MATRICES FORMULA SHEET

1) Characteristic Equation:

- i) For a 3×3 matrix $\lambda^3 \beta_1 \lambda^2 + \beta_2 \lambda \beta_3 = 0$ is the characteristic equation where $\beta_1 = \text{sum of the leading diagonal elements}$, $\beta_2 = \text{sum of the minors of the leading diagonal elements}$, $\beta_3 = |A|$
- ii) For a 2×2 matrix $\lambda^2 \beta_1 \lambda + \beta_2 = 0$ is the characteristic equation where $\beta_1 = \text{sum of the leading diagonal elements}$, $\beta_2 = |A|$

Eigen values: roots of the Characteristic equation. Can be obtained from calculator.

Eigen vectors: a nonzero vector $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ satisfies the equation $(A - \lambda I)X = 0$.

2) Cross Rule (Use only for two distinct equations)

- 3) If λ_1 , λ_2 , λ_3 are the eigen values of A then
- (i) $K\lambda_1$, $K\lambda_2$, $K\lambda_3$ are the eigen values of KA. (ii) $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$, $\frac{1}{\lambda_3}$ are the eigen values of A^{-1} .
- (iii) $\lambda_1^p, \lambda_2^p, \lambda_3^p$ are the eigen values of A^p (iv) $\frac{|A|}{\lambda_1}, \frac{|A|}{\lambda_2}, \frac{|A|}{\lambda_3}$ are the eigen values of adj A.
- (v) $\lambda_1 K, \lambda_2 K, \lambda_3 K$ are the eigen values of (A-KI).
- 4) (i) Sum of the eigen values = Sum of the leading diagonal elements.
 - (ii) Product of the eigen values = |A|.
- 5. (i) If A is a triangular matrix then the eigen values are its diagonal elements.
 - (ii) If A is a singular matrix (i.e. |A| = 0) then one of the eigen values is 0.
- 6. (i) If A is an orthogonal matrix then $AA^T = A^TA = I$.(ii) If A is symmetric matrix then $A = A^T$

7) Conditions for orthogonal transformation:

A real symmetric matrix A with

- (i) eigen vectors X_1, X_2, X_3 are linearly independent. i.e.) $|X_1 \ X_2 \ X_3| \neq 0$ and
- (ii) eigen vectors X_1, X_2, X_3 are pair wise orthogonal. i.e.) $X_1 \cdot X_2^T = 0$, $X_2 \cdot X_3^T = 0$ and $X_3 \cdot X_1^T = 0$

Note: If the eigen values of real symmetric matrix are distinct then the eigen vectors are linearly independent and pair wise orthogonal

- 8) Diagonalisation: The process of transforming a square matrix A in to a diagonal matrix D. A real symmetric matrix is said to be orthogonal diagonalizable if there exist an orthogonal matrix N such that $N^{T}AN = D$.
- 9) Quadratic form: A homogeneous polynomial of second degree in any number of variables. Matrix form of the Q.F: Every quadratic form can be expressed as $\mathbf{X}^T \mathbf{A} \mathbf{X}$, where A is a symmetric matrix with $\mathbf{a}_{ii} = \text{coefficient of } x_i^2$ and $\mathbf{a}_{ij} = \left(\frac{1}{2} \times \text{coefficient of } x_i x_j\right) = \mathbf{a}_{ji}$
- 10) Canonical form = sum of squares of any number of variable.
 Matrix form of the C.F: Every canonical form can be expressed as Y^TDY, where D is a diagonal matrix.
- 11) Orthogonal reduction: The orthogonal transformation: X=NY reduces the quadratic form to canonical form provided $N^TAN = D$ where N is normalized modal (orthogonal) matrix. Proof: $Q.F = X^TAX = (NY)^TA(NY) = (Y^TN^T)A(NY) = Y^T(N^TAN)Y = Y^T(D)Y = C.F.$
- 12) Rank (r) of the Quadratic form: The number of nonzero terms in the resulting canonical form is called rank of the quadratic form.
- **13) Index (p) of the Quadratic form:** The number of positive terms in the form is called index of the quadratic form.
- 14) Signature of the Quadratic form: s = 2p-r

15) Nature of the Quadratic form

S.No.	Nature	If the eigen values are known	If the eigen values are not known
1	Positive definite	All the eigen values are positive	D ₁ ,D ₂ ,D ₃ are positive
2	Negative definite	All the eigen values are negative	D ₁ , D ₃ are negative D ₂ is positive
3	Positive semi definite	All the eigen values are positive and atleast one is zero	$D_1 \ge 0$, $D_2 \ge 0$ $D_3 \ge 0$ and at least one is zero
4	Negative semi definite	All the eigen values are negative and atleast one is zero	$D_1 \le 0 \ , D_3 \le 0 \ , D_2 \ge 0$ and atleast one is zero
5	Indefinite	eigen values are positive and negative	All the other cases

where
$$D_1 = |a_{11}| = a_{11}$$
 $D_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ $D_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

