_3^2}{N_1} + \frac{1}{56}$ of elements	$\frac{T^2}{N}$ 88 $\frac{(\sum X_4)^2}{N_1}$ ents in	$\frac{2}{2} - \frac{T^2}{N}$	lumn]	nents.
$[N_{2} = \text{number of elements in each row}]$ $= \frac{(8)^{2}}{4} + \frac{(10)^{2}}{4} + \frac{(6)^{2}}{4} + \frac{(8)^{2}}{4} - 64 = 2$ o Find SSK	Step 1 : N = 1 Step 2 : T = 3 Step 3 : C.F Step 4 : TSS Step 5 : SSC	$\begin{array}{c} 16\\ 32\\ = \frac{7}{2}\\ = \frac{7}{$	$\frac{T^2}{N} = \frac{1}{\sum X_1^2 + \frac{1}{\sum X_1^2}}$	$\frac{(32)^2}{16} \\ \sum X_2^2 - \frac{1}{26} \\ + \frac{(\sum X)}{N} \\ [N_1 = \frac{(6)^2}{4} + \frac{1}{26} \\ + + $	= 64 + $\Sigma X_3^2 + 6$ + $3 + 28 - 6$ $\frac{2}{1}^2 + \frac{(\Sigma - 1)^2}{1}$ = number $\frac{(10)^2}{4} + \frac{(10)^2}{4} + \frac{(10)^2}{10}$	$\sum X_{4}^{2} - \frac{1}{2}$ $\sum X_{4}^{2} - \frac{1}{2}$ $\sum X_{3}^{2} - \frac{1}{2}$ $\sum X_{3}^{2} + \frac{1}{N_{1}} + \frac{1}{4}$ $\sum X_{4}^{2} - \frac{1}{2}$ $\sum X_{$	$\frac{T^2}{N}$ 88 $\frac{(\sum X_4)^2}{N_1}$ ents in (	$\frac{2}{2} - \frac{T^2}{N}$ each co = 4	lumn]	nents.
$=\frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64 = 2$ o Find SSK	Step 1 : N = 1 Step 2 : T = 3 Step 3 : C.F Step 4 : TSS Step 5 : SSC Step 6. SSR	$\begin{array}{r} 16\\ 52\\ = \frac{7}{2}\\ = \\ 2 \\ = \\ C = \frac{C}{2}\\ \end{array}$	$\frac{T^{2}}{N} = \frac{1}{N}$ $\sum X_{1}^{2} + \frac{1}{20 + 7}$ $\frac{\sum X_{1}^{2}}{N_{1}}$ $= \frac{1}{N}$ $\frac{\sum Y_{1}^{2}}{N_{2}}$	$\frac{(32)^2}{16} \\ \sum X_2^2 + \frac{(\sum X)^2}{16} \\ + \frac{(\sum X)^2}{N_1} \\ = \frac{(6)^2}{4} + \frac{(\sum Y_2)^2}{N_2} \\ + \frac{(\sum Y_2)^2}{N_2} \\ = (\sum Y_$	= 64 + $\Sigma X_3^2 + \frac{1}{2}$ + $28 - 6$ = number $\frac{(10)^2}{4} + \frac{(\Sigma Y)^2}{N}$	$\sum X_4^2 - \frac{1}{2}$ $\sum X_4^2$	$\frac{T^2}{N}$ 88 $\frac{(\sum X_4)^2}{N_1}$ ents in (1) $\frac{Y_4^2}{N_2} = -64$	$\frac{2}{N} - \frac{T^2}{N}$ each co $= 4$ $\frac{T^2}{N}$	lumn]	nents.
o Find SSK	Step 1 : N = 1 Step 2 : T = 3 Step 3 : C.F Step 4 : TSS Step 5 : SSC Step 6. SSR	$\begin{array}{c} 16\\ 32\\ = \frac{7}{2}\\ = \frac{7}{2}\\ = \frac{1}{2}\\ = \frac{1}{$	$\frac{T^{2}}{N} = \frac{1}{N}$ $\sum X_{1}^{2} + \frac{1}{20 + 7}$ $\sum X_{1}^{2} + \frac{1}{N_{1}}$ $= \frac{1}{N_{2}}$	$\frac{(32)^2}{16} \\ \Sigma X_2^2 - \frac{1}{16} \\ + \frac{1}{16} \\ + \frac{(\Sigma X)^2}{N_1} \\ = \frac{(6)^2}{4} + \frac{(\Sigma Y_2)^2}{N_2} \\ + \frac{(\Sigma Y_2)^2}{N_2} \\ = \frac{[N_2]^2}{N_2} \\ = \frac{[N_2]^2}{N_2} \\ = \frac{(N_2)^2}{N_2} \\ = \frac{(N_2)^2}{N_2$	= 64 + $\Sigma X_3^2$ + $\frac{2}{3}$ + $28 - 6$ $\frac{2}{1}$ + $\frac{(\Sigma Y)^2}{1}$ + $\frac{(\Sigma Y)^2}{4}$ + $\frac{(\Sigma Y)^2}{N}$ = number	$\sum X_{4}^{2} - \frac{1}{N_{4}}$ 54 = 54 54	$\frac{T^2}{N}$ 88 $\frac{(\sum X_4)^2}{N_1}$ ents in $\left(\frac{y_4}{N_2}\right)^2 - 64$ $\frac{Y_4}{N_2} - 64$ ents in $\left(\frac{y_4}{N_2}\right)^2$	$\frac{2}{N} - \frac{T^2}{N}$ each co = 4 $\frac{T^2}{N}$ each ro	lumn]	nents.
	Step 1 : N = 1 Step 2 : T = 3 Step 3 : C.F Step 4 : TSS Step 5 : SSC	$\begin{array}{c} 16\\ 52\\ = \frac{7}{2}\\ = \frac{7}{2}\\ = \frac{1}{2}\\ = \frac{1}{$	$\frac{T^{2}}{N} = \frac{1}{N}$ $\sum X_{1}^{2} + \frac{1}{N}$ $= \frac{1}{N}$ $= \frac{1}{N}$ $= \frac{1}{N}$ $= \frac{1}{N}$	$\frac{(32)^2}{16} \\ \Sigma X_2^2 - 6 + 28 \\ + \frac{(\Sigma X)^2}{N} \\ [N_1 = \frac{(6)^2}{4} + \frac{(\Sigma Y_2)^2}{N} \\ = \frac{(10)^2}{4} \\ \frac{(10)^2}{4} \\ + \frac{(10)^2}{4} \\ = \frac{(10)^2}{4} \\ - \frac{(10)^2}{4} \\ = \frac{(10)^2}{4} \\$	= 64 + $\sum X_{3}^{2} + \frac{1}{2}$ = number $\frac{(10)^{2}}{4} + \frac{(\sum Y)^{2}}{N}$ = number + $\frac{(6)^{2}}{4} + \frac{(\sum Y)^{2}}{4}$	$\sum X_{4}^{2} - \frac{1}{2}$ $\sum X_{4}^{2} - \frac{1}{$	$\frac{T^2}{N}$ 88 $\frac{(\sum X_4)^2}{N_1}$ ents in $\frac{(\sum X_4)^2}{N_2}$ ents in $\frac{Y_4}{N_2}$ ents in $\frac{Y_4}{N_2}$	$\frac{2}{N} - \frac{T^2}{N}$ each co = 4 $\frac{T^2}{N}$ each ro	umn]	nents.

# STUCOR APP

					-	1.	r _				
	Т	reatment	1	2	3	4	]	Total			
		А	1	1	3	7		12			
		В	-1	1	1	-1		0			
		С	5	3	-1	3		10			
		D	3	5	3	-1		10			
		$(12)^2$	$(0)^2$	$(10)^2$	10)2						
	SSK	$=\frac{(12)}{4}+$	$-\frac{(0)}{4}+$	$-\frac{(10)}{4}+\frac{(}{}$	$\frac{10}{4} - 6$	64 = 22					
		4	4	4	4						
	SSE -	- TSS S	SC 9	- 922	88 /	2 22 -	- 6	n			
	Step 7 ·	$\Lambda NOV \Lambda$	Tabla	SSK = 1	00 – 4	- 2 - 22 -	- 0	0			
	Sup 7.		nof	df	N	loon sau	ara	Varia	nco	Table va	1110
	Sourc	LS Sui		u.1.	ľ	ican squa	are	v al la			1
	IO	squ	ares					rat	10	at 5% lev	vel
	variar	nce									
	Betwe	en SSI	R =	k –1	N	ISP - SS	R	$\mathbf{E}_{-} = I$	MSR	$F_{R}(6, 3)$	
	Row	rs 2	2	= 3	1	$\lim_{k \to \infty} \frac{k}{k}$	- 1	$\Gamma_R = -$	<b>MSE</b>	= 8.94	
						$= 0.6^{\circ}$	7	=	14.9		
	Betwe	en SS(	~ _	k = 2			C		ASC	$F_{c}(6,3)$	
	achum		1	- 2	Ν	$ISC = \frac{35}{k}$	$\frac{c}{1}$	$F_C = \frac{T}{R}$		-9.04	
	coluit		+	= 5		$\kappa = 1.2^{\prime}$	- I n		USE 50	= 0.94	
						= 1.3.	3	= /.	.52		
	Treatm	nent SS	SK	k - 1 = 3	N	$ISK = \frac{SS}{S}$	K	$F_T = \frac{\Lambda}{2}$	ASK_	$F_{\rm T}(6,3)$	
		=	22			k -	- 1	· I – /	<i>MSE</i>	= 8.94	
						= 7.33		_	10		
								=	7.33		
								= 1	36		
	Erro	r CC	E	(k - 1)(k		1SE -			20		
	LIIU			(K -1)(K	. —   1 <b>v</b>	ISE –					
		=	60	2)	-	SSE					
				= 6	(	(k-1)(k-2)	2)				
						= 10					
	Tota	l TS	SS	15							
		=	88								
										[	
	<b>C</b> (1) <b>O</b>	Constant									
	Step 8.	Conclusio	on :								
	Cal F	r _R > Tal	ble F _R								
	Cal I	$E_{\rm C}$ < Ta	uble Fa	~							
	Call	$\overline{F_{T}} > T_{A}$	hle F _T								
	Curr	1 / 14									
	T	here is sig	gnifica	ant differe	ence be	tween tre	eatme	ents and	rows.	But there	is no
	significa	ant differe	nce be	etween co	olumns.						
		-		<b>.</b> .					• •		
24.	Compar	e and con	trast th	ne Latin s	quare	tesign wi	th th	e rando	mized	block desi	gn.
	Ans :										
		TOP				DDD					
	S.No	LSD				RBD		<u> </u>		1.0	
	1.	It is suita	ble for	r small nu	ımber	No sucl	h res	trictions	s suitab	ole for	
		of treatme	ents, b	etween 5	and	upto 24	trea	tments.			

		12	2.										
	2.	The control of the co	he nur olumn e num jual to eatme	mber of s are eq ber of the nu nts.	f rows a qual and replicat umber of	nd l hence ion is f	The hav trea	ere is ve ang atmei	s no s y nur nts.	uch res nber re	strictio plicati	n. It ca ons and	n 1
	3.	E: to va di	xperin a larg ariatio rectio	nental ge exte n is co ns.	error is nt, beca ntrolled	reduced use in two	Va dire	riatio ection	ons is ns on	contro ly.	lled in	one	
	4.	L: be	SD is ecause	preferr of (3)	ed over	RBD	RB its val	D is simp idity	the n licity	nost po , flexi	pular o bility a	one for and	
	5.	E: sc	xperin Juare.	nental	area mu	st be a	Sui squ	table are.	e if it	is a rec	ctangle	or	
25.	An	alyse th	ne foll	owing J	RBD an	id find y nts	our co	onclu	sion.				
					$T_1$	$T_2$	<b>T</b> ₃	$T_4$					
				<b>B</b> ₁	12	14	20	22					
				<b>B</b> ₂	17	27	19	15					
		Blo	cks	<b>B</b> ₃	15	14	17	12					
				<b>B</b> ₄	18	16	22	12					
				<b>B</b> ₅	19	15	20	14					
	Sol	lution:											
		$1.H_0:$	There	is no s	significa	int differ	ence l	oetwo	een b	locks a	and trea	atments	
		2. <i>H</i> ₁ : Su	Ther btract	e is sig 15 from	gnifican m each i	t differe number.	nce be	twee	en blo	ocks an	d treat	ments.	
			$X_1$	$X_2$	$X_3$	$X_4$	Tota	al	$X_{1}^{2}$	$X_2^2$	$X_3^2$	$X_4^2$	
		<b>Y</b> ₁	-3	-1	5	7	8		9	1	25	49	
		Y ₂	2	12	4	0	18		4	144	16	0	
		$\frac{Y_3}{V}$	0	-1	2	-3	-2		0	1	4	9	
		$\frac{1}{Y_5}$	4	0	5	-3	8		9 16	0	25	9	
		Total	6	11	23	0	40		38	147	119	68	
# STUCOR APP

26	The fell	owing	ic o Loti	aguara	of a dagi	an whon	1 vori	ation of	cood b	oing to	etad Sat
20.	up the o	owing nolveie	of vorio	n square	on a uesi	gii wilen	4 vali	on Vo		enig te	steu. Set
	up ine a	charge	of origi	n and see	z anu stat	e your co	JIICIUSI	011. 10	u can c		it the
	suitable		110 R		C 130	D 120					
		A C	110 D	130	A 110	B 110					
			120 D 120 C	100	A 110 P 110	A 120					
		D	120 C $100$ A	140	D 100	$\frac{A 120}{C 120}$					
	Solution		100 A	140	D 100	C 120					
	Solution	li htract h	$\mathbf{w}$ 5 we o	ot							
	Su	Juaci	y J we g		D 05	C 124		115	٦		
				A 105	D 93	A 10	5 D	105			
				D 115	C 05	P 104	5 D	115	-		
				D 113 P 05	A 125	D 10.	A	115			
				D 95	A 155	D 95		115			
	Subtract	t 100 ai	nd then d	livided b	y 5 we g	et					
	A	1	В -	1 C	້ 5	D	3				
	C 3	3	D 5	6 A	. 1	В	1				
	D 3	3	C -	1 B	1	А	3				
	B -	·1	A 7	' D	-1	С	3				
		$\mathbf{X}_1$	$\mathbf{X}_2$	$X_3$	$X_4$	Total	$X_1^2$	$X_2^2$	$X_{3}^{2}$	$X_4^2$	
	Y ₁	1	-1	5	3	8	1	1	25	9	
	$Y_2$	3	5	1	1	10	9	25	1	1	
	Y ₃	3	-1	1	3	6	9	1	1	9	
	Y ₄	-1	7	-1	3	8	1	49	1	9	
	Total	6	10	6	10	32	20	76	28	28	
	$H_0 \cdot The$	ere is n	o signifi	cant diff	erence be	etween ro	ows co	lumns	and tre	eatmen	ts
	$H_1$ : The	re is si	gnificant	differer	ice betwe	een rows.	. colum	ns and	treatm	ents.	.5.
	Step 1: 1	N = 16	6				,				
	Step 2.	T - 32									
	Step 2.	1 - 52	12								
	Sept 3:	$\frac{T^2}{N} = \frac{1}{2}$	$\frac{(32)^2}{16} = 64$	4							
		1	10				$\mathbf{T}^2$				
	step 4:'	TSS = 2	$\sum X_1^2 + \sum$	$\sum X_2^2 +$	$\sum X_3^2 +$	$\sum X_4^2 -$	$\frac{1}{N}$				
		= 2	20+76+	28+28	-64 = 88	}	11				
	at 5 - 6		$\left(\sum X_{1}\right)^{2}$	$\sum X_2$	$)^2 \int \left(\sum x\right)^2$	$(X_3)^2$	$(X_4)^2$	$T^2$			
	step 5:5	SC = -	$N_1$	$+ {N_1}$	_+ <u></u> Λ	$\frac{1}{I_1} + \frac{1}{I_2}$	$N_1$	$\overline{N}$			
		= (	$(6)^2 + (10)^2$	$(1)^{2} + (6)$	$\frac{2}{1} + \frac{(10)^2}{1}$	64					
		_ (	$4^{-4}$	4   4   4   4   4	4						
		=	7+23+5	+23-0	14 - 4						

$$step 6:SSR = \frac{\left(\sum Y_{1}\right)^{2}}{N_{2}} + \frac{\left(\sum Y_{2}\right)^{2}}{N_{2}} + \frac{\left(\sum Y_{3}\right)^{2}}{N_{2}} + \frac{\left(\sum Y_{4}\right)^{2}}{N_{2}} - \frac{T^{2}}{N}$$

$$= \frac{8^{2}}{4} + \frac{10^{2}}{4} + \frac{(6)^{2}}{4} + \frac{8^{2}}{4} - 64 = 16 + 25 + 9 + 16 - 64 = 2$$
To find SSK :
  
Arrange the elements in the order of treatment.
$$\boxed{\frac{|A||}{|C||} + \frac{|1||}{|1||} + \frac$$

# STUCOR APP

	Step 8: Conclusion: Cal $F_C$ < Table $F_C$ Cal $F_R$ > Table $F_R$
	Cal $F_T$ < Table $F_T$
	There is a significant difference between rows as well as between columns. But, there
	is no significant difference between treatments
	is no significant difference between treatments.
27	Analyse the variance in the Latin square of yields (in kgs) of naddy where $P \cap R S$
27.	Analyse the variance in the Latin square of yields (in kgs) of paddy where T, Q, K, S denote the different method of cultivation :
	$S_{122}$ D121 D122 O122
	S122 $P121$ $R125$ $Q122Q124$ $P122$ $P122$ $S125$
	Q124 K125 P122 S125
	P120 Q119 S120 R121
	R122 S123 Q121 P122
	Estimate whether different method of cultivation have significantly different yields.
	Ans:
	Subtract 120 we get
	S 2 P 1 R 3 Q 2
	Q 4 R 3 P 2 S 5
	P 0 Q -1 S 0 R 1
	R 2 S 3 O 1 P 2
	$X_1$ $X_2$ $X_3$ $X_4$ Total $X_1^2$ $X_2^2$ $X_2^2$ $X_2^2$
	$\mathbf{X}$ <b>2 1 3 2 8 4 1 9 4</b>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$Y_2$ 4 3 2 5 14 16 9 4 25
	Y ₃ 0 -1 0 1 0 0 1 0 1
	$Y_4$ 2     3     1     2     8     4     9     1     4
	Total         8         6         6         10         30         24         20         14         34
	Step 1. $N = 16$ [Total number of entries]
	Step 2. $T = 30$
	-2 (22) ²
	Step 3 $\frac{T^2}{T} = \frac{(30)^2}{1000000000000000000000000000000000000$
	N 16
	_2
	Step 4. TSS = $\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$
	= 24 + 20 + 14 + 34 - 56.25 = 35.75
	$(\Sigma X_1)^2 (\Sigma X_2)^2 (\Sigma X_2)^2 (\Sigma X_4)^2 T^2$
	Step 5. SSC = $\frac{1}{N_1} + \frac{1}{N_1} + $
	$[N_1 = number of elements in each column]$
	$=\frac{64}{4} + \frac{36}{4} + \frac{36}{4} + \frac{100}{4} - 56.25 = 2.75$

	Total	TSS	<u>2</u>	1							
	Iotui	= 35.75	$\begin{bmatrix} n \\ - \end{bmatrix} = 15$	1							
		- 55.75	- 10								
			•				•				
	Step 8 : C	onclusion	ı:								
	(i) Cal F	$(F_T) <$	Table	F. 7	There is n	o sign	ifican	nt difference	e between	n treatme	ents
	(ii) Cal F	$(F_R) >$	Table	F . T	here is si	gnifica	ant di	fference ro	ows		
						-					
	(iii) Cal F	$F(F_C) <$	Table	F . T	here is no	o signi	fican	t differenc	e columns	5.	
28	A company	wants to 1	orocedu	re car	s for its o	own us	se. It l	has to sele	ct the mak	e of the	car
20.	out of the fo	ur makes	A, B, C	C, D a	vailable i	n the r	narke	et. For this	he tries fo	our cars o	of
	each make b	y assignii	ng the c	ars to	four driv	vers to	run c	on four diff	erent rout	es. The	
	efficiency of	f cars is m	neasured	d in te	rms of ti	ne in l	hours	. The layo	ut and tim	e	
	consumed is	as given	below.								
			]	Drive	ſS						
	Routes	1	2		3	4					
	1	18(C)	12(D	) 1	6(A)	20(B	)				
	2	26(D)	34(A)	) 2	25(B)	31(C	)				
	3	15(B)	22(C)	) 1	0(D)	28(A	)				
	4	30(A)	20(B)	) ]	15(C)	9(D)					
	Analyse the	experime	ntal dat	a and	draw con	nclusic	ons. (	$F_{0.05}(3,5) = 5$	5.41)		
	Ans:										
	Ans:										
	Ans: $H_0$ : There	is no sign	nificant	differ	ence betw	veen r	outes	and drive	·s.		
	Ans: $H_0$ : There $H_1$ : There	is no sign	ificant cant dif	differ	ence betwee	veen re	outes es an	and drive	·S.		
	Ans: $H_0$ : There $H_1$ : There Subtract 25	is no sign is signific	ificant cant dif	differ ferenc	ence betwee	veen re en rout	outes æs an	and driver d drivers	°S.		
	Ans: $H_0$ : There $H_1$ : There Subtract 25	is no sign is signific from all	iificant cant dif number	differ ferences	ence betwee	veen re en rout	outes es an	and driver d drivers	·S.	T	
	Ans: $H_0$ : There $H_1$ : There Subtract 25	is no sign is signific from all $\begin{bmatrix} X \\ 2 \end{bmatrix}$	hificant cant dif number $X_3$	differ ferences $\frac{x_4}{x_4}$	ence betwee	veen re en rout	outes tes an	and driver d drivers	°S	2	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A	is no sign is signific from all 1 X 2 B	nificant cant dif number X ₃ C	differ ferences $\frac{x_4}{D}$	ence betwee ce betwee Total	veen re en rout	outes tes an $\frac{2}{1}$	and driver d drivers $X_2^2$	$\frac{1}{X_3^2}$	x ² / ₄	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9	is no sign is signific from all $\frac{X_2}{B}$ -5	nificant cant dif number X ₃ C -7	differ ferences $\frac{x_4}{D}$	ence betwee ce betwee Total -34	veen rout en rout X	outes es an 2 1	and driver d drivers $X_2^2$ 25	TS. $\frac{X_3^2}{49}$	x ² / ₄	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ $Y_2$ 9	is no sign is signific from all 1 $X_2$ B -5 0	hificant cant dif number $X_3$ C -7 6	differ ferences $\frac{x_4}{D}$ -13 6	ence betwee ce betwee Total -34 21	veen rut en rout X 81 81	outes es an 2 1	and drivers d drivers $X_2^2$ 25 0	$\frac{x_{3}^{2}}{49}$	X ² ₄ 169 36	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3	is no sign is signific from all $1$ $X_2$ B -5 0 -10	nificant cant dif number X ₃ C -7 6 -3	differ ferences $x_4$ D -13 6 -15	ence betwee ce betwee Total -34 21 -25	veen rout n rout X 81 81 9	outes res an 2 1	and driver d drivers $\frac{\chi_2^2}{25}$ 0 100	rs. $\frac{X_{3}^{2}}{49}$ 36 9	X ² ₄ 169 36 225	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5	hificant cant dif number $X_3$ C -7 6 -3 -10	differ ferences $\frac{x_4}{D}$ -13 6 -15 -15 -16	ence betwee Total -34 21 -25 -26	veen rotten rout X 81 81 9 25	outes res an 2 1 1 5	and drivers d drivers $\frac{\chi_2^2}{25}$ 0 100 25	rs. $X_{3}^{2}$ 49 36 9 100	X ² ₄ 169 36 225 256	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5 -20	hificant cant dif number $X_3$ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee ce betwee Total -34 21 -25 -26 -64	veen rut en rout X 81 81 9 25 29	outes an 2 1 1 5 6	and driver d drivers $X_2^2$ $25$ 0 100 25 150	rs. $X_{3}^{2}$ 49 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5 -5 0 -10 -5 -5 0 -20	hificant cant dif number $X_3$ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64	veen rotten routen X X 81 81 9 25 29	outes res an 2 1 1 5 6	and driver d drivers $\frac{\chi_2^2}{25}$ 0 100 25 150	rs. $X_{3}^{2}$ 49 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N =	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5 -20 16	hificant cant dif number $X_3$ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64	veen rut en rout X 81 81 9 25 29	outes es an 2 1 1 5 6	and driver d drivers $\begin{array}{r} x_2^2 \\ 25 \\ 0 \\ 100 \\ 25 \\ 150 \end{array}$	rs. $X_{3}^{2}$ 49 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N =	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5 -20 16	nificant cant dif number X ₃ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64	veen rout n rout X 81 81 9 25 29	outes res an 2 1 1 5 6	and driver d drivers $\frac{X_2^2}{25}$ 0 100 25 150	rs. $X_{3}^{2}$ 49 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N = Step 2. T =	is no sign is signific from all $1$ $X_2$ B -5 0 -10 -5 -20 16 -64	hificant cant dif number $X_3$ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64	veen rut en rout X 81 81 9 25 29	outes res an 2 1 1 5 6	and driver d drivers $\begin{array}{r} x_2^2 \\ 25 \\ 0 \\ 100 \\ 25 \\ 150 \end{array}$	$\begin{array}{r} x_{3}^{2} \\ 49 \\ 36 \\ 9 \\ 100 \\ 194 \end{array}$	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N = Step 2. T =	is no sign is signific from all 1 $X_2$ B -5 0 -10 -5 -20 16 -64 $T^2$	hificant cant dif number $X_3$ C -7 6 -3 -10 -14	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64	veen rout en rout X 81 81 9 25 29	outes res an 2 1 1 5 6	and driver d drivers $\frac{\chi_2^2}{25}$ 0 100 25 150	rs. $\frac{X_{3}^{2}}{49}$ 36 9 100 194	$\begin{array}{c} X \frac{2}{4} \\ 169 \\ 36 \\ 225 \\ 256 \\ 686 \end{array}$	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N = Step 2. T = Step 3. C.F.	is no sign is signific from all 1 $X_2$ B -5 0 -10 -5 -20 16 -64 $= \frac{T^2}{X} = -2$	hificant cant dif number $X_3$ C -7 6 -3 -10 -14 $(-64)^2$	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64 6	veen rotten rout X 81 81 9 25 29	outes res an 2 1 1 5 6	and driver d drivers $\frac{\chi_2^2}{25}$ 0 100 25 150	rs. $X_{3}^{2}$ 49 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 $X_1$ A $Y_1$ -9 $Y_2$ 9 $Y_3$ 3 $Y_4$ 5 8 Step 1 : N = Step 2. T = Step 3. C.F.	is no sign is signific from all 1 $X_2$ B -5 0 -10 -5 -20 16 -64 $= \frac{T^2}{N} = -10$	hificant cant dif number $X_3$ C -7 6 -3 -10 -14 $(-64)^2$ 16	differ ferences $x_4$ D -13 6 -15 -16 -38	ence betwee Total -34 21 -25 -26 -64 6	veen rout n rout X 81 81 9 25 29	outes es an 2 1 1 5 6	and driver d drivers $\frac{\chi_2^2}{25}$ 0 100 25 150	rs. $\frac{X_{3}^{2}}{49}$ 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 X ₁ A Y ₁ -9 Y ₂ 9 Y ₃ 3 Y ₄ 5 Step 1 : N = Step 2. T = Step 3. C.F.	is no sign is signific from all 1 $X_2$ B -5 0 -10 -5 -20 16 -64 $= \frac{T^2}{N} = -\frac{2}{N}$	hificant cant dif number $X_3$ C -7 6 -3 -10 -14 $(-64)^2$ 16	differ ference $x_4$ D -13 6 -15 -16 -38 	ence betwee Total -34 21 -25 -26 -64 6	veen rout n rout X 81 81 9 25 29	outes $res an$ 2 1 1 5 6 $T^2$	and driver d drivers $\frac{X_2^2}{25}$ 0 100 25 150	rs. $\frac{X_{3}^{2}}{49}$ 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There         Subtract 25         X1         A         Y1       -9         Y2       9         Y3       3         Y4       5         Step 1 : N =         Step 2. T =         Step 3. C.F.         Step 4. TSS	is no sign is signific from all 1 X 2 B -5 0 -10 -5 -20 16 -64 = $\frac{T^2}{N} = -\frac{T^2}{N}$	hificant cant dif number $X_3$ C -7 6 -3 -10 -14 $(-64)^2$ 16 $+ \sum X_2$	differ ferences $x_4$ D -13 6 -15 -16 -38 -25 $-22 + \Sigma$	ence between Total Total -34 21 -25 -26 -64 6 $ZX_3^2 + \Sigma$	veen rout en rout X 81 81 9 25 29 29 $x_4^2 -$	outes res an 2 1 1 5 6 - $\frac{T^2}{N}$	and driver d drivers $X_2^2$ 25 0 100 25 150	rs. $\frac{X_{3}^{2}}{49}$ 36 9 100 194	X ² ₄ 169 36 225 256 686	
	Ans: $H_0$ : There $H_1$ : There Subtract 25 X ₁ A Y ₁ -9 Y ₂ 9 Y ₃ 3 Y ₄ 5 8 Step 1 : N = Step 2. T = Step 3. C.F. Step 4. TSS	is no sign is signific from all 1 $X_2$ B -5 0 -10 -5 -20 16 -64 $= \frac{T^2}{N} = -\frac{10}{N}$	hificant cant dif humber $X_3$ C -7 6 -3 -10 -14 $(-64)^2$ 16 $+ \sum X_{10}$ 50 + 19	differ ferences $x_4$ D -13 6 -15 -16 -38 -25 $2^2 + \Sigma$ $2^2 + \Sigma$ $4^2 + 6^3$	ence between Total -34 21 -25 -26 -64 6 $2X_3^2 + \Sigma$ 86 - 256	veen rout en rout X 81 81 9 25 29 29 $X_4^2 -$ - 97	outes res an 2 $\frac{2}{1}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$	and driver d drivers $\frac{X_2^2}{25}$ 0 100 25 150	rs. $\frac{X_{3}^{2}}{49}$ 36 9 100 194	X ² ₄ 169 36 225 256 686	

Step 5. SSC =  $\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N_1}$  $[N_1 =$ number of elements in each column]  $=\frac{(8)^2}{4} + \frac{(-20)^2}{4} + \frac{(-14)^2}{4} + \frac{(-38)^2}{4} - 256 = 270$ Step 6. SSR =  $\frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N_2}$  $[N_2 =$ number of elements in each row]  $=\frac{(-34)^2}{4} + \frac{(21)^2}{4} + \frac{(-25)^2}{4} + \frac{(-26)^2}{4} - 256 = 468.5$ SSE = TSS - SSC - SSR = 970 - 270 - 468.5 = 231.5Step 7. ANOVA table Mean square Sources of Sum of d.f. Variance Table value variance squares 5% level MSC  $F_{\rm C} = \frac{MSC}{MSE}$ SSC =Between c -1  $=\frac{SSC}{c-1}$  $F_{C}(3, 9)$ = 4 - 1270 = 3.86 Columns = 3  $=\frac{270}{3}$  $\frac{90}{25.72} = 3.50$ = 90 MSR  $F_{R} = \frac{MSR}{MSE}$ SSR r-1  $=\frac{SSR}{r-1}$  $F_{R}(5,15)$ Between = 4 - 1 $=\frac{156.2}{25.72}$ = 4.5Rows = 468.5  $=\frac{468.5}{3}$ = 3 = 6.07= 156.2 MSE = Residual SSE N - c - rSSE  $\overline{N-c-r+1}$ = 231.5 + 1  $= 16 - 4 = \frac{231.5}{9} = 25.72$ -4 + 1= 9

## STUCOR APP

	Step 7	': Co	nclusio	n :						
	Ca	al F _C <	< Tabl	eF _C .	So we a	accept E	<i>I</i> ₀ .			
	Ca	al $F_R >$	Table	$F_R$ . S	o we re	eject $H_0$				
29.	Consid treatme parent Bl	ler the r ents in t hesis. ocks	results g four ran Yield	given ir ndomiz for a ra	n the for ed bloc undomiz	llowing t ks. The t zed block	able for an reatments	a experime are indicat nt treatme	ent involvin ted by num ent and yield	g six bers within 1
		1	(1) 24.7	( 2'	(3) 7.7	(2) 20.6	(4) 16.2	(5) 16.2	(6) 24.9	
		2	(3) 22.7	( 2	(2) 8.8	(1) 27.3	(4) 15.0	(6) 22.5	(5) 17.0	
		3	(6) 26.3	( 1)	(4) (9.6	(1) 38.5	(3) 36.8	(2) 39.5	(5) 15.4	
	Test w	⁴ hether	(3) 17.7 the trea	3 tments	2) 1.0 differ s	28.5 significar	(4) 14.1 ntly. ( $F_{0.05}$ (3)	(3) 34.9 (3) = 5.42	(0) 22.6 $F_{0.05}(5.15) =$	= 4.5)
	Ans:				1.00	0				
	$H_0$ : $H_1$ : $T$	There is	s no sig s signif	icant di	fferenc	e betwee	n blocks a	nd treatme	ents	
	Subtra	ct 20 fr	om all	the nun	nbers			[	Γ	1 1
		X ₁ A	X ₂ B	X ₃ C	D	Total	$X_{1}^{2}$	$X_{2}^{2}$	$X_3^2$	$X_{4}^{2}$
	$Y_1$	4.7	-7.3	18.5	8.5	39	22.09	53.29	342.25	72.25
	$\mathbf{Y}_{3}$	0.0 7.7	0.0 2.7	19.3 16.8	11.0 14.9	42.1	0.30 59.29	7.29	282.24	222.01 34.81
	$Y_5$ $Y_6$	-3.8 4.9	-3 2.5	-4.6 6.3	-2.3 2.6	-13.7 16.3	14.44 24.01	9 6.25	21.16 36.69	5.29 6.76
		10.3	13.3	56.1	28.8	108.5	134.63	178.27	1065.75	462.37
	Step 1	: N = 2	4							
	Step 2.	. T = 1	08.5	$(108.5)^2$						
	Step 3	. C.F. =	$\frac{1}{N} = \frac{1}{N}$	24	- = 490.:	5	2			
	Step 4	. TSS =	$= \sum X_1^2$	$x^2 + \sum x$	$X_{2}^{2} + \Sigma$	$X_{3}^{2} + \Sigma$	$X_4^2 - \frac{T^2}{N}$			
		=	134.63	+ 178.	27 + 10	65.75 +	462.37 – 4	90.5 = 1	350.52	

# STUCOR APP

$$\begin{aligned} \text{Step 5. SSC} &= \frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} - \frac{T^2}{N} \\ & [N_1 = \text{number of elements in each column]} \\ &= \frac{(10.3)^2}{6} + \frac{(13.3)^2}{6} + \frac{(56.1)^2}{6} + \frac{(28.8)^2}{6} - 490.5 = 219.44 \\ \text{Step 6. SSR} &= \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} + \frac{(\Sigma Y_5)^2}{N_2} + \frac{(\Sigma Y_6)^2}{N_2} - \frac{T^2}{N} \\ & [N_2 = \text{number of elements in each row]} \\ &= \frac{(39)^2}{6} + \frac{(39.9)^2}{6} + \frac{(42.1)^2}{6} + \frac{(-15.1)^2}{6} + \frac{(-13.7)^2}{6} + \frac{(16.3)^2}{6} - 490.5 \\ &= 901.2 \end{aligned}$$

$$\begin{aligned} \text{SSE = TSS - SSC - SSR = 1350.52 - 219.44 - 901.2 = 229.9 \\ \text{Step 6. ANOVA table} \end{aligned}$$

$$\begin{aligned} \text{Between constrained squares squares are specified and square squares are specified and specified and specified and square squares are specified and square squares are specified and specified$$

## STUCOR APP

Step 7 : Conclusion : Cal  $F_C$  < Table  $F_C$  . So we accept  $H_0$ . Cal  $F_R$  < Table  $F_R$  . So we reject  $H_0$ Find out the main effects and interactions in the following 2² factorial experiment and 30. write down the ANOVA table. А b Ι ab Block 00 10 01 11 Ι 64 25 30 6 75 14 50 Π 33 III 76 12 41 17 IV 75 33 25 10 Ans : Taking deviation from y = 37 we get Treatment Blocks  $X_{1}^{2}$ IV  $X_{2}^{2}$ combination Ι Π III Total  $X_{3}^{2}$  $X_{4}^{2}$  $X_1$  $X_2$  $X_3$  $X_4$  $(y_1)(1)$ 27 38 39 38 142 729 1444 1521 1444 529 15 (y₂) a -12 -23 -25 -4 -64 144 625 -7 -12 -2 159 144  $(y_3) b$ 13 4 49 16 729 -31 -20 -27 961 16 400 -4 -82  $(y_4)$  ab -23 2158 Total 24 1883 2562 2333 -2 -5 -6 Step 1 : N = 16Step 2 : T = - 6 Step 3 : C.F =  $\frac{T^2}{N}$  =  $\frac{36}{16}$  = 2.25 Step 4 : TSS =  $\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ = 1883 + 2158 + 2562 + 2333 + 2.25= 8933.75 Step 5 : SSC =  $\frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} - \frac{T^2}{N_1}$  $[N_1 =$ number of elements in each column]  $=\frac{(-23)^2}{4} + \frac{(24)^2}{4} + \frac{(-2)^2}{4} + \frac{(-5)^2}{4} - 2.25 = 281.25$ Step 6. SSR =  $\frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N_2}$  $[N_2 =$ number of elements in each row]

$$= \frac{(142)^2}{4} + \frac{(-64)^2}{4} + \frac{(-2)^2}{4} + \frac{(-82)^2}{4} - 2.25 = 7744.75$$
Step 7: SSE = TSS - SSC - SSR = 8933.75-281.25-7744.75 = 907.75  
For 2² experiment  
Contrast A = [a + ab - b-(1)] = -64 - 82 + 2 - 142 = -286  
Contrast B = [b + ab - a-(1)] = -2 - 82 + 64 - 142 = -162  
Contrast AB = [ab + (1) - a - b] = -82 + 142 + 64 + 2 = 126
Main effect A =  $\frac{1}{2}$  [a + ab - b - (1)] = -143  
B =  $\frac{1}{2}$  [b + ab - a - (1)] = -143  
B =  $\frac{1}{2}$  [b + ab - a - (1)] = -81  
AB =  $\frac{1}{2}$  [ab + (1) - a - b] = 63  
SS_A =  $\frac{[a + ab - b - (1)]^2}{16} = \frac{(-286)^2}{16} = 5112.25$   
SS_B =  $\frac{[b + ab - a - (1)]^2}{16} = \frac{(-162)^2}{16} = 1640.25$   
SS_{AB} =  $\frac{[ab + (1) - a - b]^2}{16} = \frac{(-126)^2}{16} = 992.25$ 

Analysis of variance table for the 2² experiment

	S.V	d.f	S.S	MSS	Variance ratio	Table value of F		
						5 %	1 %	
	Blocks	3	281.5	93.83	$\frac{100.86}{93.83} = 1.075$	F(9, 3) = 8.81	27.35	
	Treatment	3	7744.7	2581.58	2581.88 _	F(3, 9)	6.99	
	S		5		100.86	= 3.86		
					25.60			
	A	1	5112.2	5112.25	5112.25 _	$F_{A}(1, 9)$	6.99	
			5		100.86	= 5.12		
					50.69			
	В	1	1640.2	1640.25	1640.25 _	$F_{B}(1, 9)$	6.99	
			5		100.86	= 5.12		
					16.26			
	AB	1	992.25	992.25	992.25 _	$F_{AB}(1, 9)$	6.99	
					100.86	= 5.12		
					9.84			
	Error	9	907.75	100.86				
Err	or $(d.f) = N$	-c - 1	r + 1 = 16 - 16	-4 - 4 + 1 = 9	9			
	Cal $F_A > T_a$	able F	Â					

## STUCOR APP

Given	1	1									
Dete	rgent	Eng	gine			_					
		1		2	3						
A		45	2	43	51						
B		47	2	46	52						
		48	4	50	55						
		42		37	49						
Perfor	rm ANOV	/A a	nd test	t at 0.0	)5 leve	l of sig	gnifican	ce whet	ther thes	e are d	iffer
the de	etergents of	or in	the en	igines.							
Ans :											
	Deteror	nt		Engin	e						
			1	2.	3	Tot	al				
	А		45	43	51	130	 				
	B		47	46	52	14	5				
	Ċ		48	50	55	15	3				
	D		42	37	49	128	8				
	Total				207	EC	_				
The In o figure	above da order to si	ta ar mpli	182 re class ify cal	176 sified a culatio	207 accord ons, we	ing to code	criteria the data	(i) Dete by sub	ergent (ii tracting	) Engi 50 fro	ne. m ea
The In o figure	above da order to si	ta ar mpli	182 re class ify cale	176 sified a culatio	207 accord ons, we	ing to e code	criteria the data	(i) Dete by sub	ergent (ii tracting	) Engi 50 fro	ne. m ea
The In o figure	above da order to si order to si	ta ar mpli	$\frac{182}{182}$ The class of the second secon	176 sified a culation Eng	207 accord ons, we <u>gine</u> $\chi_2$ )	$\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ \overline{)} $\overline{)}$ $\overline{)}$	criteria ( the data	(i) Dete by sub	ergent (ii tracting	2) Engi	ne. m ea
The In o figure	above da order to si e. Deterger	ta ar mpli	$\frac{182}{\text{re class}}$	176 sified : culation Eng	accord ons, we gine X ₂ )	$\frac{1}{(X_3)}$	criteria ( the data Total	(i) Deterby sub $x^{2}_{1}$	ergent (ii tracting $X_2^2$	Engi 50 from $X_3^2$	ne. m ea
The In of figure	above da order to si Deterger $A(Y_1)$	ta ar mpli	$\frac{182}{\text{re class}}$ ify calcologies $(X_1)$ $-5$	176 sified a culation Eng	$\frac{207}{\text{accord}}$	$\frac{1}{(X_3)}$	criteria of the data Total	(i) Dete by sub $x_{1}^{2}$	brgent (iii tracting $\frac{X_2^2}{2}$ 49	Engine 50 from $X_3^2$	ne. m ea
The In o figure	above da order to si $\dot{z}$ . Detergen $A(Y_1)$ $B(Y_2)$	ta ar mpli	$\frac{182}{\text{re class}}$ ify calcologies $(X_1)$ $-5$ $-3$	176 sified : culation Eng	$\frac{207}{\text{accord}}$ accord ons, we gine $X_2$ ) -7 -4	(X ₃ )	5 criteria ( the data Total -11 -5	(i) Deterby sub by sub $x_1^2$ 25 9	ergent (ii tracting $\frac{x_2^2}{49}$ 16	) Engi 50 from $x_3^2$ 1 4	ne. m ea
The In o figure	above da order to si c. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$	ta ar mpli	$\frac{182}{\text{re class}}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$	176 sified a culation Eng	$\frac{207}{\text{accord}}$ $\frac{1}{207}$ $\frac{1}{207$	$\frac{1}{(X_3)}$	Total -11 -5 3	(i) Dete by sub $x_{1}^{2}$ $x_{1}^{2}$ $9$ $4$	ergent (ii tracting $X_2^2$ 49 16 0	Engine 50 from $X_3^2$ 1 4 25	ne. m ea
The In of figure	above da order to si E. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$	ta ar mpli	$\frac{182}{\text{re class}}$ ify calcological (X ₁ ) $\frac{-5}{-3}$ $-2$ $-8$	176 sified : culatio	207 accord ons, we gine X ₂ ) -7 -4 0 13	(X ₃ )	Total -11 -5 3 -22	(i) Deterby sub by sub $x_1^2$ $x_1^2$ $y_1^2$	ergent (ii tracting $\frac{x_2^2}{49}$ 16 0 1691	) Engi 50 from $x_{3}^{2}$ 1 4 25 1	ne. m ea
The In of figure	above da order to si c. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total	ta ar mpli	$\frac{182}{\text{re class}}$ $\frac{182}{\text{ify calc}}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$	176 sified a culation Eng	$\frac{207}{\text{accord}}$ $\frac{13}{24}$	$   \begin{array}{c}             56: \\             ing to e code \\             code \\             (X_3) \\             \hline             1 \\           $	5 criteria ( the data Total -11 -5 3 -22 -35	(i) Dete by sub $X_{1}^{2}$ $X_{1}^{2}$ 25 9 4 64 102	$\frac{x_2^2}{x_2^2}$ $\frac{49}{16}$ $1691$ $234$	) Engi 50 from $x_{3}^{2}$ 1 4 25 1 31	ne. m ea
The In of figure	above da order to si E. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total	ta ar mpli	$     \begin{array}{r} 182 \\                                    $	176 sified : culation Eng	$\frac{207}{\text{accord}}$ accord ons, we gine $X_2$ ) -7 -4 0 13 24	(X ₃ ) 1 2 5 -1 7	5 criteria ( the data -11 -5 3 -22 -35	(i) Deterby sub by sub $x_1^2$ $x_1^2$ 25 9 4 64 102	argent (iii         tracting $X_2^2$ 49         16         0         1691         234	) Engi 50 from $x_{3}^{2}$ 1 4 25 1 31	ne. m ea
The In of figure	above da order to si x. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total	ta ar mpli	$\frac{182}{\text{re class}}$ $\frac{182}{\text{re class}}$ $\frac{182}{(X_1)}$ $\frac{182}{-5}$ $\frac{-3}{-2}$ $\frac{-8}{-18}$ $\frac{-18}{-18}$	176 sified a culation Eng	$\frac{207}{\text{accord}}$ $\frac{\text{gine}}{\text{K}_2}$ $\frac{7}{-4}$ $\frac{13}{24}$	$\frac{ }{ } \frac{56}{2}$ ing to e code $(X_3)$ $\frac{ }{ } \frac{1}{2}$ $\frac{5}{-1}$ $\frac{-1}{7}$	Total -11 -5 3 -22 -35	(i) Dete by sub $X_{1}^{2}$ 25 9 4 64 102	$\frac{x_{2}^{2}}{49}$ $\frac{49}{16}$ $\frac{1691}{234}$	b) Engi 50 from $X_{3}^{2}$ 1 4 25 1 31	ne. m ea
The In of figure	above da order to si c. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total $H_0$ : There	ta ar mpli nt	$\frac{182}{\text{re class}}$ ify calc ify calc $(X_1)$ $\frac{-5}{-3}$ $-2$ $-8$ $-18$ $2$ $2$ $-8$ $-18$ $2$ $-8$ $-18$	176 sified : culation Eng (2) (2) 	$\frac{207}{\text{accord}}$ $\frac{13}{24}$	$\frac{1}{(X_3)}$	Total -11 -5 3 -22 -35 columns	(i) Deterby sub by sub $x_{1}^{2}$ $x_{1}^{2}$ $y_{1}^{2}$ $y_{4}^{2}$ $4$ $64$ $102$ means as	ergent (ii tracting $x_2^2$ 49 16 0 1691 234 well as ro	b) Engi 50 from $x_{3}^{2}$ 1 4 25 1 31 w mean	ne. m ea
The In of figure	above da order to si c. Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total $H_0$ : There $H_1$ : There	ta ar mpli nt e is no e is si	$\frac{182}{\text{re class}}$ $\frac{182}{\text{re class}}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$	176 sified a culation Eng (2 (2) 	$\frac{207}{\text{accord}}$ accord ons, we $\frac{\text{gine}}{X_2}$ $\frac{7}{-4}$ 0 13 24 $\frac{13}{24}$ Ference before the second se	$\frac{ }{ } \frac{56}{2}$ ing to e code $\frac{ }{ } \frac{ }{ } \frac{1}{2}$ $\frac{ }{ } \frac{1}{2}$ between ween co	Total -11 -5 3 -22 -35 columns me	(i) Dete by sub $X_1^2$ $X_1^2$ 25 9 4 64 102 means as eans or the	well as row me	b) Engin 50 from $x_3^2$ 1 4 25 1 31 w mean ans.	ne. m ea
The In of figure	above da order to si order to	ta ar mpli nt e is no e is si	$\frac{182}{182}$ re class ify calc (X ₁ ) (X ₁ ) -5 -3 -2 -8 -18 osignifica	176 sified : culatio Eng (2 (2) (2) - - - - - - - - - - - - -	$\frac{207}{200}$ accord ons, we gine $X_2$ ) $\frac{13}{24}$ Ference between the	$\frac{56}{2}$ ing to e code $(X_3)$ $\frac{1}{2}$ $5$ $-1$ 7 etween co	Total -11 -5 3 -22 -35 columns me	(i) Deterby sub by sub $x_1^2$ $x_1^2$ 25 9 4 64 102 means as eans or the	ergent (ii tracting $\frac{x_2^2}{2}$ 49 16 0 1691 234 well as rome	b) Engin 50 from $x_3^2$ 1 4 25 1 31 w mean ans.	ne. m ea
The In of figure	above da prder to si Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total $H_0$ : There $H_1$ : There	ta ar mpli nt e is no e is si	$\frac{182}{\text{re class}}$ $\frac{182}{\text{re class}}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$	176 sified a culation Eng (2 (2) 	$\frac{207}{207}$ accord ons, we gine $X_2$ ) -7 -4 0 13 24 Ference before the set of contraints of the set of the s	$\frac{ }{ } \frac{56}{2}$ ing to e code $\frac{ }{ } \frac{ }{ } \frac{1}{2}$ $\frac{ }{ } \frac{1}{2}$ between co	Total -11 -5 3 -22 -35 columns me	(i) Deterby sub by sub $X_1^2$ 25 9 4 64 102 means as eans or the	well as row me	b) Engin 50 from $x_3^2$ 1 4 25 1 31 w mean ans.	ne. m ea
The In of figure	above da order to si order to	ta ar mpli nt e is no e is si [ Tot	$\frac{182}{182}$ re class ify calc (X ₁ ) -5 -3 -2 -8 -18 osignifica ignifica	176 sified : culation Eng (2) (2) - - - - - - - - - - - - - - - - - - -	$\frac{207}{200}$ accord ons, we gine $X_2$ ) $\frac{13}{24}$ Ference between the point of the entries of the entr	$\frac{ }{ } \frac{56}{2}$ ing to e code $(X_3)$ $\frac{ }{ } \frac{1}{2}$ $\frac{-1}{7}$ we tween compared to the set of the se	Total -11 -5 3 -22 -35 columns me	(i) Deterby sub by sub $x_1^2$ $x_1^2$ 25 9 4 64 102 means as eans or the	ergent (ii tracting $\frac{x_2^2}{2}$ 49 16 0 1691 234 well as rome	b) Engin 50 from $x_3^2$ 1 4 25 1 31 w mean ans.	ne. m ea
The In of figure	above da prder to si Detergen $A(Y_1)$ $B(Y_2)$ $C(Y_3)$ $D(Y_4)$ Total $H_0$ : There $H_1$ : There I. N = 12	ta ar mpli nt e is no e is si [ Tot	$\frac{182}{\text{re class}}$ $\frac{182}{\text{re class}}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$ $\frac{182}{(X_1)}$	176 sified a culation Eng (2 (2) (2) 	$\frac{207}{207}$ accord ons, we gine $X_2$ ) -7 -4 0 13 24 Ference between the provided of the second	$\frac{ }{ } \frac{56}{2}$ ing to e code $\frac{ }{ } \frac{ }{ } \frac{1}{2}$ $\frac{ }{ } \frac{1}{2}$ between ween co	Total -11 -5 3 -22 -35 columns me	(i) Deterby sub by sub $x^2$ $x^2$ 1 25 9 4 64 102 means as eans or the	well as ro	b) Engin 50 from $x_3^2$ 1 4 25 1 31 w mean ans.	ne. m ea

$$\begin{aligned} & \text{Step 4. TSS} = \sum x_1^2 + \sum x_2^2 + \sum x_3^2 - \frac{T^2}{N} \\ &= (102) + (234) + (31) - (102.08) \\ &= 264.92 \end{aligned}$$

$$\begin{aligned} & \text{Step 5. SSC} = \frac{(\sum x_1)^2}{N_1} + \frac{(\sum x_2)^2}{N_1} + \frac{(\sum x_3)^2}{N_1} - \frac{T^2}{N} \\ & [N_1 = \text{number of elements in each column]} \\ &= \frac{(-18)^2}{4} + \frac{(-24)^2}{4} + \frac{(7)^2}{4} - 102.08 \\ &= 135.17 \end{aligned}$$

$$\begin{aligned} & \text{Step 6. SSR} = \frac{(\sum Y_1)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} - \frac{T^2}{N} \\ & [N_2 = \text{number of elements in each row]} \\ &= \frac{(-11)^2}{N_2} + \frac{(-5)^2}{3} + \frac{(3)^2}{3} + \frac{(-22)^2}{3} - 102.08 \\ &= 110.91 \end{aligned}$$

$$\begin{aligned} & \text{SSE = TSS - SSC - SSR \\ &= 264.92 - 135.17 - 110.91 \\ &= 18.84 \end{aligned}$$

$$\begin{aligned} & \text{Step 7. Table of analysis of variance} \\ & \hline \frac{\text{Sources Sum of squares}}{135.17} & \frac{\text{d.f.}}{2} & \frac{\text{Mean square}}{2} & \frac{\text{Variance}}{3.14} & \frac{\text{Table value}}{1\%} \\ & \frac{1\%}{2} = \frac{10.91}{2} = \frac{135.17}{2} = 67.585 & \frac{67.585}{3.14} = 21.52 \\ & \hline \text{Between SSR = } & \frac{r-1}{3} & \text{MSR = } & \frac{SSR}{r-1} \\ & \text{Rows} & \frac{110.91}{3} & \frac{110.91}{3} = 36.97 & \frac{36.9}{3.14} = 11.77 \\ & \hline \text{Rows} & \frac{10.91}{2} & \frac{10.91}{3} & \frac{10.91}{3} = 36.97 \end{aligned}$$

MSE =

 $\frac{SSE}{N-c-r+1} =$ 

 $\frac{18.84}{6} = 3.14$ 

N – c-

r +1 = 12-3-

4+1 = 6

# STUCOR APP

#### DOWNLOADED FROM STUCOR APP

Residual

SSE =

18.84

	Total		TS	SS =	11									
			26	64.92										
							I							
	Sten 8	Co	nclu	ision ·										
			. T		ć	<b>-</b>	• . • •							
	Cal	FC	> 1	able F	с.,	so we	reject $H_0$							
	Cal	$F_R >$	Tał	ble $F_R$	. So	o we re	eject H							
							<b>5</b> 0							
20	Three		tion	of and	1		wood her	ah	amiata	0.00	the och	aantan	t is tabulat	ad
32.	have D	varie	ties	01 002			yseu by 4	- CII	ennsts	and	i the ash	conten	t is tabulat	eu
	nere. P	erio	rm a	in ana	ysis	of vari	ance.							
						Chei	nists							
					Α	В	С	Ι	)					
		C	oal	Ι	8	5	5	-	7					
				II	7	6	4	4	1					
				III	3	6	5	4	1					
	Solutio	on:												
	Coal			Cher	nists		Total c	f	$X_1^2$	2	$X_2^2$	$X_3^2$	$X_4^2$	
			A	В	С	D	varianc	e						
	Ι		8	5	5	7	25		64		25	25	49	
	II		7	6	4	4	21		- 49		36	16	16	
	III		3	6	5	4	18		9		36	25	16	
	Tota	1 1	18	17	14	15	64		122	,	97	66	81	

$H_0$ :There	e is no siginif	ficant differe	ence		
$H_1$ : There	is siginifica	nt difference	e		
Step1: N =	12				
Step 2: $T =$	64				
Step 3: $\frac{T^2}{N}$	$=\frac{(64)^2}{12}=34$	41.3		2	
Step 4: TSS	$S = \sum X_1^2 +$	$\sum X_2^2 + \sum$	$X_{3}^{2} + \sum X_{4}^{2} -$	$-\frac{T^2}{N}$	
	= 64 + 122	+97+66+	81-341.3		
	=88.7				
Step 5: SSC	$T = \frac{\left(\sum X_{1}\right)^{2}}{N_{1}}$ $\frac{324}{3} + \frac{289}{3}$	$+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}$ $+\frac{196}{3}+\frac{225}{3}$	$+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}$	$\frac{\sum X_4^2}{N_1} - \frac{T^2}{N}$	
=	108 + 96.33	+65.33+7	5 - 341.3 = 3.36		
Step $6: SSR =$	$=\frac{\left(\sum Y_{1}\right)}{N_{2}}+\frac{1}{N_{2}}$	$\frac{\left(\sum Y_2\right)}{N_2} + \frac{1}{N_2}$	$\frac{\sum Y_3}{N_2} - \frac{T^2}{N}$		
	$=\frac{625}{4}+\frac{44}{4}$	$\frac{1}{41} + \frac{324}{4} - 3$	41.3		
	=156.25 +	110.25 + 81	-341.3 = 6.2		
SSE = TSS -	SSC – SSR =	= 88.7 - 3.30	6 - 6.2 = 79.14		
<i>SSE</i> = 79.14					
Source of variance	Sum of squares	d.f.	Mean square	Variance ratio	Table value at 5% level
Between	SSC	C-1	$MSC = \frac{SSC}{MSC}$	$F_{c} = \frac{MSC}{MSC}$	$F_{C}(2,6)$
columns	= 5.50	= 3 - 1 = 2	C - 1	MSE	= 5.14
		2	$=\frac{3.36}{2}$	$=\frac{1.68}{12.10}$	
			2	13.19	
			=1.08	=0.1274	
Between	SSR	r-1	$MSR = \frac{SSR}{MSR}$	$E - \frac{MSR}{MSR}$	$F_{R}(3,6)$
rows	= 6.2	= 4-1	r-1	$I_R = MSE$	= 4.76
		- 5	$=\frac{6.2}{2}$	$=\frac{2.0666}{2.0666}$	
			3	13.19	
			= 2.0000	= 0.1566	

Residual	SSE = 79.14	N - C - r + 1 = 12 - 4 - 3 + 1 = 6	$MSE$ $= \frac{SSE}{N-C}$ $= \frac{79.14}{6}$ $= 13.19$			
Total	88.7					
Conclusion Cal F Cal F In both the ca hypothesis is	$_{\rm R}$ < Tab $_{\rm C}$ < Tab $_{\rm C}$ < Tab uses the calc accepted.	F _R F _C ulated value	is less than tabu	lated value Ther	efore null	
					7	

	UNIT – IV
	Testing of Hypothesis
ł	Population:
,	The group of individuals under study is called population.
S	Sample:
ŀ	A finite subset of individuals in a population is called a sample and the
n	number of individuals in a sample is called the sample size.
S	Sampling is only a tool which helps us to know the characteristics of the
p	opulation or the universe by examining only a small part of it.
I	Large and small samples:
]	The number of elements in a sample is greater than or equal to 30, then the
S	ample is called a large sample and if it is less than 30, then the sample is
C	alled a small sample.
	Random Sample: A random sample of size n is a sample that is chosen in
S	uch a way that each subset of n elements of the population has the same
p	probability of being selected.
F	Parameters: Statistical constants like mean u variance $\sigma^2$ etc. computed
ւ ք	rom a population are called parameters of the population
4	A population parameters is denoted by $\Theta$
-	
S	Statistics: Statistical constants like mean $\bar{x}$ , variance $s^2$ etc., computed
f	rom a sample are called sample statistics or statistics. A sample statistics
i	s denoted by t.
S	Sample statistic t is an estimator of population parameter $\Theta$ .
I	f the population mean $\mu$ is unknown and if sample mean $\bar{x}$ is known, we
С	an estimate the value of $\mu$ using $\bar{x}$ , so $\bar{x}$ , is called an estimator of $\mu$ .
S	Sample Distribution:
]	The probability distribution of a statistic t is called the sampling
Ċ	listribution of t.
F	For eg. If we take k samples each of size
r	$\overline{x}_2, n_3, n_4, \dots n_k$ we can find their means $\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \dots, \overline{x}_k$ . This set of
S	ample means is called a sampling distribution of the sample statistics $\bar{x}$
S	Similarly we can have sampling distribution of sample variance $s^2$ , sample
r	nedian m etc.
S	Standard error: the standard deviation of the sampling distribution of a
S •	tatistic t is called the standard error of t.
1	t the sample is large (n $\ge$ 30) and $\sigma$ is the standard deviation of the $\overline{\pi}$
p	population then standard error of $\bar{x}$ is $\frac{\sigma}{\sqrt{n}}$
n	Fost of Significance (OD) Harrothesis Testing
]	lest of Significance (UK) Hypothesis Testing.

**Statistical Hypothesis:** In making statistical decisions we make assumptions or guesses about populations involved.Such assumptions which may be true or false are called statistical hypothesis.

#### **Null Hypothesis** *H*₀**:**

For applying the test of significance, we first set up a hypothesis which is a statement about the population parameter. This statement is usually a hypothesis of no difference and so it is called null hypothesis and is denoted by  $H_0$ .

### Alternate Hypothesis $H_1$

Any hypothesis which is complementary to the null hypothesis is called an alternative hypothesis, denoted by $H_1$ .

#### **Errors in Sampling:**

After applying a test of significance a decision is to be taken to accept or reject the null hypothesis. There is always some possibility of committing an error in taking a decision. These errors are of two types.

1. Type I error.

2. Type II error.

Type I error: If  $H_0$  is rejected while it should have been accepted.

Type II error: If  $H_0$  is accepted while it should have been rejected.

#### Level of significance:

The probability of Type I error is called the level of significance of the test and is denoted by  $\alpha$ .

We usually take either  $\alpha$ =5% or 1%. We test the hypothesis at 5% level of significance (or) at 1% level of significance.

#### **Critical region:**

For a test statistic the area under the probability curve, which is normal is divided into two regions namely the region of acceptance of  $H_0$  and the region of rejection of  $H_0$ . The region in which  $H_0$  is rejected is called the critical region. The area of the critical region is  $\alpha$ ,  $\alpha$ -level of significance. The region in which  $H_0$  is accepted is called the acceptance region.

#### **Critical Ratio:**

For the statistic t, we find the ratio  $Z = \frac{t - E(t)}{S.E(t)}$  which is called the critical ratio. This number separates the acceptance and rejection regions.

#### One Tailed and Two Tailed Test:

If the alternate hypothesis is one sided then it is called one tailed test. It may be right tailed or left tailed test.

For eg:  $H_0:\mu = 300$ .

 $H_1: \mu > 300$  Right tail test

 $\mu$ <300 left tail test.

Two Tailed Test: If the alternate hypothesis is two sided then it is called a



Let  $N(\mu, \sigma^2)$  be the normal population from which a large sample of size n be taken to test the significance of the difference between  $\bar{x}$  and  $\mu$ . Let  $\mu_0$ be the hypothesis value of the population mean. Large sample : Size n Sample mean ;  $\bar{x}$ Population mean : $\mu$ Population variance : $\frac{\sigma^2}{n}$ Population standard deviation: $\frac{\sigma}{\sqrt{n}}$ 

$$\begin{split} H_0: \mu = \mu_0, \\ H_1 &= \mu \neq \mu_0 \\ \text{The test Statistic } z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \\ |Z| &< 1.96 H_0 \text{ is accepted at 5 \% level of significance.} \\ |Z| &< 2.58 H_0 \text{ is accepted at 1 \% level of significance.} \end{split}$$

#### Test for the significant difference between sample standard deviation and population standard deviation or test for the equality of sample standard deviation and population standard deviation.

#### Procedure

Let a large sample of size n be taken a normal population with standard deviation  $\sigma$ . Let s be standard deviation of the sample.

Let  $\sigma_0$  be the hypothetical value of the standard deviation of the

population.

$$H_0: \sigma = \sigma_0$$
$$H_1: \sigma \neq \sigma_0$$

∴ Two tailed test

$$\therefore \text{ Under } H_0, \quad Z = \frac{s - \sigma}{\sigma / \sqrt{2n}} \sim N(0, 1)$$

#### Inference

If |Z| < 1.96,  $H_0$  is accepted at 5 % level of significance.

If |Z| > 1.96,  $H_0$  is rejected at 5 % level of significance.

If |Z| < 2.58,  $H_0$  is accepted at 1 % level of significance.

If |Z| > 2.58,  $H_0$  is rejected at 5 % level of significance.

Test for the significant difference between thestandard deviations of two large samples or Test for equality of two standard deviations.

#### Procedure

Let two samples of sizes  $n_1$  and  $n_2$  be drawn from two populations with

standard deviation  $\sigma_1$  and  $\sigma_2$  respectively. Let  $s_1$  and  $s_2$  be he standard deviations of the two samples. We have to test whether the difference between the standard deviations is significant or not.  $H_0: \sigma_1 = \sigma_2$  (ie) there is no different  $H_1: \sigma_1 \neq \sigma_2$ Case (i) :  $\sigma_1$ ,  $\sigma_2$  are unknown. Under  $H_0$ , the test statistic is  $Z = \frac{s_1 - s_2}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_{21}^2}{2n_2}}} \sim N(0,1)$ Inference If |Z| < 1.96,  $H_0$  is accepted at 5 % level of significance. If |Z| > 1.96,  $H_0$  is rejected at 5 % level of significance. If |Z| < 2.58,  $H_0$  is accepted at 1 % level of significance. If |Z| > 2.58,  $H_0$  is rejected at 5 % level of significance. Case (ii) :  $\sigma_1$ ,  $\sigma_2$  are not unknown. Then S.E. of  $s_1 = \frac{\sigma_1}{\sqrt{2n_1}} = \frac{s_1}{\sqrt{2n_1}} \&S.E. \text{ of } s_2 = \frac{\sigma_2}{\sqrt{2n_2}} = \frac{s_2}{\sqrt{2n_2}}$ : S.E. of  $(s_1 - s_2) = \sqrt{\frac{s_1^2}{2n_1} + \frac{s_2^2}{2n_2}}$  $\therefore Z = \frac{s_1 - s_2}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}}} \sim N(0, 1)$ **Inference** : Aslike the case of case 1 Case : (iii) If the two samples are drawn from the same normal population or populations with same standard deviation (ie)  $\sigma_1^2 = \sigma_2^2 = \sigma^2$   $\Rightarrow \sigma_1 = \sigma_2 = \sigma$  and  $\sigma$  is known  $Z = \frac{s_1 - s_2}{\sigma \sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}} \sim N(0, 1)$ **Inference** : Aslike the case of case 1 Test for the significant difference between sample proportionand

#### population proportion.

#### Procedure

A large sample of size n be taken from a population. Let P be the proportion of some attribute in the population. Let p be the proportion of the same attribute in the sample. We have to test whether p and P differ significantly or not. Let  $P_0$  be the hypothetical value of the proportion in the population.

Null hypothesis  $H_0$ :  $P = P_0$ 

Alternate hypothesis  $H_1$ :  $P \neq P_0$  (two tailed)

$$Q = 1 - P$$

Standard error of  $p = \sqrt{\frac{PQ}{n}}$ 

Under  $H_0$  is large n, the sampling distribution of p is approximately

normal with mean P and variance  $\sqrt{\frac{PQ}{n}}$ 

 $\therefore \text{The test statistic is } Z = \frac{p - P}{\sqrt{\frac{PQ}{n}}} \sim N(0, 1)$ 

#### Inference

If |Z| < 1.96,  $H_0$  is accepted at 5 % level of significance. (ie) difference is not significant.

If |Z| > 1.96,  $H_0$  is rejected at 5 % level of significance. (ie) difference is significant.

If |Z| < 2.58,  $H_0$  is accepted at 1 % level of significance.

If |Z| > 2.58,  $H_0$  is rejected at 5 % level of significance. (ie) difference is highly significant.

Test for the significant difference between two proportions in two samples or Test for equality of twoproportions.

#### Procedure

Let two large samples of sizes  $n_1$  and  $n_2$  be drawn from a population with proportion P for some attribute A. Let  $p_1$ ,  $p_2$  be the proportions of the same attribute A in the samples respectively. We want to test the significant difference between  $p_1$ ,  $p_2$  and Q = 1 - P

 $H_0$ :  $P_1 = P_2$  (ie) there is no significant difference between sample proportions.  $H_1: P_1 \neq P_2$ Two tailed test Under  $H_0$ , the sampling distribution of  $p_1 - p_2$  is approximately normal with mean P variance PQ  $\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$ Case (i) : P is known ie. The population proportion is known. Under  $H_0$ , the test statistic is  $Z = \frac{p_1 - p_2}{PQ\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$ Inference If |Z| < 1.96,  $H_0$  is accepted at 5 % level of significance. If |Z| > 1.96,  $H_0$  is rejected at 5 % level of significance. If |Z| < 2.58,  $H_0$  is accepted at 1 % level of significance. If |Z| > 2.58,  $H_0$  is rejected at 5 % level of significance. Case (ii) : P is not known ie. The population proportion is not known. If P is not known, then the unbiased estimate of P using  $p_1$ ,  $p_2$  is  $P = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$  $Z = \frac{p_1 - p_2}{PQ_{\sqrt{\frac{1}{n} + \frac{1}{n}}}} \sim N(0, 1)$ **Inference** : Aslike the case of case 1 **Exact Sampling Distribution** (**t**, **F**,  $\chi^2$ ) Small sampling theory is a study of sampling distributions of statistics of small samples. For small samples tests we having three distributions 1. Student's t – distribution 2. Snedecor's F – distribution 3.  $\chi^2$  - (Chi – Square ) distribution 1. Student's t – distribution A random variable T is said to follow Student's t – distribution if its probability density function is given by

$$f(t) = y_0 \left( 1 + \frac{t^2}{v} \right)^{-\frac{(v+1)}{2}}, -\infty < t < \infty$$

Where  $y_0$  is a constant depending on n such that the total area under the curve is 1 and v=n-1 is called the number of degrees of freedom.

#### **Properties :**

- 1. The probability curve of the t distribution is symmetric about t = 0, bell shaped and asymptotic to t axis.
- 2. For large values of v or n the t distribution approaches the standard normal distribution.
- 3. The mean of the t distribution is 0.
- 4. The variance of t distribution is  $\frac{v}{v-2}$  if v>2, but tends to 1 as  $v \rightarrow -\infty$
- 5. It has greater dispersion than the normal.

#### Uses :

The t – distribution is used extensively in testing the significance of the difference between

- 1. The mean of a small sample and the mean of the population.
- 2. The means of two small samples.
- 3. The means of paired observations.
- 4. Sample correlation so-efficient and population correlation coefficient
- 5. Regression coefficients.

#### **Degrees of freedom**

The number of degrees of freedom of statistic is usually denoted by v and is defined by v = n - k, where n is the size of the sample, and k is the number of population parameters.

# t – testfor single mean or Test the significant difference between sample mean and population mean.

Let a small sample of size n be drawn from a normal population with mean  $\mu$  and unknown variance. Let  $\overline{x}$  be the mean and s be the standard deviation of the sample. We want to test the significance of the difference between the population mean  $\mu$  and sample mean  $\overline{x}$ .

Let  $\mu_0$  be the hypothetical value of  $\mu$ 

 $H_0: \mu = \mu_0$ 

 $H_1: \mu \neq \mu_0$  (two tailed test)

Under  $H_0$ ,  $t = \frac{x - \mu}{s / \sqrt{n - 1}}$  follows student's t – distribution with v = n - 1

degrees of freedom.

For v = n-1 let  $t_{0.05}$  be the table value of t at 5 % significance.

#### **Inference :**

If  $|t| < t_{0.05}$ ,  $H_0$  is accepted at 5 % level of significance.ie the difference between  $\bar{x}$  and  $\mu$  is not significance.

If  $|t| > t_{0.05}$ ,  $H_0$  is rejected at 5 % level of significance.ie the difference is significant.

If  $|t| < t_{0.01}$ ,  $H_0$  is accepted at 1 % level of significance.

If  $|t| > t_{0.01}$ ,  $H_0$  is rejected at 1 % level of significance.ie the difference is highly significant.

# Test of significance of the difference between the means of the two samples

#### Procedure

Let two independent small random samples of sizes  $n_1$ ,  $n_2$  be drawn from two normal populations with mean  $\mu_1$ ,  $\mu_2$ . Let  $\overline{x_1}$ ,  $\overline{x_2}$  be the means of the samples and  $s_1$ ,  $s_2$  be their standard deviations.

The best estimate is given by  $S^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}$ 

Assume

 $H_0$ :  $\mu_1 = \mu_2$  (ie) there is no significant difference between

means of the two population

 $H_1: \mu_1 \neq \mu_2 \ (two tailed)$ 

The standard error of  $\overline{x_1} - \overline{x_2}$  is  $\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ 

Under  $H_0$ , the test statistic is t =

$$\frac{\sqrt{n_1 + n_2 - 2} (n_1 - n_2)}{\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} (\frac{1}{n_1} + \frac{1}{n_2})}}$$

with degrees of

freedom  $v = n_1 + n_2 - 2$  **Inference :** If  $|t| < t_{0.05}$ ,  $H_0$  is accepted at 5 % level of significance.ie the difference between mean is not significant. If  $|t| > t_{0.05}$ ,  $H_0$  is rejected at 5 % level of significance.ie the difference between mean is significant.

# STUCOR APP

If  $|t| < t_{0.01}$ ,  $H_0$  is accepted at 1 % level of significance.ie the difference is not significant.

If  $|t| > t_{0.01}$ ,  $H_0$  is rejected at 1 % level of significance.ie the difference is highly significant.

#### t – test for paired observations or dependent samples.

Let  $\mu$  be the difference between the mean of the population before and after training.

 $H_0$ :  $\mu = 0$  (there is no difference in the mean)  $H_1: \mu \neq 0$  (there is difference)

Under  $H_0$ , the test statistic is  $t = \frac{\overline{d}}{s / \sqrt{n-1}}$  where  $s^2$  is variance of

*d* and v = n-1 is degrees of freedom.

#### **Inference** :

If  $|t| < t_{0.05}$ ,  $H_0$  is accepted at 5 % level of significance. If  $|t| > t_{0.05}$ ,  $H_0$  is rejected at 5 % level of significance.

#### Snedecor's F – distribution

**Def**: If  $\chi_1^2$  and  $\chi_2^2$  are two independent Chi – square variates with  $(v_1, v_2)$ degrees of freedom then the F – random variable is defined by  $F = \frac{\chi_1^2}{\chi_2^2}$ 

**Def.** : A random variable f is said to follow F-distribution with  $(v_1, v_2)$  degrees of freedom if its probability density function is given by

 $f(F) = KF^{\frac{v_1}{2}-1} \left(1 + \frac{v_1F}{v_2}\right)^{-\frac{(v_1+v_2)}{2}} \text{ where } F > 0 \text{ and } k \text{ is constant to be determined}$ such that  $\int_{0}^{\infty} f(F) dF = 1$ Properties of F-distribution 1. The shape of the curve depends on  $v_1$  and  $v_2$  and also their order. 2. Mean of the F-distribution is  $\frac{v_1}{v_2-2}, v_2 > 2$ 

3. Variance of the F- distribution is  $\frac{2v_1(v_1+v_1-2)}{v_1(v_2-2)^2(v_2-4)}$ ,  $v_2 > 4$ **Chi Square Distribution Definition: Chi square variate.** The square of a standard normal variate is known as a chi-square variate with one degree of freedom and it is denoted by  $\chi^2$ . **Definition:** The probability density function of  $\chi^2$ The probability density function of  $\chi^2$  is given by  $f(\chi^2) = \mathbf{k} (\chi^2)^{\frac{\nu}{2} - 1} e^{-\frac{\chi^2}{2}} \chi^2 > 0$ where the parameter  $\boldsymbol{v}$  I called degree of freedom and k is a constant. Condition for the application of  $\chi^2$  test. 1. The experimental data must b independent of each other. 2. The sample size should be reasonably large,  $\geq 50$ . 3. The theoretical cell frequency should be atleast 5. If it is less than 5, it is combined with the adjacent frequencies so that the pooled frequency is > 5. 4. The constraints on the cell frequencies should be linear. Eg.  $\sum O_i = \sum E_i = N \ge 50.$  $\chi^2$  –test of goodness of fit **Procedure.** Let  $o_1, o_2, o_3, \dots, o_n$  be the observed frequencies and  $E_1, E_2, \dots, E_n$ Be the corresponding expected frequencies. We want to test the significance of the difference between observed and expected frequencies.  $H_0$ : There is no significant difference between observed and the expected frequencies. (i.e.)  $\sum O_i = \sum E_i i = 1, 2, 3, ... n$  $H_1$ : There is a significant difference between the observed and expected frequencies. The test statistics  $\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$  follows a  $\chi^2$  distribution with  $\boldsymbol{v}$  = n-1 degree of freedom.



ICOR A



COR AI

	For applying the test of significance, we first set up a hypothesis which is a statement about the population parameter. This statement is usually a hypothesis of no difference and so it is called null hypothesis and is denoted by $H_0$ .
	Any hypothesis which is complementary to the null hypothesis is called an alternative hypothesis, denoted by $H_1$ .
6.	Give the formula for the chi square test of independence for Ans:AbCd
	A B Total
	A a B a+b
	B c D c+d
	Total $a + c$ $b + d$
	$y^2 = \frac{N(ad - bc)}{N(ad - bc)}$
	$^{h} \qquad (a+b)(c+d)(a+c)(a+d)$
7.	A random sample of 200 tins of coconut oil gave an average weight of 4.95. With a standard deviation of 0.21kg. Do we accept that the net weight is 5 kgs per tin at 5% level? Ans :
	Given $n = 200$ , $\mu = 5$ , $s = 0.21$ , $\overline{x} = 4.95$ , $\alpha = 5$ %
	1. $H_0: \mu = 5$
	2. $H_1: \mu \neq 5$ [ use two tailed test ]
	3. <i>α</i> = 5%
	4. critical region
	$-Z_{\alpha/2} Z_{\alpha/2}$ = -1.96 = 1.96
	5. The test statistic $Z = \frac{x - \mu}{\left(\frac{s}{\sqrt{n}}\right)} = \frac{4.95 - 5}{\left(\frac{0.21}{\sqrt{200}}\right)} = -3.36$
	Z  = 3.36
	6. Conclusion : If $ Z  = 3.36 \lt 1.96$ we accept $H_0$
8.	State level of significance. Solution: The probability that the value of the statistic lies in the critical region is called the level of significance.
	In general, these levels are chosen as 0.01 or 0.05, called 1% level and 5% level of

	significance respectively.
9.	State the conditions for applying $\chi^2$ test. <b>Ans:</b> (i) The Sample observations should be independent. (ii) Constraints on the cell frequencies, if any, must be linear. (iii) N, the total frequency, should be atleast 50. (iv) No theoretical cell frequency should be less than 5.
10	Write the formula for the Chi-square test of goodness of fit of a random sample to a hypothetical distribution. <b>Ans :</b> Chi square test of goodness of fit is a test to find if the derivation of the experiment from theory is just by chance or it is due to the inadequacy of the theory to fit the observed data. By this test, we test whether differences between observed and expected frequencies are significant or not. Chi square test statistic of goodness of fit is defined by $\chi^2 = \sum \frac{(O-E)^2}{E}$ , where O is the observed frequency and E the expected frequency.
11.	Write down the formula of test statistic t to test the significance of difference between the means of large samples. <b>Ans :</b> $Z = \frac{\left \overline{x_1} - \overline{x_2}\right }{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ where $\overline{x_1}$ , $\overline{x_2}$ sample means ; $s_1^2 \& s_2^2$ sample variances ; $n_1 \& n_1$ sample sizes.
12.	What is random sampling ? <b>Ans :</b> A random sampling is one in which each number of population has an equal chance of being included in it. There are $NC_n$ different samples of size <i>n</i> that can be picked up from a population size N.
13.	Write about F-test. <b>Ans :</b> A random variable F is said to follow F-distribution with $(v_1, v_2)$ degrees of freedom if its density function given by $f(F) = K F^{\frac{v_1}{2} - 1} \left(1 + \frac{v_1 F}{v_2}\right)^{-\frac{(v_1 + v_2)}{2}}$ where $F > 0$ and k is constant to be determined such that $\int_{0}^{\infty} f(F) dF = 1$
	v



	<b>0 1</b>										
	3. $H_1$	Poisson	fit is a	not goo	od fit						
	4. $\alpha = 0.05$ $d.f.=7-1-1-2 = 3$										
	$(\alpha, r)^2$										
	5. The test statistic is $\psi^2 = \sum \frac{(O-E)^2}{E}$										
	6. Reject $H_0$ if $\psi^2 > 7.82$										
	7. Computation :										
	]	Mean of	the dist	ribution	$n = \frac{\sum j}{\sum}$	$\frac{f_i x_i}{f_i} = \frac{189}{392}$	$\frac{9}{2} = 0.48$	3			
		$x_i$		$f_i$		$f_i x_i$					
		0		275		0					
		1		72		72					
		2		30		60					
		3		7		21					
		4		5		20					
		5		2		10					
		6		1		6	_ \				
			1	N = 392		189					
	TT	•	4 - 1- 1 -	•							
	Hence the	frequenc	y table	is							
	Hence the X	frequenc	y table 0	$\frac{1}{72}$	$\frac{2}{20}$	3 4	5	6	Total		
	Hence the x X Observ Freque	frequenc red	y table 0 275	is 1 72	$\frac{2}{30}$	$\frac{3}{7}  \frac{4}{5}$	5 2	6 1	Total 392		
	Hence the EX	requenc red ncy red	y table 0 275 243	is 1 72 116	2 3 30 7 28 4	$\begin{array}{c c} 3 & 4 \\ 7 & 5 \\ 4 & 1 \end{array}$	5 2 0	6 1 0	Total 392 392		
	Hence the s	requenc red ncy red ncy	y table 0 275 243	is 1 72 116	$\begin{array}{c c} 2 & 2 \\ 30 & 7 \\ 28 & 4 \end{array}$	3         4           7         5           4         1	5 2 0	6 1 0	Total 392 392		
	Hence the T X Observ Frequer Expect frequer Since the F	requenc red ncy ed ncy our freq	y table 0 275 243 uencies	is 1 72 116 are small	2 3 30 7 28 4 all , so y	3     4       7     5       4     1       we pull t	5 2 0 hen tog	6 1 0 gether.	Total 392 392		
	Hence the EX X Observ Freque Expect freque Since the F	requenc red ncy ed ncy our freq 0	y table 0 275 243 uencies E	is 1 72 116 are sma 0	$\frac{2}{30}$ $\frac{2}{28}$ $\frac{2}{28}$ $\frac{2}{-E}$	$\begin{array}{c c} 3 & 4 \\ 7 & 5 \\ 4 & 1 \\ \hline                                  $	5 2 0 hen tog 2	$\frac{6}{1}$ 0 gether. $(O-E)$	Total 392 392 ² / E		
	Hence the EX X Observ Freque Expect freque Since the F	requenc red ncy ed ncy ed ncy our frequenc 0 275	y table     0     275     243     uencies     E     243     243	is 1 72 116 are sma 0	$\begin{array}{c c} 2 & 3\\ 30 & 7\\ 28 & 2\\ \hline \\ all, so \\ -E \\ 32 \\ \end{array}$	$\begin{array}{c c} 3 & 4 \\ 7 & 5 \\ \hline 4 & 1 \\ \hline we pull t \\ (O - E) \\ 1024 \\ \end{array}$	5 2 0 hen tog 2		Total 392 392 ² / E		
	Hence the EX X Observ Frequer Expect frequer Since the F	requenc red ncy ed ncy our frequ 0 275 72	y table 0 275 243 uencies <i>E</i> 243 116	is 1 72 116 are sma 0	$\begin{array}{c c} 2 \\ 30 \\ 28 \\ 28 \\ -E \\ 32 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 28 \\ 44 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 4$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2	$\frac{6}{1}$ 0 gether. (O - E) 4.2 16.6	Total     392     392 $     392     2     2 / E     1     9     4     4     4 $		
	Hence the : X Observ Freque Expect freque Since the F	requenc red ncy ed ncy ed ncy 275 72 30	y table 0 275 243 uencies E 243 116 28 5	is 1 72 116 2 are sma 0	$\begin{array}{c c} 2 & 3 \\ 30 & 7 \\ 28 & 2 \\ \hline all, so \\ -E \\ 32 \\ 44 \\ 2 \\ 10 \\ \hline \end{array}$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2	$6 \\ 1 \\ 0 \\ gether. \\ (O - E) \\ 4.2 \\ 16.6 \\ 0.1^{4} \\ 20.0 \\ 0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 $	Total     392     392 $     392     $ $     2' / E     1     9     4     0     $		
	Hence the T	requenc red ncy ed ncy our frequ 0 275 72 30 15	y table 0 275 243 uencies <i>E</i> 243 116 28 5	is 1 72 116 are sma 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.1^{4} \\       20.0 \\       41.0 \\       \hline       41.0 \\       \hline       41.0 \\       \hline       10       \hline       41.0 \\       \hline       41.0 \\       \hline       10       \hline       10       \hline       10       10       \hline       10       10       \hline       10       10       \hline       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10  $	Total     392     392 $392$ $2 / E$ $1$ $9$ $4$ $0$ $4$		
	Hence the : X Observ Freque: Expect freque: Since the F	requenc red ncy ed ncy our freq 0 275 72 30 15	y table 0 275 243 uencies E 243 116 28 5	is 1 72 116 2 are sma 0	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.14 \\       20.0 \\       41.0 \\       \end{array} $	Total     392     392 $     392     2     2 / E     1     9     4     0     4     4 $		
	Hence the $\frac{X}{X}$ Observ Frequer Expect frequer Since the F		y table 0 275 243 uencies E 243 116 28 5 > 7.82	is 1 72 116 2 so we	$\begin{array}{c cccc} 2 & 2 \\ 30 & 7 \\ \hline 28 & 2 \\ \hline 28 & 2 \\ \hline all, so \\ -E \\ \hline 32 \\ 44 \\ 2 \\ 10 \\ \hline reject I \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 5 e level	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.14 \\       20.0 \\       41.0 \\       of signi $			
16	Hence the $\frac{X}{X}$ Observ Freques Expect freques Since the F Conclusion Since $\psi^2$	Trequencredncyedncyour frequence $0$ 27572301515 $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ $15$ <td>y table 0 275 243 uencies E 243 116 28 5 &gt; 7.82 cked int</td> <td>is 1 72 116 are sma 0 - - - - - - - - - - - - -</td> <td>$\begin{array}{c c} 2 &amp; 3 \\ 30 &amp; 7 \\ 28 &amp; 2 \\ \hline all, so v \\ -E \\ 32 \\ 44 \\ 2 \\ 10 \\ \hline reject I \\ ets by a \\ \end{array}$</td> <td>$\begin{array}{c cccccccccccccccccccccccccccccccccc$</td> <td>5 2 0 hen tog 2 2 5 level</td> <td>$\begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.1^{2} \\       20.0 \\       41.0 \\       of signing the sign is the set of the se$</td> <td></td> <td>12 pac</td> <td>kets</td>	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked int	is 1 72 116 are sma 0 - - - - - - - - - - - - -	$\begin{array}{c c} 2 & 3 \\ 30 & 7 \\ 28 & 2 \\ \hline all, so v \\ -E \\ 32 \\ 44 \\ 2 \\ 10 \\ \hline reject I \\ ets by a \\ \end{array}$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 2 5 level	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.1^{2} \\       20.0 \\       41.0 \\       of signing the sign is the set of the se$		12 pac	kets
16.	Hence the $\frac{X}{X}$ Observ Frequer Expect frequer Since the F Conclusion Since $\psi^2$ Sandal pov drawn and	Frequencredncyedncyedncyour frequence $0$ 275723015= 41.04ver is pacetheir weit	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked intright are	is 1 72 116 are sma 0 	$\begin{array}{c c} 2 & 3 \\ 30 & 7 \\ 28 & 2 \\ \hline 28 & 2 \\ \hline all, so \\ -E \\ 32 \\ 44 \\ 2 \\ 10 \\ \hline reject I \\ \hline reject I \\ \hline to be (ir$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 5 level 2. A rar 9, 0.48	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.1^{4} \\       20.0 \\       41.0 \\       of signing \\       mdom sa \\       3, 0.47       $		12 pac ).49, 0.	kets i 50 ,
16.	Hence the $\frac{X}{X}$ Observ Freques Expect freques Since the F Conclusion Since $\psi^2$ Sandal pow drawn and 0.51, 0.49,	Frequencredncyedncyour frequence $0$ 275723015= 41.04ver is pacetheir weil0.48, 0.5	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked intight are 50, 0.51	is 1 72 116 are sma 0 - - - - - - - - - - - - -	$\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{28}$ $\frac{2}{2}$ $\frac{2}{31}$ $\frac{2}{32}$ $\frac{32}{44}$ $\frac{32}{10}$ $\frac{32}{10}$ $\frac{44}{2}$ $\frac{2}{10}$ $\frac{10}{10}$ $\frac$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 5 c level c. A rar 9 , 0.48 verage	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.14 \\       20.0 \\       41.0 \\       of signing \\       ndom sa \\       8, 0.47 \\       weight     $	Total 392 392 2/E 1 9 4 0 4 ficance. mple of , 0.48, 0 of the p	12 pac ).49, 0. acking	kets i 50, can t
16.	Hence the $\frac{X}{X}$ Observ Frequer Expect frequer Since the F Conclusion Since $\psi^2$ Sandal pow drawn and 0.51, 0.49, taken as 0.3	Frequencredncyedncyour frequence $0$ 2757230151511= 41.04ver is pacetheir weil0.48, 0.555 kg at 5	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked int ight are 50, 0.51 % leve	is 1 72 116 are sma 0 are sma 0 106 107 107 107 107 107 107 107 107	$\begin{array}{c c} 2 & 3\\ 30 & 7\\ 28 & 2\\ \hline 28 & 28 & 2\\ \hline 28 & 28 & 2\\ \hline 28 & 28 & 2\\$	$\frac{3}{4} + \frac{4}{5}$ $\frac{4}{5} + \frac{1}{1}$ $\frac{(O - E)}{1024}$ $\frac{100}{100}$ $H_0 \text{ at 5 \%}$ machine h kg) 0.4 t if the a e.	5 2 0 hen tog 2 5 level 2 5 level 2 5 2 6 1 8 9, 0.48 verage	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.1^{4} \\       20.0 \\       41.0 \\       of signing \\       mom sa \\       3, 0.47 \\       weight     \end{array} $	Total 392 392 392 2/E 1 9 4 0 4 ficance. mple of , 0.48 , 0 of the p	12 pac ).49, 0. acking	kets i 50 , can t
16.	Hence the $\frac{X}{X}$ Observ Frequer Expect frequer Since the F Conclusion Since $\psi^2$ Sandal pow drawn and 0.51, 0.49, taken as 0.3 <b>Ans :</b>	Frequencredncyedncyour frequence $0$ 2757230151515151617181919101010111212	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked intight are 50, 0.51 % leve	is 1 72 116 are sma 0 116 2 so we found t and 0.4 1 of sign	$\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{28}$ $\frac{2}{2}$ $\frac{2}{31}$ $\frac{2}{32}$ $\frac{32}{44}$ $\frac{32}{10}$ $\frac{32}{44}$ $\frac{2}{10}$ $\frac{10}{10}$	$   \begin{array}{c cccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 2 5 level 2 5 level 2 5 2 6 1 2 1 5 1 2 1 1 5 1 5 1 5 1 5 1 5 1 5 1	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.14 \\       20.0 \\       41.0 \\       of signing \\       adom sa \\       3, 0.47 \\       weight   \end{array} $	Total     392     392 $392$ $2 / E$ $1$ $9$ $4$ $0$ $4$ ficance.     mple of     , 0.48, 0     of the p	12 pac ).49, 0. acking	kets i 50 , can t
16.	Hence the $\frac{X}{X}$ Observ Freques Expect freques Since the F Conclusion Since $\psi^2$ Sandal pow drawn and 0.51, 0.49, taken as 0.3 <b>Ans</b> :	Frequenceredncyedncyour frequence0275723015151515151515151617181910101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010<	y table 0 275 243 uencies E 243 116 28 5 > 7.82 cked int ight are 50, 0.51 % leve = 0.5 0.47	is 1 72 116 are sma 0 are sma 0 - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 1 0 0 - 0 0 0 0 0 0 0 0	$\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{28}$ $\frac{2}{2}$ $\frac{31}{2}$ $\frac{32}{44}$ $\frac{32}{10}$ $\frac{44}{2}$ $\frac{2}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 b level b level c. A rar 9, 0.48 verage 0,51	6 1 0 gether. (O - E) 4.2 16.6 0.1 ⁴ 20.0 41.0 of signi adom sa 3, 0.47 weight	$\frac{\text{Total}}{392}$ $\frac{392}{392}$ $\frac{2}{E}$ $\frac{1}{9}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{6}$	12 pac ).49, 0. acking	kets i 50 , can t
16.	Hence the $\frac{X}{X}$ Observ Frequer Expect frequer Since the F Conclusion Since $\psi^2$ Sandal pow drawn and 0.51, 0.49, taken as 0.3 <b>Ans :</b> <i>Given n</i>	Frequencredncyedncyour frequence027572301515= 41.04ver is pacetheir weil0.48, 0.555 kg at 5= 12 $\mu$ =0.48	y table 0 275 243 uencies E 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 116 28 5 243 243 243 116 28 5 243 243 243 243 243 243 243 243	is         1         72         116         are sma         0         are sma         0         2 so we         found t         and 0.4         1 of sign         0.48	$\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{-E}{32}$ $\frac{32}{44}$ $\frac{44}{2}$ $\frac{2}{10}$ $\frac{32}{44}$ $\frac{2}{10}$ $\frac{10}{10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 0 hen tog 2 2 6 level 2 . A rar 9 , 0.48 verage 0.51	$     \begin{array}{r}       6 \\       1 \\       0 \\       gether. \\       (O - E) \\       4.2 \\       16.6 \\       0.14 \\       20.0 \\       41.0 \\       of signing \\       dom sa \\       3, 0.47 \\       weight \\       0.49 \\       \hline       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0.11 \\       0$		12 pac ).49, 0. acking	kets i 50 , can t

STUCOR APP

$$\begin{aligned} \overline{x_1} &= \frac{\sum x_1}{n_1} = \frac{64}{10} = 6.4 & \text{ & } \overline{x_2} = \frac{\sum x_2}{n_2} = \frac{40}{8} = 5 \\ s_1^2 &= \frac{\sum x_1^2}{n_1} - (\overline{x_1})^2 = \frac{512}{10} - (6.4)^2 = 10.24 & \text{ & } s_2^2 = \frac{\sum x_2^2}{n_2} - (\overline{x_2})^2 = \frac{282}{8} - (5)^2 = 10 \\ s_1^2 &= \frac{n_1 s_1^2}{n_1 - 1} = \frac{(10)(10.24)}{9} = 11.3777 & \text{ & } s_2^2 = \frac{n_{21} s_2^2}{n_2 - 1} = \frac{(8)(10.25)}{7} = 11.7143 \\ s_2^2 > s_1^2 \\ \text{The parameter of interest is } \sigma_1^2 \text{ and } \sigma_1^2 \\ 1. H_0 : \sigma_1^2 &= \sigma_2^2 \text{ [ The difference of a varaince is not significant]} \\ 2. H_1 : \sigma_1^2 \neq \sigma_2^2 \\ 3. a = 0.05 & \text{, } d.f(v_1) = 9 & \text{, } d.f(v_2) = 7 \\ 4. \text{ Table value of } F = 3.29 \\ 5. \text{ The test statistic is } F = \frac{s_2^2}{s_1^2} = \frac{11.7143}{11.3777} = 1.02958 \\ 6. \text{Conclusion :} \\ \text{ If Cal F$$

	For t	wo tai	led tes	t =  z	= 1.96	(5%	level)				
	Cal z  < table z										
	Accept $H_0$ Thus the dice is fair.										
		1 0.									
19.	Theo 9:3:3 882, <b>Solu</b> Give	ry pre :1. In 313, 2 <b>tion:</b> n : A,I	dicts tl an exp 87 and 3,C,D	nat the erimer 1118.1 in the 1	proportion t among Does the catio 9:3:	on of be 1600 b experin 3:1	eans in fo eans, the nent supp	ur groups A, B, on numbers in the f ort the theory?	C, D should be four groups were		
	Ι Γ						Total	]			
		$E_i$	900	300	300	100	1600	-			
		$O_i$	882	313	287	118	1600				
	$\chi^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \frac{18^{2}}{900} + \frac{13^{2}}{300} + \frac{13^{2}}{300} + \frac{18^{2}}{100} = 4.73$ $\sum E_{i} = \sum O_{i}, \text{ degree of freedom} = 4 - 1 = 3$										
	$H_0 = The experiment supports the theory$										
	0	$Cal \chi^2 = 4.73$									
	Table value for 3 degree of freedom = 7.82 $\Rightarrow$ Calcalx ² < tabx ²										
	Accept $H_0$ .										
20.	The means of two large samples of 1000 and 2000 members are 67.5 inches and 68.0inches respectively. Can the samples be regarded as drawn from the same populations of standard deviation 2.5 inches? <b>Solution:</b> Given $n_1=1000$ , $n_2 = 2000$ , $\overline{x_2} = 67.5$ , $\overline{x_1} = 68 \sigma_1 = \sigma_2 = 2.5$ The parameter of interests is $\mu_1 and \mu_2$ 1. $H_0: \mu_1 = \mu_2$ [No significant difference] 2. $H_1: \mu_1 \neq \mu_2$ 3. $\alpha = 0.05$ , (Two Tailed Test) the test statistic is $z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{67.5 - 68}{\sqrt{\frac{2.5^2}{1000} + \frac{2.5^2}{2000}}} = \frac{-0.5}{\sqrt{0.00625 + 0.003125}} = -5.16$										
	Conclusion: $-1.96 < -5.16 < 1.96$ So we reject $H_{0.}$										
21.	Two random samples gave the following results:										
		San	nple	Size	Samp Mea	n n	Sum o deviation	f squares of ons from the			

STUCOR APP
			mean
1	10	15	90
2	12	14	108

Test whether the samples have come from the same normal population. **Solution:** 

A normal population has two parameters namely the mean  $\mu$  and the variance  $\sigma^2$ . If we want to test the samples from the same normal population, we have to test

(i) The equality of population variance (Using F-Test)

(ii) The equality of population means (using t-test).

Since t-test assumes  $\sigma_1^2 = \sigma_2^2$  we shall first apply F-test and then t-test.

#### (i) F-test:

Given:  $n_{1=}10$ ,  $n_2 = 12$ ,  $\overline{x_2} = 14$ ,  $\overline{x_1} = 15$ 

$$S_1^2 = \frac{\sum(x_1 - \overline{x_1})^2}{n_1 - 1} = \frac{90}{9} = 10S_2^2 = \frac{\sum(x_2 - \overline{x_2})^2}{n_2 - 1} = \frac{108}{11} = 9.8181$$

$$S_1^2 > S_2^2$$

The parameters of interest is  $\sigma_1^2$  and  $\sigma_2^2$ 

1.  $H_0$  :  $\sigma_1^2 = \sigma_2^2$ 2.  $H_1$  :  $\sigma_1^2 \neq \sigma_2^2$ 3.  $\alpha = 0.05$ , d.f. $(v_1) = n_1 - 1 = 9$ d.f. $(v_2) = n_2 - 1 = 11$ 4. Table value of F :2.90 5. The test statistic is  $F = \frac{S_1^2}{S_2^2} = \frac{10}{9.8182} = 1.019$ 6. Conclusion: If Cal F H_0; Otherwise we reject  $H_0$ . Here, F = 1.019 < 2.90, we accept  $H_0$  at 5% level of significance. (Note: If F-test failed, then t-test should not be used)

#### (ii) t-test:

Given 
$$n_1 = 10, n_2 = 12, S_1^2 = 10, S_2^2 = 9.8181$$
  
 $S^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} = \frac{100 + 117.82}{10 + 12 - 2} = 10.9$ 

The parameter of interests is  $\mu_1$  and  $\mu_2$ 

1.  $H_0: \mu_1 = \mu_2$ 2.  $H_1: \mu_1 \neq \mu_2$ 3.  $\alpha = 0.05$ , d.f =  $n_1 + n_2 - 2 = 20$  (Two Tailed Test )

4.Critical region



## STUCOR APP

STUCOR APP



JCOR APP

reject 
$$H_0$$
. Here $-1.96 \ll -5.16 < 1.96$ So we reject  $H_0$ .26.1000 students at college level were graded according to their LQ and their economic  
conditions. What conclusion can you draw from the following data:EconomicLQ_level  
conditionsConditionsHigh  
totoAns:The parameter of interest is  $\chi^2$ 1. H_0: The given attributes are independent  
2. H_1: The given attributes are not independent le.  
3.  $\alpha = 0.05$ , d. f =  $(r-1)(s-1) = (2-1)(2-1) = 1$   
4. Table value of  $\chi^2 = 3.841$ 5. The test statistic is  $\chi^2 = \sum \frac{(o-E)^2}{E}$ The expected frequencies are calculated using the following formulae  
Expected frequency for 460 =  $\frac{600 \times 700}{1000} = 420$ Expected frequency for 140 =  $\frac{600 \times 300}{1000} = 80$ Expected frequency for 140 =  $\frac{300 \times 400}{1000} = 120$ Expected frequency for 160 =  $\frac{300 \times 400}{1000} = 120$  $\chi^2 = \sum \left(\frac{o-E}{E}\right)^2 = 31.7373$ 8. Conclusion:  
If Cal  $\chi^2$ If Cal  $\chi^2$ If Cal  $\chi^2$ At  $\chi^2 = 2 \left(\frac{o-E}{E}\right)^2$ Image: Conclusion:  
If Cal  $\chi^2$ If Cal  $\chi^2$ At  $\chi^2 = 2 \left(\frac{o-E}{E}\right)^2$ The parameter of interest is  $\chi^2$ Image: Conclusion:  
Image



	7. Computations :									
	$\chi^2 = \frac{\left[(327)(234) - (545)(741)\right]^2 (327 + 545 + 741 + 234)}{(872)(975)(1068)(779)} = 279.77$									
	8. Conclusion :									
	S	ince $\chi$	$x^2 = 230.$	24 > 3.8	841 solve	e reject 1	$H_0$ at 5 °	% level o	of signifi	cance
	:	There	is depen	dence be	etween th	ne attribu	ites			
	C	Coeffici	ent of at	tributes	$= \frac{ad}{ad}$	$\frac{bc}{bc} = -\frac{bc}{bc}$	- 327330 480363	) - = - 0.6	814	
29.	Time tal	ken by	workers	in perfo	rming a	job are g	iven belo	ow:		
	Type I	: 2	1 17	7 27	28	24	23			
	Type I	I: 2	8 34	4 43	36	33	35	39		
	Test whether there is any significant difference between the variance of time distribution. Solution:									
	<i>Here</i> , $n_1$	= 6, &	$n_2 = 7$	1	[	[				
		1	15	27	20				Total	
	$X_1$ :	21	17	27	28	24	23		140	
	$X_{1}^{2}$ :	441	289	729	784	576	-529		3348	
	X 2 :	28	34	43	36	33	35	39	248	
	$X_2^2$ :	784	1156	1849	1296	1089	1225	1521	8920	

## STUCOR APP

*Given*:  $n_1 = 200$ ,  $\overline{x}_1 = 2000$ ,  $s_1 = 200$  $n_2 = 200, \ \overline{x}_2 = 1700, \ s_2 = 450$ 1.  $H_0: \mu_1 = \mu_2$ 2.  $H_1: \mu_1 \neq \mu_2$  [Use two – tailed test] 3.  $\alpha = 5\%$ 5.The test statistic  $Z = \frac{\left(\overline{x}_{1} - \overline{x}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n} + \frac{s_{2}^{2}}{n}}} = \frac{2000 - 1700}{\sqrt{\frac{(200)^{2}}{200} + \frac{(450)^{2}}{200}}} = \frac{300}{34.8} = 8.62$ 6. Conclusion : If  $-Z_{a/2} < Z < Z_{a/2}$ , then accept  $H_0$ ; otherwise, wereject  $H_0$ . Here, -.196 < 8.62 < 1.96 So, we reject  $H_0$ A survey of 320 families with 5 children each revealed the following distribution : 31. No. of boys 5 4 3 2 1 0 2 0 1 3 4 No. of girls 5 14 56 110 88 40 12 No. of families Is this result consistent with the hypothesis that male and female births are equally probable ? Ans: 1.  $H_0$ : Male and Female births are equally probable. 2.  $H_1$ : Male and Female births are not equally probable. 3.  $\alpha = 0.05$ , d.f = n-1 = 6-1 = 5 4. Table value of  $\chi^2 = 11.07$ 5. The test statistic is  $\chi^2 = \Sigma \frac{(O-E)^2}{E}$ On the assumption  $H_0$ , the expected frequencies frequencies are given by the terms of  $N(q+p)^n$  $= 320 \left(\frac{1}{2} + \frac{1}{2}\right)^5 = 320 \left[5C_0 + 5C_1 + 5C_2 + 5C_3 + 5C_4 + 5C_5\right]$ = 10 [1+5+10+10+5+1]The expected frequencies are 10,50,100,100,50,10  $(O-E)^2 = (O-E)^2 / E$ O - E0 Ε No. of boys 5 14 10 4 16 1.6 56 50 0.72 4 6 36 3 10 110 100 100 1 2 -12 88 100 144 1.44 1 40 50 -10 100 2

JCOR APP

STUCOR APP

	2. $H_1$ : 0	$\sigma_1^2 \neq \sigma_2^2$								
	3. $\alpha = 0.0$	05, d.f	$(v_1) = n_1 - $	1 = 9 - 1 = 3	8 , $d.f(n)$	$(v_2) = n_2 -$	-1 = 7 - 1 =	6		
	4. Table v	value of $F$	= 3.58							
	5. The test	statistic is I	$F = \frac{s_2^2}{s_1^2} =$	$\frac{5.2376}{3.7510} =$	1.3963					
	6.Conclusi	on :	1							
	If C	al F < tal	ole F , then	we accept	$H_0$ ; oth	herwise we	reject $H_0$			
	Here, $F =$	1.3963 <	3.58, we a	accept $H_0$	at 5 % leve	el of signifi	cance.			
	We conclude that the difference is not significant.									
33.	Explain cle	early the pr	ocedure ge	nerally fol	lowed in te	sting of a h	ypothesis.			
	1. Set u	ıp null hyp	othesis $H_{0}$	: It is a sta	tement of a	no differen	ce about th	e		
	popu	ilation para	meters.							
	2. Set u	ip alternati	ve hypothe	sis H ₁ . It i	s a stateme	ent, comple	ment to H	0		
	3. Com	pute the te	st statistic.	of the stat	istic at give	on loval of	aignificanc	$\alpha(\alpha)$		
	4. Obta 5. Writ	the concl	usion. If ta	bulated val	lue of the s	tatistic is le	ess than the	$e(\alpha)$ e calculated		
	valu	e, the rejec	$H_0$ .							
34.	The deman	nd for a par	ticular spar	e part in a	factory wa	s found to	vary for da	y-to-day.		
	In a sample study the following information was obtained. Days Mon Tues Wed Thu Fri Sat									
	No. of spare part	No. of spare parts 1124 1125 1110 1120 1126 1115								
	demanded Test the hy	1 pothesis th	at the num	ber of part	s demanded	d does not d	depend on	the day of		
	the week (	$\chi^{2}_{0.05}(5) = 11$	.07)							
	Ans:									
	Null hypothesis $H_0$ : The number of parts demanded does not depend on the day									
	of the week. Attractive hypothesis $H_{\star}$ : The number of parts demanded depend on the day of									
	the week.									
	Statistic	$x^{2} = \sum_{n=1}^{\infty} ($	$(O-E)^2$							
		$\cdot \chi = \Sigma^{-1}$	E	1106 . 11	15					
	$E = \frac{1124}{2}$	+1125+11	<u>10+1120</u> 6	+1126+1	$\frac{115}{2} \Rightarrow E$	C = 1120				
		1104	1105	1110	1100	1105	1115			
	E	1124	1125	1110	1120	1126	1115 1120			
	1	1								

 $\frac{(O-E)^2}{E} \mid 0.0143 \quad \left| \begin{array}{c} 0.0223 \\ \end{array} \right|$ 0.0223 0.0893 0.1803 0 0.0321 Calculated  $\chi^2 = 0.1803$ Table  $\chi^2(5) = 11.07$ Conclusion: Table  $\chi^2 > \operatorname{Cal} \chi^2$ . Accept  $H_0$ . Explain briefly the procedure involved in testing the significance for difference of 35. proportions in the case of large samples. Ans : 1. Null hypothesis  $H_0$ : There is no significant difference. 2. Alternative hypothesis  $H_1: p_1 \neq p_2$ 3. Statistic:  $Z = \frac{p_1 - p_2}{\sqrt{PQ\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } H_1 : p_1 \neq p_2$ Where  $P = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$  and Q = 1 - P $n_1$ ,  $n_2$  are sample sizes. 4. Obtain the tabulated Z for given LOS ( $\alpha$ ) 5. If tab Z < Cal Z , Reject  $H_0$ The height of six randomly chosen sailors are (in inches) : 63, 65, 68, 69, 71 and 72. 36. Those of 10 randomly chosen soldiers are 61, 62, 65, 66, 69, 69, 70, 71, 72 and 73. Discuss, the height that these data thrown on the suggestion that sailors are on the average taller than soldiers  $(t_{0.01}(14) = 1.76)$ Ans:  $\sum x_1 = 63 + 65 + 68 + 69 + 71 + 72 = 408$  $\sum x_1^2 = 63^2 + 65^2 + 68^2 + 69^2 + 71^2 + 72^2 = 27804$  $\sum x_2 = 61 + 62 + 65 + 66 + 69 + 69 + 70 + 71 + 72 + 73 = 678$  $\sum x_2^2 = 61^2 + 62^2 + 65^2 + 66^2 + 69^2 + 69^2 + 70^2 + 71^2 + 72^2 + 73^2 = 46122$ 

ICOR A

$$\overline{x_{1}} = \frac{\sum_{n_{1}} x_{1}}{n_{1}} = \frac{408}{6} = 68 \quad \& \quad \overline{x_{2}} = \frac{\sum_{n_{2}} x_{2}}{n_{2}} = \frac{678}{10} = 67.8$$

$$s_{1}^{2} = \frac{\sum_{n_{1}} x_{1}^{2}}{n_{1}} - (\overline{x_{1}})^{2} = \frac{27804}{6} - (68)^{2} = 10$$

$$s_{2}^{2} = \frac{\sum_{n_{2}} x_{2}^{2}}{n_{2}} - (\overline{x_{2}})^{2} = \frac{46122}{10} - (67.8)^{2} = 15.26$$

$$s^{2} = \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{(6)(10) + (10)(15.36)}{6 + 10 - 2} = 15.26$$

$$1. H_{0} ; \mu_{1} = \mu_{2}$$

$$2. H_{1} ; \mu_{1} > \mu_{2} = 50$$

$$3. \alpha = 5 \% , \quad d.f = n - 1 = 5 - 1 = 4$$

$$4. \text{ critical region}$$

$$-t_{\alpha} = 7.76$$

$$= 2.26$$

$$5. \text{ The test statistic} \quad t = \frac{\overline{x_{1} - \overline{x_{2}}}}{\sqrt{s^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \sqrt{15.26\left(\frac{1}{6} + \frac{1}{10}\right)} = 0.099$$

$$6. \text{ Conclusion : If } t < t_{\alpha} \text{ we accept } H_{0} , \text{ otherwise we reject } H_{0}$$

$$\text{Here } 0.099 < 1.76 \therefore \text{ we accept } H_{0}$$

$$\text{The sailors are not an the average taller than the soldiers}$$

$$37. \qquad \text{Fit a binomial distribution for the following data and also test the goodness of fit.}$$

$$\frac{|X|}{|Y|} = \frac{|X|}{|Y|} = \frac{|X$$

STUCOR APP

	3. α	= 0.05	d.f.=n-	-1=7-1=	-6				
	4.Ta	ble va	lue of $\psi^2$ =	= 12.592					
	5. The test statistic is $w^2 = \sum_{n=1}^{\infty} (O - E)^2$								
	5.11	e lest	statistic is q	$p = \sum_{i=1}^{n}$	E				
	Or	n the as	sumption H	0, the expo	ected freque	ncies frequei	ncies are given by the	e terms of	
		= 80	$\left(\frac{1}{2} + \frac{1}{2}\right)^6$	$= 80 \Big[ 6C_0 \Big]$	$+6C_{1}+6C_{1}$	$C_2 + 6C_3 + 6$	$C_4 + 6C_5 + 6C_6$		
		$=\frac{80}{64}$	[1+6+15+	20+15+6	5+1] = 1.25	[1+6+15-	+ 20 + 15 + 6 + 1]		
						$(0, \mathbf{D})^2$	$(O - E)^2 / E$		
		x	0	Ε	O - E	(O-E)	(U-E) / E		
		0	5	1.25	3.75	14.1	11.28		
		$\frac{1}{2}$	18	/.5 18 75	10.5	110.3 85.6	14.71		
		$\frac{2}{3}$	28 12	25	-13	85.0 169	4.37		
		4	7	18 75	-11 75	138.1	0.70 7 37		
		5	6	7.5	-1.5	2.3	0.31		
		6	4	1.25	2.75	7.6	6.08		
			N = 80				51.08		
	$\therefore \psi^2 =$	51.08							
	6. Conc	lusion	:						
	If caly	$v^2 < ta$	able $\psi^2$						
		Then v	we accept H	$\int_0$ , here 1	2.592 < 5	1.08			
	∴ we	accept	$H_0$						
	0								
38.	The me	an val	ue of a rand	om sample	e of 60 item	s was found	to be 145, with a s	tandard	
	deviation of 40. Find the 95% confidence limits for the population mean. What size of								
	the sam	ple is	required to	estimate th	ne populatio	n mean with	in 5 of its actual va	alue	
	95% or	more	confidence,	using the	sample mea	n /			
	SD ie	not gi	ven						
	5.12.13	100 51	$\left  \frac{1}{1-r} \right $						
	∴ limi	ts of $\mu$	<i>t</i> is $\frac{\mu x}{s/\sqrt{n}}$	≤ 1.96					

	<u>s</u>	. <i>S</i>						
	$x - 1.96 \frac{1}{\sqrt{n}} \le \mu \le x + 1$	$.96\frac{1}{\sqrt{n}}$						
	$134.9 \le \mu \le 155.1$	(	`					
	$p\left(\overline{x}-5 \le \mu \le \overline{x}+5\right) \ge 0.95 \implies p\left(\left \overline{x}-\mu\right  \le 5\right) \ge 0.95$							
	( <i>ie</i> ) $p\left(\left z\right  \le \frac{5\sqrt{n}}{\sigma}\right) \ge 0.95$							
	<i>wkt</i> $p( z  \le 1.96) = 0.95$							
	$\therefore n = n \frac{5\sqrt{n_1}}{\sigma} = 1.96 \implies$	$\sqrt{n_1} =$	$\frac{1.95}{5}$	$\Rightarrow n_1$	$=\left(\frac{1.96}{5}\right)$	$(40)^2$	= 245.8	6
	$\therefore$ Least sample since is 24	6	5					
	1							
39.	Test made on the breaking stren	ngth of 1 70 572	0 pieces 596 and	of a met $584 \text{ kg}$	tal gave	the follo	wing re	sults
	strength of the wire can be assu	med as $5$	570 and 577 kg.	504 Kg.	i est ii t	ine mear	I DICUKII	15
	Ans:	1. a. 4 a a 4	:c - 4:c			77		
	Find x and sample S. D. $3$ and $3$	inen test	11 x d111	ers from	$\mu = 5$	//		
	Assume $A = 362$ $d_z = x_z - A$ , $x_z = d_z + A$							
				2				
	$\overline{x} = \frac{\sum d_i}{n} + A = 575.2$ , .	$s^2 = \frac{1}{n} \Sigma$	$d_i^2 - \left(\frac{1}{2}\right)$	$\left(\frac{\sum d_i}{n}\right)^2$	= 8.26			
	$-\frac{1}{x-\mu} - 0.65$	u = n = 1	- 0					
	$i = \frac{1}{\frac{s}{\frac{s}{\frac{s}{\frac{s}{\frac{s}{\frac{s}{\frac{s}{$	v = n - 1	- 1					
	$\sqrt{n-1}$							
	n _i : 578 572 570	568	572	570	570	572	596	584
	$d_{i}$ : -4 -10 -12	-14	-10	-12	-12	-10	14	2
	$d_i^2$ 16 100 144	196	100	144	144	100	196	4
	$H_0: \bar{x} = \mu H_1: \bar{x} \neq \mu$							
	$t_{0.05} = 2.26  t  < t_{0.05} \therefore H_0 i$	s accepte	ed.					
	$\therefore$ we can assumed 577 kg at	5% loss.						
40.	Test if the variances are signific $X_1$ 24 27 26 21 25	cantly dif	ferent fo	or				
	X ₂ 27 30 32 36 28	23						
	Ans :							
	Given $n_1 = 5$ , $n_2 = 6$							

## STUCOR APP

	r	1	1	r	r	1					
		<i>x</i> ₁	$x_1^2$	^x 2	$x_2^2$						
		24	576	27	729						
		27	729	30	900						
		26	676	32	1024						
		21	441	36	1296						
		25	625	28	784						
				23	529						
		123	3047	176	5262						
	$\frac{123}{x_1} = \frac{123}{5}$	3-= 24.6	& x ₂ =	$=\frac{176}{6}=29$	.33						
	$s_1^2 = \frac{\sum}{m}$	$s_{1}^{2} = \frac{\sum x_{1}^{2}}{n_{1}} - (\overline{x_{1}})^{2} = \frac{3047}{5} - (24.6)^{2} = 4.24  \&  s_{2}^{2} = \frac{\sum x_{2}^{2}}{n_{2}} - (\overline{x_{2}})^{2} = \frac{5262}{6} - (29.33)^{2} = 16.7511$									
	$s_1^2 = \frac{n_1}{n_1}$	$\frac{s_1^2}{-1} = \frac{(5)(1-1)(1-1)}{(1-1)(1-1)(1-1)}$	$\frac{4.24}{4} = 5.3$	$s \& s_2^2$	$=\frac{n_2 s_2^2}{n_2 - 1} =$	$=\frac{(6)(16.5)}{5}$	7511) =	20.10			
		$s_{2}^{2}$	$s^{2} > s_{1}^{2}$								
	H	$I_0: \sigma_1^2 = 0$	$\sigma_2^2$ &	$H_1: c$	$\sigma_1^2 \neq \sigma_2^2$						
	$\alpha = 5^{\circ}$	% = 0.05	d.f.	$v_1 = n_1 - $	1=4 &	$v_2 = n_2$	$_{2}-1=5$	5			
	<i>F</i> =	$F = \frac{s_2^2}{s_1^2} = \frac{20.10}{5.3} = 3.79 \qquad F(5,4) = 6.26$									
	$\therefore$ Cal F < Table F , $\therefore$ $H_0$ is accepted.										
41	The nu	mber of a	utomobi	le accider	nts in a co	ertain lo	ocality	was 1	2. 8. 20	0. 2. 14	4, 10, 15.
71.	6, 9, 4.	Are these	e frequen	cies in as	greement	with th	e beliet	f that	accide	nt cond	litions
	were th	e same d	uring this	s 10 week	c period.						
	Ans :	G	iven $n =$	10							
	x	12	8 2	0 2	14	10	15	6	9	4	100
	$x^2$	$12^{2}$	$8^2$ 20	$2^2$ $2^2$	$14^{2}$	$10^{2}$	$15^{2}$	$6^2$	9 ²	$4^{2}$	1266
	$-\sum x$	100	0								
	x =	$=\frac{1}{10}$	.0								
	$s^2 = \frac{\Sigma}{s}$	$\frac{x^2}{n} - (x)^2$	$=\frac{1266}{10}-$	100 = 26	$\Rightarrow s = 5$	5.16					
	$1.H_0:$	$\mu = 0 [N]$	o change	in during	this 10 we	ek perio	<i>d</i> ]				
	2. <i>H</i> ₁ :	$\mu \neq 0$ [Th	nere is a c	hange in t	his 10 wee	ek period	<i>d</i> ]				
	3. $\alpha = 5\%$	% , d.f =	= n - 1 = 10	-1 = 9							
	4 critical region										

STUCOR APP

$$\frac{-t_{\alpha/2} - t_{\alpha/2}}{= -2.26 - 5\%} = \frac{-t_{\alpha/2}}{(\frac{x}{\sqrt{n-1}})} = \frac{10 - 0}{(\frac{5.16}{\sqrt{10-1}})} = 5.81$$
5. The test statistic  $t = \frac{x - \mu}{\left(\frac{x}{\sqrt{n-1}}\right)} = \frac{10 - 0}{\left(\frac{5.16}{\sqrt{10-1}}\right)} = 5.81$ 
6. Conclusion : If  $-t_{\frac{\alpha}{2}} < t < t_{\frac{\alpha}{2}}$  we accept  $H_0$ , otherwise we reject  $H_0$   
Here  $-2.26 < 5.81 < 2.26$ 
 $\therefore H_0$  at 5% level of significance.  
42. A certain pesticide is packed into bags by a machine. A random sample of 10 bags is chosen and the contents of the bags is found to have the following weights (in kgs) 50, 49, 52, 44, 45, 48, 46, 45, 49 and 45. Test if the average quantity packed be taken as 50 kg.  
Ans :  
Given  $n = 10$ ,  $\mu = 50$  kg  
 $\frac{x}{x^2} = 50^2 \frac{49}{49^2} \frac{52}{52^2} \frac{44}{44^2} \frac{455}{48^2} \frac{48}{46^2} \frac{46}{45^2} \frac{45}{49^2} \frac{49}{45^2} \frac{45}{22437}$   
 $\overline{x} = \frac{\Sigma x}{n} = \frac{473}{10} = 47.3$   
 $s^2 = \frac{\Sigma x^2}{n} - (x)^2 = \frac{22437}{10} - (47.3)^2 = 6.41 \implies s = 2.53$   
 $1.H_0 : \mu = 50$   
 $3.\alpha = 5\%$ ,  $d.f = n - 1 = 10 - 1 = 9$   
4. critical region  
 $\frac{-t_{\alpha/2} - t_{\alpha/2}}{-2.26 - 2.26}$   
5. The test statistic  $t = \frac{\overline{x} - \mu}{(\frac{s}{\sqrt{n-1}})} = \frac{47.3 - 50}{(\frac{2.53}{\sqrt{10-1}})} = -3.2$ 

STUCOR APP

	6. Conclusion : If $-t_{\frac{\alpha}{2}} < t < t_{\frac{\alpha}{2}}$ we accept $H_0$ , otherwise we reject $H_0$
	Here $-2.26 < -3.2 < 2.26$
	$\therefore$ H ₀ at 5% level of significance.
43.	Given $\overline{X_1} = 72$ , $\overline{X_2} = 74$ , $s_1 = 8$ , $s_2 = 6$ , $n_1 = 32$ , $n_2 = 36$ . Test if the means are significant.
	Ans :
	$s_1^2 = \frac{n_1 s_1^2}{n_1 - 1} = \frac{(32)(8^2)}{32 - 1} = 66.07  \&  s_2^2 = \frac{n_2 s_2^2}{n_2 - 1} = \frac{(36)(6^2)}{36 - 1} = 37.03  \Rightarrow  s_1^2 > s_2^2$
	1. $H_0: \sigma_1^2 = \sigma_2^2$
	2. $H_1: \sigma_1^2 \neq \sigma_2^2$
	$3. \alpha = 5\%$ $d.f. v_1 = 31$ & $v_2 = 35$
	4. Table value of $F$ is $< 1.80$
	5. The test statistic is $F = \frac{s_1^2}{s_2^2} = \frac{66.07}{37.03} = 1.80$
	6. Conclusion :
	If Cal FH_0; otherwise, we reject $H_0$
	Cal F $\checkmark$ table F, we reject $H_0$ .
44.	400 men and 600 women were asked whether they would like to have a
	flyover near their residence. 200 men and 325 women were in favor of the
	proposal. Test whether these two propositions are same.
	Solution:
	Let $p_1, p_2$ be the proportions ravorable to have over among men and
	women respectively.

STUCOR APP

$$\overline{X} = \frac{\sum x}{n} = \frac{972}{10} = 97.2 \quad i.e \ \overline{X} = 97.2$$

$$s^{2} = \frac{\sum x^{2}}{n} - (\overline{x}^{2}) = \frac{96312}{10} - (97.2)^{2} = 9631.2 - 9447.84$$

$$s^{2} = 183.96 \implies s = 13.5$$

$$H_{0}: \mu = 100$$

$$H_{1}: \mu_{1} \neq 100 \quad [\text{ Two-tailed test }]$$

$$\alpha = 5\% \quad \text{degree of freedom} = n - 1 = 10 - 1 = 9$$
The test statistic
$$t = \frac{\overline{X} - \mu}{\left(\frac{s}{\sqrt{n-1}}\right)} = \frac{97.2 - 100}{\left(\frac{13.5}{\sqrt{9}}\right)} = \frac{-2.8}{4.5} = -0.62$$
Conclusion
$$If - t_{a_{2}} < t < t_{a_{2}} \text{ then we accept } H_{0}; \text{ otherwise we reject } H_{0}$$
Here -2.262 < -0.62 < 2.262 So we accept  $H_{0}$ 
We may conclude that the data are consistent with the assumption of mean I.Q. of 100 in the population.